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Abstract
Controlled stochastic differential equations driven by time changed Lévy noises do not enjoy
the Markov property in general, but can be treated in the framework of general martingales.
From the modelling point of view, time changed noises constitute a feasible way to include
time dependencies at noise level and still keep a reasonably simple structure. Furthermore,
they are easy to simulate, with the result that time change Lévy dynamics attract attention
in various fields of application. In this work we survey an approach to stochastic control
via maximum principle for time changed Lévy dynamics. We emphasise the role and use
of different information flows in tackling the various control problems. We show how these
techniques can be extended to include Volterra type dynamics and the control of forward–
backward systems of equations. Our techniques make use of the stochastic non-anticipating
(NA) derivative in a general martingale framework.

Keywords Time change · Volterra equations · Stochastic backward differential equations ·
Forward–backward systems · Optimal control · Partial information · Maximum principle ·
Stochastic derivative
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1 Introduction

From the modelling point of view, the main idea of time changing a stochastic process is to
represent a stochastic function X = Xt , t ≥ 0, by a process L = Lt , t ≥ 0, with well-known
structure serving as a base, and a (possibly stochastic) perturbation � = �t , t ≥ 0, of the
time line

Xt = L�t .

This is a way to change the speed of motion along the trajectories of L , like treating the time
line as an elastic band. This modelling potential as well as the easiness in simulation have
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fascinated many researchers. See, e.g., [10, 48]. The concept of time perturbation is formally
defined as follows.

Definition 1 A general time change process � = �t , t ≥ 0, is a stochastically continuous,
non-decreasing càdlàg stochastic process starting at 0.

In ourwork the time changed processes are used asmodels for the noise driving the dynamics.
As we shall see such noises can be embedded in the framework of general martingales when
dealing with the calculus perspective. However, they also benefit of more explicit statistical
properties that constitute a good trade-off between generality and specification, which is
in itself interesting from the modelling perspective. Indeed we have examples both from
the point of view of stochastic volatility in finance (see, e.g., [8, 14]) and turbulence in
physics (see, e.g., [7, 11]). Using time change noises, one can have both Markovian and non-
Markovian structures and also include clustering effects as discussed in [47, Chapter IV, 3e]
and confirmed in the study [44, Chapter 3] on market microstructure.
The potential of time change in modelling raises from the pivotal results of Dambis [17] and
Dubins and Schwarz [30], in which it is clarified that, for any continuous local martingale
M = Mt , t ≥ 0 with M0 = 0 and 〈M〉∞ = +∞, there exists a Brownian motion W =
Wt , t ≥ 0, such that Mt = W〈M〉t , for every t ≥ 0. As a particular case we can consider
martingales arising from classical Itô stochastic integrals

Mt =
∫ t

0
σsdws, t ≥ 0,

with respect to a Brownian motion w. Then, the result above leads to the representation

Mt = W�t , �t = 〈M〉t =
∫ t

0
σ 2

s ds (1)

where W is another Brownian motion. These considerations reflect the scaling property of

Brownianmotion, namely, cWt
d= Wc2t (c > 0). In this respect, it is also interesting to remark

that, among all Lévy processes, besides Brownian motion, only α-stable processes share a
property similar to (1). Indeed Rosinski and Woyczynski [43, Theorem 3.1] proved that
stochastic integrals Xt = ∫ t

0 σsdLs , with respect to the α-stable Lévy process L (α ∈ (0, 2])
can be represented as

Xt = L�t , �t =
∫ t

0
σα

s ds (2)

where L is another α-stable Lévy process. Here again we observe that α-stable processes

enjoy the scaling property σ Lt
d= Lσα t . Representations (1) and (2) triggered the use of

time change in stochastic volatility modelling, which started with the works [5, 8, 13, 14]
and it is still of large interest nowadays. See, e.g., [11, 15, 34, 48].
For a given stochastic process X , the problem of the very existence of a representation in the

form Xt
d= W�t in terms of a Brownian motion and a family of stopping times �t , t ≥ 0, is

the so-called Skorokhod embedding problem, which has driven researchers to discuss different
solutions and to provide extensions beyond W as base, eventually to include also jumps. For
a survey on the subject we can refer to [38].
On the other side, the problem of determining the time change � given the observations of
X and fixed the base process (as a Brownian motion W , or even a Lévy process L) is known
as the recovery problem and it was first studied in [50], see also [45].
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Stochastic control for time-changed Lévy dynamics 531

From the probabilistic perspective, two classes of time change processes have turned to
be successful: the subordinators (i.e. non-decreasing Lévy processes) and the absolutely
continuous time change processes, characterised by

�t =
∫ t

0
λs ds,

with λ being a non-negative integrable process representing the time change rate. While
with the case of subordinators, the time changed Lévy process X := L� is still a Lévy
process, with the case of absolutely continuous time changes (with non-constant rate), the
process X exits the Lévy family and even the Markov family, giving in this way chances of
describing forms of time dependences within the dynamics. Time changed Lévy processes
with absolutely continuous time change process are widely used in applications to finance
and beyond. As illustration we can propose the representation of affine processes in terms
of these time changed processes, see [36]. We recall that affine processes are popular in the
modelling, e.g., of interest rate and energy futures.
In the present work, we consider time change processes of the absolutely continuous type.
Those noises are the stochastic driving forces of the controlled dynamics we study. The goal
of this article is to discuss some techniques of stochastic optimisation for such dynamics
with emphasis on the role of information and the probabilistic structure of the noise. In Sect.
2 we give a description of the framework, while in the rest of the paper we summarise an
approach via maximum principle to stochastic control, providing sufficient conditions to
verify optimality. This is based on [23, 24, 29]. In Sect. 3 we lay out the ideas and justify
the technical use of different information flows. We achieve the result exploiting backward
stochastic differential equations (BSDEs) driven by time changed Lévy noises. In Sect. 4
we see how to adapt these ideas to the case of Volterra type controlled dynamics. For this, a
substantially modified Hamiltonian functional has to be used together with the NA-derivative
[20, 21]. The role of stochastic differentiation will be discussed. In Sect. 5 we extend the
approach to treat forward–backward systems of equations.
As a side note, we remark that there are extensions of the concept of time change to infinite
dimensions such as Hilbert space valued time changes, which first appeared in [37], then also
used in, e.g., [4] and recently connected to infinite dimensional stochastic volatility models
as, e.g., in [12]. Also further extensions are explored in the direction of the so-called meta
time changes, which are general forms of distortions of the space-time, in the sense that not
only time is perturbed, but also the spacial component. These are substantially non-negative
random measures, so far, extending the concept of subordination. See [9].

