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ON STIFFNESS MAXIMIZATION

OF VARIABLE THICKNESS SHEET

WITH UNILATERAL CONTACT1

By
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Abstract. The problem of maximizing the stiffness of a linearly elastic sheet, in

unilateral contact with a rigid frictionless support, is considered. The design variable

is the thickness distribution, which is subject to an isoperimetric volume constraint and

upper and lower bounds. The bounds may vary over the domain of the sheet, and

the lower one is allowed to be zero, hence giving the possibility of obtaining topology

information about an optimal design.

By using saddle point theory, the existence of solutions, i.e., thickness functions and

corresponding displacement states, is proved. In general, one cannot expect uniqueness

of solutions, unless the lower bound is strictly positive, and the uniqueness of optimal

states is shown in this case.

1. Introduction. Traditionally, one categorizes structural optimization into three

major groups: sizing, shape, and topology optimization problems. The first deals with,

e.g., choosing optimal thicknesses of a (two-dimensional) structure, the second involves

picking a good shape of the boundary to the domain occupied by the structure, and the

last one concerns holes in and connectivities of the domain. The problem considered in

this paper, namely that of finding a thickness distribution in a linearly elastic sheet, such

that a suitable objective functional is extremized, can clearly be put in the first category.

However, by allowing the design variable to be equal to zero, one obtains in effect (also) a

topology optimization. Moreover, if the design is a distributed parameter, as in the case

of a thickness distribution in a sheet, a solution will also generate a three-dimensional

shape.

The most crucial step (at least from an engineering point of view), when formulating a

structural optimization problem, is to choose the objective functional, reflecting what is

actually desired in the design. Partly because of the possibility of performing qualitative

analysis, stiffness or compliance are common, and these have been dealt with to a large

extent and by many authors; see, e.g., Prager and Taylor [1] and Hemp [2].
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In 1973 Rossow and Taylor [3] obtained numerical solutions for the maximum stiffness

problem for a variable thickness sheet by the finite-element method. In 1981, Benedict [4]

somewhat extended the work of Rossow and Taylor to include contact conditions. In the

non-contact case, minimizing the work of the external loads is equivalent to maximizing

the equilibrium potential energy (provided there are no nonzero prescribed displace-

ments), as can be seen from Clapeyron's theorem [4], Benedict postulated the latter

quantity to be a measure of stiffness and the former to be a measure of compliance. As

a consequence, minimizing compliance is not equivalent to maximizing stiffness when

unilateral contact is present, but the optimality conditions to the problem formulated in

[4], namely maximizing stiffness, are the same as for the traditional non-contact mini-

mum compliance problem. These conditions show that optimum structures are optimal

not only in the meaning of the objective functional, but also in a broader sense. For

instance, the stress field tends to be very "democratic" due to an inherent property of

uniform distribution of strain energy density, twice of which is an upper bound of the

Mises equivalent stress [5]. Furthermore, a corresponding formulation for truss structures

shows that an optimal design always has the same stress value in all (of the remaining)

bars.

The consequences of postulating the equilibrium potential energy to be a measure

of stiffness for contacting structures are not obvious, but maximizing stiffness, as it is

defined in [4] and in this paper, is equivalent to minimizing the sum of displacements

weighted by the applied forces and contact stress values weighted by the initial gaps.

This indicates that one will obtain a stiff structure with "good" contact stresses, and

this was also experienced by Benedict. Moreover, this feature is in accordance with the

statement in [5] saying that if a (nonzero) displacement is prescribed, then the external

work is to be maximized. The initial gaps play the role of prescribed displacements and

"contact stress values weighted by the initial gaps" is minus the external work by the

contact stresses.

Cea and Malanowski [6] and Bends0e [7] have done mathematical research on problems

with physical correspondences similar to the one under study. In [6] an existence proof

was given for a problem that physically means maximizing stiffness of a transversally

loaded membrane by changing the thickness distribution. Bends0e considered essentially

the same for plates. In these reports several side constraints on the design variable were

enforced, always including a strictly positive lower bound on the thickness, hence pre-

venting one from obtaining topology information through complete removal of material.

They also always used upper bounds (on the thickness or its slopes) to ensure well-

posedness, as will be done in this analysis. However, a main new feature of the present

work is that the strictly positive lower bound will not be necessary.

