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Introduction

In  this paper, we shall discuss on stochastic differential equations

for sample functions of multi-dimensional diffusion processes with bound-

ary conditions. On this subject, important works were given by Ikeda
[ 2 ]  and  Skorohod [7]. Ikeda discussed the construction of two di-

mensional diffusion processes with Wentzell's boundary conditions on a
unit disk using the known property of one dimensional reflecting Bessel
processes. Skorohod discussed th e stochastic differential equations for
reflecting diffusion processes. Our main objective of the present paper

is to unify these two works. We shall formulate the stochastic differen-

tial equations with boundary condition in Definition 1  and show the
existence and the uniqueness of solutions in  Theorem 1, which is our

main result. The uniqueness obtained there is that in  the sense of the
probability l a w .  It seems difficult to give a  natural formulation of the
pathwise uniqueness except some special cases. A s  a  consequence,

we can construct, in  a purely probabilistic w a y , a  class of diffusion
processes with Wentzell's boundary conditions. In analytic w ay, such a
problem has been discussed by Sato-Ueno [6] a n d  Bony-Courrège-
Priouret [1].
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Let 6 (x ) and b (x )  be defined on R = = ( x 1 , x2, • • •, x ) I  xi > 0 } ,
Borel measurable in  x  such that

(i) 6 (x )=  (O (x )),  j , j =1 , 2, • • n ,  is an n x  n-matrix,

(ii) b(x )= (b ' (x )), i= 1, 2, • •, n, is an n x 1-matrix,

and r ( i )  and 8(3i) be defined on  OR= {"i" =(x2, x3, •• •, x n )} ,  Borel

measurable in such that

(iii) r(i")=  (* I ) ) ,  i, 1=2, 3, n ,  is an (n — 1) x (n —1)-matrix,

(iv) 8(3 ) = ( 31(3 ) ), i = 2, 3, n, is an (n —1) x 1-matrix.

We consider a  stochastic differential equation of the following form ;

dx1 =û 1 (x 1) dB t b 1 (x 1) di+ dS 0  I,

( 1 ) ( dx i
i =6 1(x i ) dB t +  (xi) dt c149t,

i -= 2, 3, • • , n,

where B = (B I-, 4 • • •, B 7), Mt= (Mi, Mi, • • • , M D, .3e =- 4  •  ,  x 7 ) ,

6 1(x 1) dB t = En  6 .ii (x t ) dB f
f a n d  r 1(1-

1) dM t = t ) dMit .
j = 1 j = 2

Intuitively speaking, yot is  a non-decreasing process which increases only

when the process x 1 =  (x ,  xi, •••, x 7 )  is  on  th e boundary i.e., when

x = 0  and  which causes the reflection of the process at the boundary.

(.i)dM i -  -  i3i(5-ci )dço i represents a  random motion of the process x , on

the boundary. Now we shall give a  precise formulation of the equation

(1). B y  a  probability space with an increasing family of Borel fields

(12, F ,  P; .F1) ,  we mean a  probability space (2, F ,  P )  with a  system

1.Ft l i , [ 0 ,_) o f sub-Borel fie lds of ,F  such that it is increasing and

right-continuous, i.e., F 1 ( F 8 i f  t  < s  and  .97
1 + 0 = ..'Ft + e -= ,F ,  for

8>o
every t.

Definition 1 .  B y  a solution of the equation (1)* ) , we mean a

probability space with an increasing family of Borel fields (2 , F , P; ..F1)

*) W e  c a ll it  a lso  "a so lu tion  corresponding  to  [a, b, z-, 13]".
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and  a family o f stochastic processes 1= tz t = (x l ,  4 ,  • • •, x7), B 1 = (B 1,-,