2 The noise: time-space random fields

The stochastic elements refer to the complete probability space (�,F,P). The noise is
represented as a random field on the time-space, which is here given by the field X :=
[0, T ]×R (T < ∞), where the spacial component represents the jump size in the paths. We
can define two disjoint complementary sets

XB := [0, T ] × {0}, XH := [0, T ] × R0 (R0 := R \ {0}),
where thefirst set accommodates the randomfield of continuous nature (no jumps corresponds
to having jump size null) and the second accommodates the random fields with jumps. We
remark that our work can deal with further spacial components, for example of the type
X := [0, T ] × R × R

d . In this case the extra spacial component may assume different
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meaning: in physics, this could be the actual space, in finance, this can represent the space
of available assets as, e.g., [18, 22].
The noise is modelled by the random field μ, which is defined as the mixture

μ(�,ω) := B (� ∩ XB , ω) + H̃ (� ∩ XH , ω) , � ⊆ X, ω ∈ �, (3)

of two components on the Borel sets BX of X described here below as conditional Gaussian
measure B and conditional centered Poisson measure H̃ .
To proceed with the formal definition, we first introduce yet another random measure, which
will be directly connected with the concept of time change. We adopt the framework intro-
duced in [29].

Definition 2 We define the random measure � on BX by

�(�) := �B(� ∩ XB) + �H (� ∩ XH )

=
∫ T

0
1{(t,0)∈�}(t)λB

t dt +
∫ T

0

∫
R0

1�(t, z)ν(dz)λH
t dt, � ⊆ X,

where the stochastic process λ = (λB , λH ) has non-negative, stochastically continuous
components in L1(P × dt). The set of these processes is denoted L. The P-augmented
filtration generated by � is denoted F� = {F�

t , t ∈ [0, T ]}. Set F� := F�
T .

Here above ν is a σ -finite measure on the Borel sets BR0 of R0 satisfying
∫
R0

z2ν(dz) < ∞.
The structure of the noise (3) is linked to the two following components.

Definition 3 The conditional Gaussian measure B is a random measure on BXB such that

(A1) P

(
B(�) ≤ x

∣∣∣F�
)

= P

(
B(�) ≤ x

∣∣∣�B(�)
)

= 


(
x√

�B (�)

)
, x ∈ R, � ⊆ XB ,

where 
 is the standard normal cumulative distribution function.
(A2) B(�1) and B(�2) are conditionally independent given F� whenever �1 and �2 are

disjoint sets.

The conditional Poisson measure H is a random measure on BXH such that

(A3) P

(
H(�) = k

∣∣∣F�
)

= P

(
H(�) = k

∣∣∣�H (�)
)

= �H (�)k

k! e−�H (�), k ∈ N, � ⊆ XH ,

(A4) H(�1) and H(�2) are conditionally independent given F� whenever �1 and �2 are
disjoint sets.

Furthermore we assume that

(A5) B and H are conditionally independent given F�.

We refer to [32] or [35] for the existence of conditional distributions in Definition 3. In (3) we
use the centred conditional Poisson measure, which is the signed random measure H̃ given
by

H̃(�) = H(�) − �H (�), � ⊂ XH .

It is easy to verify that the random measure μ in (3) is a martingale random field, see e.g.
[22, Definition 2.1], with respect to both the following right-continuous information flows
F and G. The first filtration is

F := {Ft , t ∈ [0, T ]} , where Ft :=
⋂
r>t

Fμ
r ,
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and F
μ := {Fμ

t , t ∈ [0, T ]} is the P-augmented filtration generated by the values μ(�),
� ⊂ [0, t] × R, t ∈ [0, T ]. The second filtration is

G := {Gt , t ∈ [0, T ]} , where Gt := Fμ
t ∨ F�.

Notice that we have GT = FT at the horizon T , while the initial information is different in
the two flows: G0 = F� and F0 is trivial. We can understand G as an enlargement of the
information F by the future values of �, else we can regard F as partial with respect to G.
From now on, we set F := FT = GT .
ThefiltrationGhas little realworld application since it includes some informationof the future
values of �. However, it will be used technically in the sequel to exploit the distributional
nature of the noise from the martingale representation theorem point of view. Indeed we
recall that given a square integrable martingale M with respect to some reference filtration

F
M = {FM

t , t ∈ [0, T ]} ,

any square integrable FM
T -measurable random variable ξ admits representation

ξ = ξ⊥ +
∫

ϕ dM (4)

by means of a unique stochastic integrand ϕ. Here ξ⊥ is a stochastic remainder orthogonal to
all the stochastic integrals with respect to M (Kunita–Watanabe integral representation). It
is well known that ξ⊥ is a constant wheneverM is a Gaussian or a centered Poisson random
measure, or a mixture of the two, and the reference filtration FM is generated byM, see [16,
19] and also [21, 27]. In addition we can show that

ξ⊥ = E[ξ |F�]
in the casewhen themartingaleM is given byμ in (3) with respect to the filtrationG. See [29,
Theorem 3.5].We stress that this stochastic integral representations stand at the foundation of
the solutions of BSDEs. Specifically, the following explicit stochastic representation theorem
is considered in the sequel. See the original version in [20] and the versions for random fields
appearing in [22, 28].