In this paper, the problem of achieving a thickness distribution, in a plane linearly

elastic sheet, for maximum stiffness is formulated, and the existence of such a thickness

is proved. The sheet is subjected to unilateral contact with a fric.tionless rigid obstacle.

The upper and lower bounds on the admissible thicknesses can vary over the domain, and

the lower bound is allowed to be identically zero if desired (of course, the nonnegativity

constraint will always be present to prevent physically absurd designs). This gives the

possibility of non-design domains, purely sizing domains and domains where voids are
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allowed. Uniqueness is discussed and in cases when there is a strictly positive lower

bound, uniqueness in the state (i.e., the displacements) is shown.

The paper is organized in the following way. Chapter 2 contains formulations of both

the state and the optimization problem, assumptions and basic properties of the sets

and functionals. The main existence result is proved in Chapter 3 and the uniqueness is

discussed and proved in Chapter 4.

2. Formulation of the problem and basic properties.

2.1. The state problem. Let be a bounded, open, and connected set in R2 with

(uniformly) Lipschitzian boundary dfl. We consider a (sheet-like thin) linearly elastic

body with elasticity constants E^ki € obeying the usual symmetry and ellipticity

features.2 The body occupies a region C R3, which is the closure of the following set:

— {p= {x,y) € RJ | x = (xi,x2) e fl C R2,y G {-h{x)/2,h(x)/2) c R}.

The subscript denotes the actual region's dependence on the given thickness function h,

defined on f2. Now the state problem terminology follows the one given by Kikuchi and

Oden [8] for a plane Signorini problem with Eijki replaced by hEijki,. The boundary dfl

is partitioned as dfl = U Tf U rc, where the Fs are all relatively open in dfl, and the

superposed bar denotes the closure in dfl. They are all pairwise disjoint and nonempty,

and rc is strictly contained in dfl \ Td and meas(rd) > 0.

The body is subjected to body forces (force per unit area) / = (fi,f2) acting over

and surface tractions (force per unit length) t — (ti,t2) acting on the boundary part Tt

of dfi.

The body is fixed along and Tc is the portion of the boundary that represents

the candidate contact surface. The contact considered is unilateral contact with a rigid

frictionless foundation, and the initial normal distance is g.

We suppose that the given functions g £ i^1/2(rc),/ £ (L2(S7))2, and t £ (L2(Tt))2.

The kinematically admissible displacements, u = (^1,^2), are members of the following

Hilbert space:

V = {u = (u!,u2) G (HJ(f2))2 | Ui ~ 0 on i = 1,2}.

More specifically, the set of admissible displacements is due to the non-penetration con-

dition

u = {u e V | un — g < 0 on rc},

where = UiUi (n; are the components of the outward unit normal vector of dfl). We

equip V with the norm || • ||y,

Mv = j J (UijUij +UiWi)dftj = *v/(u,u)v,

where (•, -)v is the inner product in V and Uij means dui/dxj. It is now clear that U is

a nonempty closed and convex subset of V.

2We use the summation convention where the indices take the values 1 and 2.
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Remark 2.1. The nonemptiness, convexity, and closedness of U in V are the only

properties of U that will be utilized, and hence all the results will be valid if U is replaced

by U = V, that is to say, the non-contact case is included in the present analysis. □

The external work functional L(-) is a bounded linear functional defined by

L(u) = I f-udfl+ J t-udV.
Jo J rt

The strain energy stored in the body is represented by a symmetric bilinear functional,

ah{u,v) = / hEijkiuk,iVij dft,
Jn

where h can be any (nonnegative) function in L°°(ft). We can now define the total

potential energy functional as

L°°(ft) x (ff^ft))2 3 (h,u) ^ Jh(u) G R,

where

Jh(u) = \ah{u,u) - L(u).

The restriction of the total potential energy functional to the case of unit thickness,

i.e., Ji(')> is exactly the quadratic functional considered in [8], which has the standard

properties as, e.g., strict convexity, weak lower semi-continuity, and coercivity. The first

two carry over to Jhi') for any nonnegative h in L°°(ft), with the exception that convexity

might be non-strict.

Ftom Stampacchia's theorem [9] it follows that, in the case h > /3 > 0, there exists a

unique u solving the state problem:

(V) u G U : ah(u, (fi — u) > L(^p — u) \/tp € U.

This can equivalently be formulated as a minimum of total potential energy for the

displacement in equilibrium:

(.M) ueU ■. Jh{u)<JhW) ^eu.