, B i) , M 1=  (M , M i), 9 ,}  defined on it such that

(i) with probability one, they are  all continuous in  t  such that

Bo= 0, M o =  0  a n d  v o = 0,

(ii) they a r e  all adapted to F t , i .e . ,  fo r each t ,  they are

measurable,

(iii)(iii) with probability one, x t E R I. (i.e., xl 0 ) for all t  and v t is

non-decreasing; furthermore, çot increases only when  x =  O ,  i.e., if

xl > 0  for some t  then there exists e >O such that

got+6— S0(1-6)vo= 0,

(iv) (B 1, M ,) is a  system of ..F1-martingales such that

< B 1, >  t = d u t, < B 1, >  ,= 0 , < M 1,

and

( N )  1= {x i, Br, Mr, Sot} satisfies

4=1 61 (x s ) d B , +  b i (x s ) ds + Sot,
o 

x6 -=
o

ll i (x s ) d B ,+ 1obi ( s )d s-F 1 Or i ( i s ) dM s + 0 8 i (3c-

i =2, 3, • • •, n,

where "i1= (4 ,  x ,  . , x 7 ) an d  th e  integrals by d B  an d  b y  d M  are

understood in  the sense of stochastic integrals, c f . [41.

Remark 1. A s  is  w ell know n  (c f. e .g . D a, B ,  is a n  n-dimen-

sional Brownian motion such that B 1 — B , is independent of <F s , t >s.

4) For a system IX „ Y ,} of ,F 1-martingales, <X, Y> is  the continuous adapted
process of bounded variation such that X, Y1 — <X, Y > , is  a martingale, cf. [4].
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Now we shall define the uniqueness of solutions. It is defined, as
usual, in  the sense of probability law.

Definition 2 .  We shall say that the uniqueness holds for (1 ) if,
fo r  an y  tw o  solutions 3E.= (x t , B t , M t , yot ) a n d  1' ,  (x;, B;, M;, v;)
(which may be defined on different probability spaces) such that x o = x
and x =  x a.s. for some x E R ,  the probability law of the processes x t

and x ;  on the space { Tr, .4( V)} coincides, where W ±  is  the Fréchet
space of all Ri-valued continuous functions on [0, co) with the compact
uniform topology and a( v) is the topological Borel field on V .

Proposition 1 .  S uppose that, for the  equation (1 ), the uniqueness
holds and  that, f o r every B orel probability  m easure it on R.I!, a solution
o f  (1 ) ex ists such that PEx o E d x 1 =  p (d x ). T hen, if  P x i s  the  proba-
b ility  law  o f  th e  process x t s u c h  th a t  x o = x a .s. w hich  is unique by
the  f irst assum ption, x ---0 .13 , (B ) is univ ersally  m easurable f o r  every
B ( f r )  a n d  IP x , x E R 1  h a s  t h e  s tro n g  Markov property . In
particu lar, f or an y  so lu tion  o f  (1 ) su c h  th at P rx 0 E  dx1=p (dx ), the
probability  law  Q of  the process x t is uniquely  determ ined and  is given

by  Q(B)=- 5P,(B),1(dx), B E ( F r ) .

This can be proved in  exactly the same way as Proposition 2 and
Corollary 2 of [8 ]  and hence the proof is omitted.

Now we shall discuss the existence and uniqueness of solutions of
(1 ) .  The result is summarized in  the following

Theorem 1 .  Suppose 6, b , r  and 8 are  all bounded and L ipschitz
continuous. Further, suppose a constant c >0 ex ists such that

(2) 16 1 (x ) 6 }(x )2 )1 / 2 >
-

1=1

T hen, f or any  probability  law  te on RT, a solution X=(x1,B1, Mt, yot )  of
(1 ) ex ists such  that P (x 0 E  d x )= ,a (d x ). Furtherm ore, th e  uniqueness
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of  solutions (cf . Definition 2) ho lds. T hus, x t  def ines a dif fusion process
on  R n+ by  Proposition 1.

Proof.

(i) First, we shall consider the following special case ; 61(x) =1,
6.1(x)-=- -- 0, j =  2, 3, . • n  and bi (x )---= 0 .  Then, the first equation o f (1)
is  of the form

(3) dx 1=-  elB 1+ 4 1.