Theorem 1 For any ξ ∈ L2(dP) we have

ξ = E[ξ |F�] +
∫
X

Dt,zξ μ(dtdz)

= E[ξ |F�] +
∫
XB

Dt,0ξ B(dt) +
∫
XH

Dt,zξ H̃(dtdz), (5)

by means of the NA-derivative Dξ which is defined as the L2(� × dP) limit

Dξ = lim
n→∞ ϕn (6)

of the simple predictable random fields (ϕn)n∈N in the form

ϕn(t, z) :=
Kn∑

k=1

E

[
ξ

μ(�nk)

E[�(�nk)|Gsnk ]
∣∣∣Gsnk

]
1�nk (t, z), (t, z) ∈ X, (7)

defined on some intersecting system (�nk)k=1,...,Kn;n∈N with �nk = (snk, unk] × Bnk and
Bnk belonging to a countable semiring generting BR.
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534 G. di Nunno

From (6), (7) we see that Dξ ∈ IG, which is the space of Itô integrands, i.e. G-predictable
processes in L2(d� × dP). Furthermore, by (5) it is easy to see that the NA-derivative is
the dual of the Itô integral. For later use, we recall that any ϕ ∈ IG can be regarded as a
stochastic process with values in Z, which is the space of functions φ : R → R such that

|φ(0)|2 +
∫

R0

|φ(z)|2 ν(dz) < ∞.

Representation (5) is explicit, compared to (4), because it indicates, besides existence, the
nature of the integrand. In fact formulae (6), (7) depend only on the random variable ξ to be
represented and the framework (�,G,P, μ). This type of stochastic integral representations
is in line with the well-known Clark–Ocone formula, in which the integrand is given in terms
of the projections of the Malliavin derivative on the information flow. We remark that the
NA-derivative coincides with the Clark–Ocone formula whenever the integrator M = μ is
a Brownian motion or a centred Poisson random measure, or mixtures of the two, and when
ξ is Malliavin differentiable. The domain of the Malliavin derivative is contained, but not
equal, to L2(dP).
To conclude on this section we recall the following result [46, Theorem 3.1] (see also [32]),
which explicitly connects the noise μ in (3) with the concept of time-change.

Theorem 2 Let Wt , t ∈ t ∈ [0, T ] be a Brownian motion and Nt , t ∈ t ∈ [0, T ] be a centred
pure jump Lévy process with Lévy measure ν. Assume that both W and N are independent
of �. Then B satisfies (A1)–(A2) if and only if, for any t,

Bt
d= W�B

t
,

and ηt := ∫ t
0

∫
R0

z H̃(ds, dz), t ∈ [0, T ], satisfies (A3)–(A4) if and only if, for any t,

ηt
d= N

�̂H
t

with �̂H
t := ∫ t

0 λH
s ds, for t ∈ [0, T ].

3 A sufficient maximum principle

Hereafterwe highlight the use of information to tackle optimal control problems for dynamics
driven by time-changed Lévy noises. We remark immediately that these problems cannot
be solved with dynamic programming methods since the state process is, in general, not
Markovian. The approach we present here is via the maximum principle. We also make use
of the enlarged filtration G to exploit the structure of the noise. We refer to [29] for the
original presentation of the main ideas.
We aim to find the optimal control û providing the maximal value over all admissible controls
AF,

J (û) = sup
u∈AF

J (u), (8)

where the performance functional is

J (u) = E

⎡
⎣

T∫

0

Ft (λt , ut , Xt ) dt + G(XT )

⎤
⎦ . (9)

123



Stochastic control for time-changed Lévy dynamics 535

Here G(x, ω), ω ∈ �, is a concave random variable for all x ∈ R, differentiable in x a.s.
and Ft (λ, u, x, ω), t ∈ [0, T ], λ ∈ [0,∞)2, u ∈ U , x ∈ R, ω ∈ � is a F-adapted stochastic
process differentiable in x a.s. Here U ⊆ R is a closed convex set.
Problem (8), (9) is apparently standard in stochastic control, however, it is the state process
X that presents elements of novelty given by the driving noise μ, which provides a non-
Markovian framework in general. The state process X = Xt , t ∈ [0, T ], follows the dynamics

d Xt = bt (λt , ut , Xt-) dt +
∫

R

κt (z, λt , ut , Xt-) μ(dtdz), X0 ∈ R, (10)

where bt (λ, u, x) and κt (z, λ, u, x), t ∈ [0, T ], λ ∈ [0,∞)2, z ∈ R, u ∈ U , x ∈ R are
F-predictable stochastic processes differentiable in x a.s. All partial derivatives with respect
to some variable x are denoted by ∂x here and in the sequel. Sufficient conditions for the
existence of an F-adapted strong solution to (10) can be found in [33].
In line with the maximum principle (MP) approach, we introduce a Hamiltonian functional
H : [0, T ] × [0,∞)2 × U × R × R × Z × � → R given by the stochastic function

Ht (λ, u, x, p, q) = Ft (λ, u, x) + bt (λ, u, x)p + κt (0, λ, u, x)q(0)λB

+
∫

R0

κt (z, λ, u, x)q(z) λH ν(dz). (11)