If a solution u to the variational inequality is sufficiently regular, and if h > (3 > 0, then

{hcTij(w)} j + fi = 0 in ft,

&ij(^) -• Eijkm,h

Ui = 0 onrrf,

aij{u)nj — —ti on r<,

aTi= 0, aN(uN - g) = (T

(7/v < 0, — g < 0

(7j\j — (Tij i

0"Ti = & ij Tlj & N i

among which the last four lines are the classical Signorini contact conditions.

on rC(
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2.2. The set of permissible designs. We need to define the set of permissible designs:

n = {he L°°{n) hmin(x) < h(x) < hmax(x) a.e. x £ h(x) dfl = Vol|. (1)

Here we have assumed that the two given bound functions belong to and

0 < hmjn < /imax < +oo a.e. in SI.

Of course, the thickness is not allowed to be negative (hence hm\n > 0), and fomax can

be thought of as being imposed for several reasons: from an engineering point of view,

when a too thick sheet is impractical due to limited space; from a mathematical point of

view, to prevent ill-posedness (possibly because of developing of ribs); or from a physical

point of view, to ensure validity of a plane stress assumption.

Furthermore, we assume for equally natural reasons that

/ ^min < Vol ^ / /imax
Jn Jn

and that for some strictly positive constant 7,

/imax > 7 a.e. in CI.

If desirable one can choose hmayi = hulm in a region where one wants a fixed thickness,

/imax > ^min > 0 in a region where one wants a sizing optimization, and hm[n = 0 in a

region where one wants to utilize the optimization fully, i.e., allow complete removal of

material.

Define d € [0,1) as

^ Jo ^ tnax dCl Vol

Jq ^max 6^ Jq ^min dCl

and ho as

h0 = dhmin + (1 - i5)/imax. (2)

Then it follows that ho £ ft and

ho > (1 — $)7 > 0 a.e. in CI. (3)

Collecting some of the above assumptions and properties, one can easily show the fol-

lowing auxiliary result.

Lemma 2.1. The set H defined in (1) is nonempty, convex, bounded, and weakly* (and

hence strongly) closed in L°°(fJ).

From (3) one understands that a>is K-elliptic and hence J^0(•) is coercive, i.e.,

lira Jho(u) = + oo. (4)
u&A

I|u||v^+oo

Let (3 := essinf^gn hm\n{x). Then, if (3 > 0, Jh{•) is strictly convex for any h in 7~C.
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2.3. The optimal design problem. The optimization problem in the focus of our atten-

tion in the remainder of this paper can (in a rather vague manner) be stated as: Given a

fixed amount of material, how should it be distributed in a domain C R2 in order that

the (equilibrium) structure attains a maximum stiffness?

As a measure of stiffness, we take the equilibrium potential energy; cf. Benedict [4], i.e.,

mfueu Jh{u) according to (M). Among all designs with equal volume and between appro-

priate upper and lower bounds, we want to find one that maximizes $(h) = infuey Jh{u),

i.e., we want to solve

(d) Find heH: $(/i) > 3>(/i) V/i G n.

For reasons that soon will be more apparent, we also state

(p) Find u eU : ^{u) <^{u) Vu eU

where "J(it) = suphen Jh(u). From duality theory (see, e.g., Ekeland, Temam [10]), we

have the following.

Theorem 2.1. Suppose there exists a solution to the saddle-point problem

(SJ) Find (u, h) .€ U x n :

Jh(u) < ./h(ii) < J~h(u) \/(u,h) eUxn.

Then u solves (p) and h solves (d) if and only if (u, h) solves (SJ).

From the above theorem it is obvious that if we have (the existence of) a solution to

(SJ), then we also have (the existence of) a solution to our problem (d). The problems

(p) and (d) are referred to as "primal" and "dual" problems. The problem (p) might

seem uninteresting, but has actually been shown to be more practical to solve than,

e.g., (d); see, e.g., Bends0e, Ben-Tal [11] (and solutions to (d) can be obtained through

multipliers in (p)).