B y Skorohod [7] (cf. also M cKean DI, and xlt a re  uniquely deter-
mined i f  4 -  and B1 are given ;

(4) x1=B1+4, t < 6 0 =inflt ; 4.=

= /31+ x 1
0 — min IB 1  4 1 ,  t>0-

0 ,,
ossst

(5) yot =0, t < 6 o

= — min EB1+ x0, t>Co.
cr s  t

W e shall show that there exists an (n — 1)-dimensional Brownian motion

bt independent o f Bt such  that 1■11 .= Ê . T h is  implies, in particular,
that the joint distribution of (x o , B t , MO is uniquely determined by the
distribution of x 0 . F o r  th is , w e note first that, since go t i s  the local

time of the one-dimensional reflecting Brownian motion x lim go i =
t - -

a.s.. B y  a  general theory C C ), Pt m _ ,  i s  an (n — 1)-dimensional
Brownian motion and hence, it is sufficient to prove that B t and  Et

are independent. L e t P( I 0 )  b e  the regular conditional distribution
given 0= 1/31 ; t E co) } . N o w  w e  have

(6) E ( ( l l it —Mis)F i(to)Fz((0 ))=0, i =  2, 3, ..., n, t >s

where F i (w) is  O s = {M ; u E [0, sil -measurable and F 2 (a ) is 0-meas-
u rab le . For, by noting that F2 (0 ) has an expression (cf. [3 ], or [41)
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F 2 (co)= c 0 0 s (co) dB, a.s.,

where ,(w)= (0 1„  • •  ,  C ) i s  a  m easurable process adapted to  O s

= 1/3 1 ; t E [0, and also that

E {(M — Mis ) 0 „(w ) dB F i (to)} -= 0

because o f  < M , B >  = 0,

w e have

EI(Mf — M is)Fi (0)) F2(00 = E — Mis) F (o))(c Y o 0 u (co) d B u )} =  0

since F i ( w ) ( c  YOu (co) d B )  is  .97 ,-m easurable . (6) implies that

E — Mis ) F i (o))1 0} =0 a.s..

Sim ilarly, we can prove that

Er {(M  M is) (M at — au(4ot Sos)1F1(0))1 0 ]=  0 a.s..

Thus, 1M1, M t , P ( M )}  is  a  system of martingales such that < M 1, >

-= got. This implies that {Po P( I 0 )1  i s  (n — 1)-dimensional Brownian

motion a.s. and hence B i a n d  E, are  independent.

Now, we shall show that the pathwise uniqueness of solutions for (1)

holds ;  for any two solutions I=  (xt, Br, Mt, 91) and r  =  (x ;, B;, M ,4 0  it)
on the same probability space, x 0 = 4 , B t =-- B ; and M t —=M ; imply that

x t = x ; .  W e  h av e  rem arked  above that x o = x , ;  a n d  B i
-  - B ; imply

got = ç o ;  a n d  xl = T hen , by denoting 3c- (t) = (x 2 (1), x n ( t ) )  and

"i"/ (t)=  (xA t), 

(t) = x i  (0) + (x 1 (s), (s )) d B t bi (x l  (s), (s )) d so 

+1o ri(i(s)) dM s +1 0 0i  ( (s)) clSos
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and

(t)= x i (0) +1 00- i  (x l  (s), '( s ) )  d B o b1 (x 1 (s), (s)) ds

o r i (s)) dM s +S o igi ( V(s)) (14 i -= 2, n.

Hence, if  w e set z(t)--- x (t) — :. / ( t ) ,  then for i = 2, n,

z i ( t) -1 :Ib i (x l  (s), (s))—  b i (x l  (s), 1- '(s))] ds

5 L ( (s))( -i'(s)) — 8 i ( (s))] clç s

+1

=1 La i (x l  (s), ( s ) )  —  ( x l  (s), ( s ) ) 1  dB ,
0

Er i ( (s))— ri ( (s))] dM
0

is  .°F1-martingale and hence, for any bounded .F r stopping time 6,

E  z i (6) — (x l(s), (s)) —  (x l  (s), '(s ))] d s

co.