Corresponding to an admissible pair (u, X) we have the couple (p, q) ∈ L2(dt × dP)× IG,
which is the solution to the BSDE

pt = ∂x G(XT ) +
T∫

t

∂xHs(λ, us, Xs, ps, qs) ds −
T∫

t

∫

R

qs(z) μ(ds, dz). (12)

Here ∂xHt = ∂
∂x Ht (λ, u, x, p, q) andwe note thatH is differentiable in x by the assumptions

on F , b and κ . A solution to Eq. (12) is studied in [29, Theorem 4.5]. There sufficient condi-
tions to ensure that the pair (∂xH, ∂x G(XT )) are standard parameters (see [29, Definition
4.1]) are given. In our context these would read: There exists K1 > 0

∣∣∣∂xκt (0, λt , ut , Xt-)

∣∣∣
√

λB
t ≤ K1 dt × dP-a.e, (13)∫

R0

(∂xκt (z, λt , ut , Xt-))
2 ν(dz)

√
λH

t ≤ K1 dt × dP-a.e, (14)

∣∣∂x bt (λt , ut , Xt-)
∣∣ ≤ K1 dt × dP-a.e. (15)

Remark 1 We have to be aware that to find a solution to the BSDE (12), we work under
filtration G as it is the representation theorem in the form (5) (see Theorem 1) that provides
the existence of the solution as shown in [29, Theorem 4.5]. Note that if another filtration
were to be used, then the BSDE would present an additional term (an orthogonal martingale)
as intrinsic part of the solution. This would not be suitable to pursue a maximum principle
type result (as it would involve the explicit use of the quadratic variation of the orthogonal
martingale, which is not explicitly known).

Definition 4 The admissible controls in (8), (9) are F-predictable stochastic processes u :
[0, T ] × � → U , such that the corresponding state process X in (10) has a unique strong
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536 G. di Nunno

solution in L2(dt ×dP), the adjoint equation (12) has a unique solution in L2(dt ×dP)×IG,
and

E

⎡
⎣

T∫

0

|Ft (λt , ut , Xt-)|2 dt + |G(XT )| + |∂x G(XT )|2
⎤
⎦ < ∞.

The couple (u, X) is called an admissible pair. The set of admissible controls is denoted by
AF.

Once evaluating the Hamiltonian functional (11) in the solution (p, q) to (12), we obtain a
G-adapted functional. Thuswe cannot apply directly themaximumprinciple toH to solve (8)
(where actually solutions should be F-adapted) as it could be done in the case of controlled
jump-diffusions, see e.g. [39]. In our context, we need then to ”project" the Hamiltonian
onto the information flow F regarded as “partial" information with respect toG, here we are
inspired by [25]. Then we have the following result.

Theorem 3 Let λ ∈ L be fixed. Let û ∈ AF. Denote the corresponding state process as X̂
with solution ( p̂, q̂) of the adjoint equation (12). Set

HF

t (λt , u, x, p̂t , q̂t ) : = E
[Ht (λt , u, x, p̂t , q̂t )

∣∣Ft
]

= Ft (λt , u, x) + bt (λt , u, x)E
[

p̂t
∣∣Ft

] + κt (0, λt , u, x)E
[
q̂t (0)

∣∣Ft
]
λB

t

+
∫

R0

κt (z, λt , u, x)E
[
qt (z)

∣∣Ft
]

λH
t ν(dz)

for all t ∈ [0, T ]. If
hF

t (x) := ess sup
u∈U

HF

t

(
λt , u, x, p̂t , q̂t

)
(16)

exists and is a concave function in x for all t ∈ [0, T ] and

HF

t (λt , ût , X̂t , p̂t , q̂t ) = hF

t (X̂t ), (17)

then (û, X̂) is an optimal pair for (8), (9).

In the sequel we set b̂s = bs(λs, ûs, X̂s-), etc. for the coefficients associated with the admis-
sible pair (û, X̂) with solution ( p̂, q̂) of the adjoint equation (12). Set bs = bs(λs, us, Xs-)

and so forth for the coefficients associated to another arbitrary admissible pair (u, X). In
addition Ĥs(u, x) = Hs(λs, u, x, p̂s, q̂s).
In the proof we assume that the integrals are well defined. Some sufficient conditions can
be given to ensure this. For instance we can assume (13)–(15) and that there exist a K2 > 0
such that ∣∣bt (λ, u, x) − bt (λ, u, x ′)

∣∣ ≤ K2|x − x ′| (18)∣∣κt (0, λ, u, x) − κt (0, λ, u, x ′)
∣∣ ≤ K2

∣∣x − x ′∣∣ (19)∫
R0

∣∣κt (z, λ, u, x) − κt (z, λ, u, x ′)
∣∣2ν(dz) ≤ K2|x − x ′|2 (20)

P-a.s., for all t ∈ [0, T ], λ ∈ [0,∞)2, u ∈ U and all x, x ′ ∈ R.

Proof Observe that

J (û) − J (u) = E

[
G(X̂T ) − G(XT )

]
+ E

⎡
⎣

T∫

0

{
F̂s − Fs

}
ds

⎤
⎦ = I1 + I2.
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Stochastic control for time-changed Lévy dynamics 537

Since X̂0 − X0 = 0 and G is concave, we have

I1 = E

[
G(X̂T ) − G(XT )

]
≥ E

[
∂x G(X̂T )

(
X̂T − XT

)]
= E

[
p̂T

(
X̂T − XT

)]
.