The dual problem gives designs that maximize the stiffness, the primal one gives the

state(s) in the sheet as a result of an optimal design, and clearly (SJ) gives both; if (u, h)

solves (SJ), then h is an optimal design and u is the corresponding state. Moreover,

(u, h) solves

mm
u^zlA

h€L°°(n)

L{u) — / h<jN{u)g dY subject to
J L„

ah(u, <p — u) > L{ip — u) Vip e U,

min(sc) < h(x) < Vax(a:) a.e. X e fi,

Lh{x) d£l = Vol,
in

which is on a more traditional form than (SJ). The appearance of ctn(u) = EijkiUk,iniUj,

the contact stresses, is according to Clapeyron's theorem for unilateral contact, and the

integral over rc is well defined if ctn(u) belongs to L2(TC). If not, one can generalize

by replacing the integral by a suitable duality pairing [12]. The contact stresses are

necessarily negative (with some notion of positivity), and hence the objective functional

to be minimized is a sum of two terms, one of which is a weighted measure of contact

stress magnitudes.
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3. Existence of solutions. In this chapter a proof of existence of solutions to (SJ)

will be provided. The key to the proof will be a saddle point theorem, mainly due to

Ky Fan [13] and Sion [14], but put into the form shown in Theorem 3.1 below by Cea in

[15]. Reference [10] contains several useful saddle-point theorems, more frequently used

than the one stated below, but they all assume reflexivity.

Existence proofs of optimization problems similar to the problem (d) (see, e.g., Cea

and Malanowski [6] and Bends0e [7]) exclusively utilize the design-to-state mapping, F.

If (3 were strictly positive, F would be well defined on H. Moreover, in that case, F

is continuous but noninjective, and in the case of variational inequality, also nondiffer-

entiable. In the present case, F need not be well defined at all! However, by using

saddle-point arguments one circumvents these problems.

Theorem 3.1. Let V and W be two Hausdorff topological vector spaces, Wbea convex

compact subset of V, and W be a convex compact subset of W. Suppose that

J :UxH-> R

is a functional such that

(i) for every u GU the functional J. (u) : H 3 h h-» Jh [u) € R is upper semi-continuous

and concave,

(ii) for every h £ H the functional Jh{-) '-U 3 u i—> Jh{u) £ R is lower semi-continuous

and convex.

Then there exists a saddle point (u,h) 6 U x H for J.

We note that V (defined in Chapter 2) and L°°(fi) are Hausdorff topological vector

spaces considered with the weak and weak* topology respectively; cf. [15]. Going back

to the problem (SJ) defined in Chapter 2, we have

Theorem 3.2. There exists at least one solution (u,h) 6 U x 7i to the saddle-point

problem (SJ).

Proof. Let /j, > 0 be given but sufficiently large for the set = {u G U \ ||u||v < /'}

to be nonempty.3 UM is convex, and closed and bounded in V's strong topology, and

hence convex and compact in the weak topology of V. From Lemma 2.1, H is bounded

and weakly* closed in L°°(fi). Since the closed unit ball in a dual of a normed vector

space is always weakly* compact (Alaoglu's theorem), this suffices to make TL compact

in the weak* topology of L°°(f2). J is linear and weakly* continuous in h and convex

and weakly lower semi-continuous in u, and consequently (i) and (ii) in Theorem 3.1 are

satisfied. Therefore, there is a pair (u^, hM) x TL such that

Jh(u^) < J~h (uM) < J-h (u) V(u,/i) (5)

and especially

Jh0(up) < JAm(«m) < J~K{u) Mu e Uy,. (6)

Setting A(u) - ||| Vax|U°°(n)IIEijkiUijUkjh^Q) ~ L(u) one has that

Jh{u) < A(u) Vh € H.

3 The case when lA^ is empty for some strictly positive fi corresponds to a somewhat pre-stressed

structure, i.e., g is negative somewhere on Tc.
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Hence, in particular,

J-h^{u)<A(u) V/x. (7)

By (6) and (7),

Jh0(u^)<Mu) V/i,

that is to say, J/j0(wM) has an upper bound independent of /i. Recalling (4), it then

follows that is bounded in the V-norm, i.e.,

IMv < D V/x (8)

for some constant D > 0. Take fi = 2D and set u := U2D and h := Ji2D- For this /x, (5)

is equivalent to

Jh(u) < J-h(u) Vh e H (9)

and

Jh(v) < J~h (u) Vm £ U fi 5(0; 2D), (10)

where 5(0; 2D) = {v 6 V \ ||v||v < 2D}. Let similarly B(x;e) = {f € V \ ||w — x||y < e}

be the open ball, with center x and radius e, in V's strong topology. Then, from (8) and

the triangle inequality, it is clear that B(u;D) C 5(0; 2D), and therefore (10) implies