By the Itô’s formula, we have

I1 ≥E

[ T∫

0

{ − (
X̂s − Xs

)
∂xĤs(ûs, X̂s) + p̂s

(
b̂s − bs

) }
ds

+
T∫

0

∫

R

{
p̂s-

(
κ̂s(z) − κs(z)

) + (
X̂s- − Xs-

)
q̂s(z)

}
μ(ds, dz)

+
T∫

0

(
κ̂s(0) − κs(0)

)
q̂s(0) λB

s ds +
T∫

0

∫

R0

(
κ̂s(z) − κs(z)

)
q̂s(z) ν(dz)λH

s ds
]

=E

[ T∫

0

{ − (
X̂s − Xs

)
∂xĤs(ûs, X̂s) + p̂s-

(
b̂s − bs

) }
ds

+
T∫

0

∫

R

(
κ̂s(z) − κs(z)

)
q̂s(z)�(dsdz)

]
.

Furthermore, from the Hamiltonian functional (11), we have

I2 =E

[ T∫

0

{
F̂s − Fs

}
ds

]
= E

[ T∫

0

{
Ĥs(ûs, X̂s) − Ĥs(us, Xs) − (

b̂s − bs
)

p̂s

− (
κ̂s(0) − κs(0)

)
q̂s(0)λ

B
s −

∫

R0

(
κ̂s(z) − κs(z)

)
q̂s(z) ν(dz)λH

s

}
ds

]

=E

[ T∫

0

{
Ĥs(ûs, X̂s) − Ĥs(us, Xs) − (

b̂s − bs
)

p̂s

}
ds

−
T∫

0

∫

R

(
κ̂s(z) − κs(z)

)
q̂s(z)�(dsdz)

]
.

Hence

J (û) − J (u)

≥ E

[ T∫

0

E
[Ĥs(ûs, X̂s) − Ĥs(us, Xs) − (

X̂s − Xs
)
∂xĤs(ûs, X̂s)

∣∣Fs
]

ds
]

= E

[ T∫

0

F̂s − Fs + (
b̂s − bs

)
E

[
p̂s

∣∣Fs
] + (

X̂s − Xs
)
∂x F̂s + ∂x b̂sE

[
p̂s

∣∣Fs
]

ds
]
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+ E

[ T∫

0

∫

R

{(
κ̂s(z) − κs(z)

)
E

[
q̂s(z)

∣∣Fs
]

+ (
X̂s − Xs

)
∂x κ̂s(z)E

[
q̂s(z)

∣∣Fs
]}

�(dsdz)
]

= E

[ T∫

0

ĤF

s (ûs, X̂s) − ĤF

s (us, Xs) − ∂xĤF

s (ûs, X̂s)
(
X̂s − Xs-

)
ds

]
. (21)

We can show that the integrand here above is non-negative dt ×dP-a.e. applying a separating
hyperplane argument (see [42, Chapter 5, Section 23]) to the concave function (16) and
exploiting the maximality (17). ��

4 MP for Volterra dynamics

In a fashion similar to Sect. 3 we consider the control problem

J (û) = sup
u∈AF

J (u), (22)

associated to the performance functional

J (u) = E

[ T∫

0

Ft (λt , ut , Xt ) dt + G(XT )
]
. (23)

cf. (8), (9). However, we now study a state process X with Volterra type dynamics:

Xt = X0 +
∫ t

0
bs(t, λs, us, Xs)ds +

∫ t

0

∫
R

κs(t, z, λs , us, Xs�)μ(dsdz), (24)

where X0 ∈ R and the coefficients are given by the mappings

b : [0, T ] × [0, T ] × [0,∞)2 × U × R × � −→ R,

κ : [0, T ] × [0, T ] × R × [0,∞)2 × U × R × � −→ R.

We assume b·(t, λ, u, x, ·) and κ·(t, z, λ, u, x, ·) to be F-predictable for all t ∈ [0, T ], λ ∈
[0,∞)2, u ∈ U, x ∈ R and z ∈ R. We also require that they are C1 with respect to t and to
x . For later use, in order to apply the transformation rule (see [41] Theorem 3.3), we assume
that for all z ∈ R λ ∈ [0,∞)2, u ∈ U , x ∈ R the partial derivative of κ with respect to t
(denoted ∂tκs(t, z, λ, u, x)) is locally bounded (uniformly in t) and satisfies

|∂tκs(t1, z, λ, u, x) − ∂tκs(t2, z, λ, u, x)| ≤ K3|t1 − t2|, (25)

for some K3 > 0 and for each fixed s ≤ t , λ ∈ [0,∞)2, u ∈ U , x ∈ R. Sufficient conditions
for the existence of a strong F-adapted solution to (24) in L2(dt × dP) are studied in [23,
Theorem 3.2].
In the Volterra framework the dynamics produce a memory effect that, together with the
noise μ, makes the state process X clearly non-Markovian. So, as in Sect. 3, we propose
a maximum principle approach. However, we see that we have to modify the Hamiltonian
functional to accommodate the Volterra features.
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Hereafter, the general space 
S is the space of measurable functions on [0, T ] with values
in S. We introduce the Hamiltonian functional :

H : [0, T ] × 
[0,∞)2 × 
U × 
R × 
L2(dP) × 
Z × � −→ R,

as the mapping given by the sum

Ht (λ, u, x, p, q) := H0(t) + H1(t) (26)

of the two components

H0(t) := Ft (λt , ut , xt ) + bt (t, λt , ut , xt )pt + κt (t, 0, λt , ut , xt )qt (0)λ
B
t

+
∫
R0

κt (t, z, λt , ut , xt )qt (z)λ
H
t ν(dz)

H1(t) :=
∫ t

0
∂t bs(t, λs, us, xs)ds pt +

∫ t

0
∂tκs(t, z, λs , us, xs)Ds,0 ptλ

B
s ds

+
∫ t

0

∫
R0

∂tκs(t, z, λs , us, xs)Ds,z ptλ
H
s ν(dz)ds.

As we see here above we have used the NA-derivative (6), (7). Stochastic differentiation was
first used in the maximum principle approach in [1], where the controlled dynamics were
jump-diffusions driven by a standard Brownianmotion and centred Poisson randommeasure.
There the Malliavin derivative was used. We recall that Malliavin calculus is tailored on the
type of noise and it does not extend easily to general martingales as integrators. See, e.g.,
[26]. We find an extension to the case of processes with conditional independent increment
in [49]. However, the very use of Malliavin calculus has the drawback that the domains of
the operators involved are strict subspaces of L2(dP) and it is difficult to verify whether the
randomvariables of interests belong to such domains (particularly thinking of the dependence
of the variables on different controls u). To circumvent this problem [2] proposes to use an
extension of the Malliavin calculus to the white noise setting. See [26] and see [3] for the
case of Volterra type dynamics. The white noise framework is a generalisation of Malliavin
calculus to distribution spaces and it is again strongly depending on the nature of the noise.
At present there is no extension of such framework to the case of time-change Lévy noises
and this is topic of current research.
For those reasons, we use here the NA-derivative (6), (7) and its duality with the Itô inte-
gral, see Theorem 1. The NA-derivative is well-defined with respect to all square integrable
martingales and its domain is the whole L2(dP). All our variables belong to such domain.
For λ ∈ L and for (u, X) in (24), we introduce the adjoint equation as the BSDE

pt = ∂x G(XT ) +
∫ T

t
∂xHs(λ, u, X , p, q)ds −

∫ T

t

∫
R

qs(z)μ(dsdz). (27)

Observe that (27) is a true BSDE as the terms ∂x H1 in the driver ∂xH are integrated (see
[23, Remark 3.3]). Such equation is admittingG-adapted solution following [29]. Hence we
can implement the same form of “projection" on the filtration F to solve the optimal control
problem (22), which is studied over the following set of admissible controls.

Definition 5 The setAF of admissible controls in problem (22), (23) consists ofF-predictable
stochastic processes u : [0, T ] × � �−→ U such that X in (24) and (p, q) in (27) have a
unique strong solution in L2(dt × dP) and L2(dt × dP) × IG, respectively, and

E

[∫ T

0
|Fs(λs, us, Xs)|2ds + |G(XT )| + |∂x G(XT )|2

]
< ∞.
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The couple (u, X) is an admissible pair.

Theorem 4 Set λ ∈ L. Let û ∈ AF and assume that the corresponding solutions X̂ , ( p̂, q̂)

of (24) and (27) exist. Define the mapping HF as

HF

t (λ, u, x, p̂, q̂) := E
[Ht (λ, u, x, p̂, q̂)|Ft

] := HF

0 (t) + HF

1 (t), (28)

for t ∈ [0, T ], u ∈ 
U , x ∈ 
R, where

HF

0 (t) := Ft (λt , ut , xt ) + bt (t, λt , ut , xt )E[ p̂t |Ft ] + κt (t, 0, λt , ut , xt )E[qt (0)|Ft ]λB
t

+
∫
R0

κt (t, z, λt , ut , xt )E[q̂t (z)|Ft ]λH
t ν(dz)

HF

1 (t) :=
∫ t

0
∂t bs(t, λs, us, xs)ds E[ p̂t |Ft ] +

∫ t

0
∂tκs(t, 0, λs, us, xs)E[Ds,0 p̂t |Ft ]λB

s ds

+
∫ t

0

∫
R0

∂tκs(t, z, λs , us, xs)E[Ds,z p̂t |Ft ]λH
s ν(dz)ds

Assume that, for fixed t, the function

hF

t (x) := ess sup
u∈U

HF

t (λ, u, x, p̂, q̂) (29)

exists and is concave. Also assume that, for all t ∈ [0, T ],
hF

t (X̂) = HF

t (λ, û, X̂ , p̂, q). (30)

Then û is an optimal control and (û, X̂) is an optimal pair for problem (22).

To ease the reading, we introduce some notation in the same style as in Sect. 3. For
a given û ∈ A·, X̂ represents the associated controlled dynamics. Also, bs(t) :=
bs(t, λt , ut , Xt ), b̂s(t) := bs(t, λt , ût , X̂t ), and similarly for κ , κ̂ , F , F̂ , G, Ĝ. We will
also write Hu

s := Hs(λs, u, Xs, Ŷs, φ̂s(·)), Hû
s := Hs(λs, ûs, X̂s, Ŷs, φ̂s(·)) and similarly

for the other functionals in (26), (28).

Proof The arguments proceed in a fashion similar to those inTheorem3, however the presence
of the Volterra structure needs to be considered with care. Here below we present only those
specific arguments treating the Volterra feature of the dynamics (24).
For u ∈ AF with corresponding controlled dynamics X , we consider J (u)− J (û) = I1 + I2,
where

I1 := E

[∫ T

0
Ft (λt , ut , Xt ) − Ft (λt , ût , X̂t )dt

]
,

I2 := E

[
G(XT ) − G(X̂T )

]
.