Jh(u) < J-h(u) Vu£UnB(u;D). (11)

This says that the functional J~h (•) defined on U has a local minimum at it £ W. Since U

and Jj■ (•) are convex, as set and functional respectively, the local minimum is also global:

J'h{u) < J-h(u) VueU. (12)

Putting (9) and (12) together, one gets

Jh.(u) < J^u) < J~h(u) W(u,h) € U x H,

which is the desired result. □

Intuitively one might be worried about designs where material is removed in crucial

regions where the structure must carry, e.g., surface tractions t (suppose / = 0). Such

a design is indeed permissible (belongs to Ti), but has no (finite) equilibrium potential

energy since one can formally choose un such that ah(un, un) = 0 and L(un) —> +oo

as n —» +oo, and consequently $(h) = — oo. However, this cannot hold for an optimal

design, as can be understood from Theorem 3.2. Naively speaking, such awkward designs

are permissible, but sorted out in the optimization procedure, since in (d) $ is maximized.

Remark 3.1. In the case when (3 > 0, the result in the above theorem can be obtained

in a way analogous to the more traditional manner in, e.g., [6] and [7]. For each h in H

there is a unique u & U satisfying (V). To show the desired existence it suffices to verify

the weakly* upper semi-continuity of the equilibrium potential energy as a functional

of h. Let hn, h G 7i and un and u in U be the corresponding equilibrium states. By

definition

Jhn (U'ti. ) Jh (^) 2^^-ri (^n i ^n) L(u Un ).
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It is possible to obtain an upper bound of the last term by taking ft := hn and ip u in

(V). This results in

Jhri (^n) — ahn u ^n) ~t~ 2^n ^n) ^)'

It can be straightforwardly verified that the right-hand side can be rewritten according

to

Jhn(Un) - Jh(u) < \[-ahn(un - u, un - u) + ahn-h{u,u)\.

The first- term in the right-hand side is clearly nonpositive, and the last one approaches

zero as hn ^ ft when n —> +00. Hence

limsup Jhn(un) < Jh{u)- □
n—>-+oc

4. Uniqueness of the state in a special case. Having dealt with existence it is

natural to raise the question of uniqueness of solutions. If (u, ft) G U x H and (u, ft) G

UxH are two solutions to (SJ), can one say that u = u and/or ft = ft? The total potential

energy is linear and hence not strictly concave in the design, and as a consequence one

cannot expect the necessity of ft = ft. This was also numerically experienced for truss

structures in, e.g., Klarbring, Petersson, and Ronnqvist [16].

If /3 = 0, there are many designs for which the potential energy is not strictly convex,

and hence very likely for an optimal design, and one cannot expect uniqueness in u.

This can be viewed as a capriciousness of the assigned displacements in regions where

ft > ftmin = 0 is active. (That the values of a u, part of a solution to (SJ), in regions

where material is removed (ft = 0), are somewhat constrained was explained in [16]. For

instance, they cannot approach infinity.)

What about the uniqueness of u if hmm > (3 > 0? The answer is given in the following.

Theorem 4.1. Suppose (u, ft) G U x H and (u, ft) G U x H solve (SJ). Then, u = u,

provided (3 > 0.

Proof. We show that >]/ (in the primal problem) is strictly convex, and then the the-

orem follows from Theorem 2.1.

Let 0 € R and u, v G IA be arbitrary but such that 6 € (0,1) and !i/«. By definition

^(9u + (1 — 0)v) — sup Jh(0u + (1 — 6)v),
hen

and since H, due to Lemma 2.1, is compact in the weak* topology of L°°(fi) and

J. (9u + (1 — 9)v) is weakly* continuous, the supremum is attained at some ft* G 7i

(which depends on u,v, and 9). Moreover, f3 > 0 and then is strictly convex.

Thus,

®(0u + (1 - 9)v) - Jh, (9u + (1 - 9)v) < 9Jh, (u) + (1 - 9)Jh, (v)

and, trivially,

^(9u + (1 — 9)v) < 9ty(u) + (1 — 0)lI'(z;);

so the theorem is proved. □

The above result states that, in case /? > 0, different optimal designs necessarily have

the same state of displacements. Consider, for instance, the simple case of zero loads.

Then any design ft G Ti is optimal and has zero displacements as its unique state solution.
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