From the definition of HF

0 (t) we have

I1 = E

[∫ T

0

{
HF,u
0 (t) − HF,û

0 (t) − [bt (t) − b̂t (t)]E
[

p̂t |Ft
]}

dt

−
∫ T

0

∫
R

[κt (t, z) − κ̂t (t, z)]E [
q̂t (z)|Ft

]
�(dtdz)

]
.
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In the study of I2 we exploit the concavity of G, use the Itô formula for the product and the
duality between the NA-derivative and the Itô integral. Finally we obtain

I2 ≤ E

[∫ T

0

{
p̂t

((
bt (t) − b̂t (t)

)
+

∫ t

0

(
∂t bs(t) − ∂t b̂s(t)

)
ds

+
∫ t

0

∫
R

(
∂tκs(t, z) − ∂t κ̂s(t, z)

)
μ(dsdz)

)}
dt

−
∫ T

0
∂xHû

t

(
Xt − X̂t

)
dt +

∫ T

0

{
[κt (t, 0) − κ̂t (t, 0)]q̂t (0)λ

B
t

+
∫
R0

[κt (t, z) − κ̂t (t, z)]q̂t (z)ν(dz)λH
t

}
dt

]
. (31)

Now notice that,

E

[ ∫ T

0

( ∫ t

0

∫
R

∂tκs(t, z)μ(dsdz)
)

p̂t dt
]

=
∫ T

0
E

[∫ t

0

∫
R

∂tκs(t, z)Ds,z p̂t�(dsdz)

]
dt

= E

[∫ T

0

∫ t

0

∫
R

∂tκs(t, z)Ds,z p̂t�(dsdz)dt

]

The use of Itô formula is justified by the transformation rule [41, Theorem 3.3 ] and assump-
tion (25). Then we can substitute the above into (31).
The claim is then achieved thanks to (30) following a separation hyperplane argument applied
to the concave function (29). ��
In the arguments above we have assumed that the integrals are well defined. Sufficient con-
ditions on the coefficients of (24) can be imposed in the same spirit as the ones proposed in
Sect. 3.

5 MP for forward–backward systems

Inspired by the concept of recursive utility introduced in [31], we see that the performance
functional in problem (22)

J (û) = sup
u∈AF

J (u),

can include evaluations involving a backward differential equation in the form

J (u) := E

[∫ T

0
Ft (λt , ut , Xt , Yt )dt + G(XT ) + �(Y0)

]
(32)

where

Yt = h(XT ) +
∫ T

t
gs(λs, us, Xs, Ys,�s)ds

−
∫ T

t

∫
R

�s(z)μ(dsdz) −
∫ T

t
d Ms (33)
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is a BSDE driven by the noiseμ considered under the filtration F. The driver g·(λ, u, x, y, θ)

is an F-adapted process in L2(dt × dP) for all λ ∈ [0,∞)2, u ∈ U, x ∈ R, y ∈ R, θ ∈ Z,
C1 both with respect to s and x , and with partial derivatives in L2(dP). Also we assume
that h(x) is FT -measurable for all x ∈ R and C1 with respect to x , a.s. For simplicity we
assume that is is bounded and with bounded derivative. These conditions are sufficient to
technically guarantee the well definition of some integrals that occur later in the proofs. They
can be weekend in specific models. The BSDE (33) is studied under the filtration F within
the setting of general martingale noise. This yields the presence of the orthogonal martingale
M as intrinsic part of the solution, which derives from the stochastic integral representations
of type (4).
The forward dynamics of X are given in (24) with Volterra features and satisfying the same
assumptions presented in Sect. 4. Observe that (24)–(33) is a partially coupled system, the
solution of which is not a challenge. First one solves (24), then the value of XT is used in
the final value of (33). For the existence of a strong solution (Y ,�, M) to (33) we can refer,
e.g., to [40].
Here above �(x) is a random variable for all x ∈ R, concave and differentiable in x a.s.,
while F and G satisfy the same conditions introduced earlier in Sect. 3.
In [6] we see one of the first works in which a couple forward–backward system considers
the backward equation with respect to a general filtration (thus presenting an orthogonal
martingale part). In this work the driving noise is however a Brownian motion only. The goal
of that paper is to prove existence of an optimal control.
In our context we see that a maximum principle can be obtained by an adequate modification
of theHamiltonian functional, whichwill in turn be coupledwith a forward–backward system
of equations. Indeed we have

H : [0, T ] × 
[0,∞)2 × 
R × 
R × 
R × 
Z × R × 
R × 
L2(P) × 
Z × � −→ R,

given by

Ht (λ, u, x, y, θ, y0, ζ, p, q) := H0(t) + H1(t), (34)

where

H0(t) := Ft (λt , ut , xt , yt ) + bt (t, λt , ut , xt )pt + κt (t, 0, λt , ut , xt )qt (0)λ
B
t

+
∫
R0

κt (t, z, λt , ut , xt )qt (z)λ
H
t ν(dz) + gt (λt , ut , xt , yt , θt )ζt

H1(t) :=
∫ t

0
∂t bs(t, λs, us, xs)ds pt +

∫ t

0
∂tκs(t, 0, λs, us, xs)Ds,0 pt λB

s ds

+
∫ t

0

∫
R

∂tκs(t, z, λs , us, xs)Ds,z ptλ
H
s ν(dz)dt .

As in Sect. 4, the NA-derivative (6), (7) appears in presence of Volterra structures. Also we
see that the functional H0 contains elements from the backward differential equation (33) in
the performance functional. For λ ∈ L and in association to the coupled system (24)–(33),
we then consider the functional

H(t) := Ht (λ, u, X , Y ,�, y0, ζ, p, q),

and the adjoint forward–backward system (ζ, (p, q)) here below.
For θ ∈ Z, we denote with ∂θ0 the partial derivative with respect to θ(0) and ∇θz denotes
the Fréchet derivative with respect to θ(z), z �= 0. We also denote with d

dν
∇θzHi (t) the

Radon-Nikodym derivative of ∇θzH(t) with respect to ν(dz).
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The process ζ satisfies stochastic forward equation
{

dζt = ∂yH(t)dt + ∂θ0H(t)B(dt) + ∫
R0

d
dν

∇θzH(t)H̃(dtdz)

ζ0 = ∂yψ(y0).
(35)

Later on the value ζ0 = y0 = Y0 will be associated to the initial value of the backward
dynamics Y .
The stochastic backward equation is

{
dpt = −∂xH(t)dt + ∫

R
qt (z)μ(dtdz)

pT = ∂xϕ(XT ) + h(XT )ζT ,
(36)

For the sequel we assume:

• H(t) is well defined, differentiable with respect to x, y, θ(0), u and Fréchet differentiable
with respect to θ(z), z �= 0.

• d
dν

∇θzH(t) is well defined.

As already noticed in Sect. 4, we remark that (36) is a true BSDE since the term ∂x H1 in the
driver ∂xH is integrated (see [23, Remark 3.3]). Also the forward–backward system (35),
(36) is partially coupled and studied under filtration G. The solution of (35) leads to the
terminal condition in (36). Sufficient conditions for the existence of strong solutions to (35)
and (36) are well known. See, e.g., [33], [29].
In this framework the admissible controls are given as follows.

Definition 6 The admissible controls in the stochastic optimal control problem with per-
formance (32) are F-predictable stochastic processes u : [0, T ] × � → U , such that the
corresponding forward–backward system (X , (Y ,�, M)) in (24)–(33) has a unique strong
solution and the adjoint forward–backward system (ζ, (p, q)) in (35), (36) has a unique
solution, and

E

[ T∫

0

|Ft (λt , ut , Xt )|2 dt + |G(XT )| + |∂x G(XT )|2 + |�(XT )| + |∂x�(XT )|2
]

< ∞.

The set of admissible controls is still denoted by AF.

Following the approach already suggested in the previous sections, we present the maximum
principle exploiting a form of “projection” of the Hamiltonian functional on the filtration F.

Theorem 5 Fixλ ∈ L. Let û ∈ AF and assume that the corresponding solutions X̂ , (Ŷ , �̂, M̂)

of (24) and (33) exist together with the solutions ζ̂ , ( p̂, q̂) of (35), (36), with y0 = Ŷ0 in the
initial value. Define the F-Hamiltonian functional as

HF

t (λ, u, x, y, θ, Ŷ0, ζ̂ , p̂, q̂) := E

[
Ht (λ, u, x, y, θ, Ŷ0, ζ̂ , p̂, q̂)|Ft

]

for t ∈ [0, T ], u ∈ 
R, x, y ∈ 
R, θ ∈ 
Z , which is naturally given by the sum of the
following two functionals

HF

0 (t) := Ft (λt ut , xt , yt ) + bt (t, λt , ut , xt )E[ p̂t |Ft ] + κt (t, 0, λt , ut , xt )E[q̂t (0)|Ft ]λB
t

+
∫
R0

κt (t, z, λt , ut , xt )E[q̂t (z)|Ft ]λH
t ν(dz) + gt (λt , ut , xt , yt , θt )E[ζ̂t |Ft ]
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HF

1 (t) :=
∫ t

0
∂t bs(t, λs, us, xs)dsE[ p̂t |Ft ] +

∫ t

0
∂tκs(t, 0, λs, us, xs)E[Ds,0 p̂t |Ft ]λB

s ds

+
∫ t

0

∫
R

∂tκs(t, z, λs , us, xs)E[Ds,z p̂t |Ft ]λH
s ν(dz)ds

Assume that

• the functionals
x, y, θ �−→ ess sup

u∈U
HF

t (λ, u, x, y, θ, Ŷ 0, ζ̂ , p̂, q̂) (37)

exist and are concave for all t
• and, for all t ∈ [0, T ],

sup
u∈U

HF

t (λ, u, X̂ , Ŷ , �̂, Ŷ 0, ζ̂ , p̂, q̂) = HF

t (λ, û, X̂ , Ŷ , �̂, Ŷ 0, ζ̂ , p̂, q̂). (38)

Then û is an optimal control for the forward–backward system (24)–(33) with performance
(32).

6 Concluding remarks

In this work we have summarised how stochastic control for time changed Lévy dynamics
can be addressed in the framework of maximum principles. To exploit the structure of the
time changed noise, we have used different filtrations, a technical one which is anticipating
of the information on the time change process and the natural one generated by the noise.
Correspondingly, we have used different types of Hamiltonian functionals. The use of differ-
ent information flows has impact on the possibility to solve backward stochastic differential
equations, which in turn depend on different forms of stochastic integral representations.
In our work we have seen that with appropriate modifications of the Hamiltonian functionals
we can deal also with Volterra type dynamics, which involve memory in the coefficients and
not only in the noise via time change. The work has progressed to include forward–backward
systems of equations.
We remark that in Sect. 5, the forward–backward system involved a Volterra type of forward
dynamics (24) and a backward stochastic differential equation (33). It is natural to askwhether
one could extend this to Volterra type backward equations. It turns out that this extension in
rather tricky. Indeed, if the time-change was deterministic, then we would be able to progress
in our solution. In this case the filtrations involved would coincide F = G and we would
not have to deal with orthogonal martingale parts in the solution of a Volterra version of
Eq. (33). See [24] for details. On the opposite, if the time change is genuinely stochastic,
then the Volterra version of equation (33) would present an orthogonal component, which
would have to be dealt with. For this some necessary assumptions on the structure of the
orthogonal martingale part would be necessary, but there are no result that would guarantee
those assumption at the time being.
In this presentationwehave discussed only sufficientmaximumprinciples,which are forms of
verification that an “educated" guess of possible optimal control is indeed optimal. Necessary
maximum principle are useful to identify those guesses. A version of a necessary maximum
principle is available in the framework of Sects. 3 and 4, see [23]. The results are not yet
polished enough in the case of Volterra type dynamics as presented in Sect. 5. There as well
some structure on the orthogonal martingale part of (33) would be necessary.
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