—. 18i ((s))— 8 i ( ' (s))1 d sI 2 1

= E ISn

0( s ) .  ( s ) ) —  6  Y x 1 (s), ( 0 ) 1 2 ds

a  n
+  E rz-ii c i - (s))—z-ii ( V (s))1 2 dv s }

0 j = 2

E {1 o z  (s )  2 d A s}

where A t =  v t an d  K 1 >  0  is  a constant. Also, we have

11' Ei3 1 (3c (s)) — ( (s))] dço
0
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o
rig i ("i(s)) —  ( “ s ) ) 1 2 clç

Z ( S )  2 07V.,•V n - ,

and similarly,

{5'o rb
i  (x l  (s), (s)) — b i  (x l  (s), ' (s))1 d sr

< K4o I z(s) I 2 ils.6.

Hence, there exists a constant K 4 >  0  such that

(7) E llz (6 )12}<K 4:1z(s )12  dA s q l+  A ,)}.

L et T > 0  be fixed and 6.= , t EEO, T ] ,  w h ere  A il is  the inverse
function of Then 6  is an .F i -stopping time such that 6 < t < T

and yo, ‹  t  <  T .  Therefore, by (7), there exists a constant K =  K  (T )>  0
such that, for every t E [0 ,  T ],

(8) E {z (A i')1 2 } 1 ( q A
0 `1 z(s)I 2 d A s }

= KE I Z(24; 1 )1 2 dS}

K Ç.E'{ z(A; 1 )1 2 } ds.0

This implies that z (t)=--  O a.s. t E [0, and, since T  is arbitrary,

z(t):=•0, i.e., 3c- (t)-- ---- ( t )  or x(t)=---- x'(t). Thus, the pathwise uniqueness

holds.

Now, the existence of solutions is shown in  the following way; let
1B (t), ( t ) ,  x (0 )}  be g iven  o n  a  probability space ( rl, F , P ), where

B (t) (B (0)-= 0) is  a n  n-dimensional Brownian motion, P ( t )  (B (0)= 0)
is  an  (n —1)-dimensional Brownian motion and x (0 )  is  an R.-valued
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random variable such  that they are mutually independent. Let x 1 (t )

and ç2(t) be given by (4 )  and (5 )  as the unique solution of ( 3 ) .  Let

A= Ê ,  be the Borel field generated by {x(0), B (s), M(s'); s E [0, t],

E [0 , t il and , -
t = f \ g + 8 . It is easy to  see that (B1, M s ;  t )  is  a

e> o
system of martingales which satisfies the condition (iv) of Def. 1. Let

'•i- o (t)= (x 2(0), xn(0)) and define -ik (t ), k = 1 , 2 ,  . . .  inductively by

x i
k (t)-= x 1(0) +

0

6' ( x 1 ( ) ,
 3c- k -1(0)dB s -F

o

b'(x l (s), k _1(s)) ds

rt
r i C k _i(s))dM ,+ 10 8i (ik-i(s)) clyo„ i = 2, 3, ••., n .

Jo

Then, by the same estimate as (8 ) , we have

(9) E{1 - ' k(Ai l ) k -1(A7 1 )1 2 } 'Cron .c.k_i(A3 1) - 5 -ck _ 2 (A ;')I  2 } dS

and hence, by a  usual argument, "i(t)=1irn .i -
k ( t )  exists a.s., the con-

vergence being uniform in  t  on each compact set. Clearly, I-=•(x (t)

-, (x 1( t ) ,  (t)), B  (t), M (t), go (t)) i s  a solution on (2 , P; F e). A ls o
it  is  clear, b y  the w ay  of construction, that there exists F(x, w1, w2);
(x, wi, w2) E R 1 X TV1 X W2 F E W3 X  W4, 1V1, W2, 1V3 and W4 being
the space o f  all continuous functions t E [ 0 ,  c o ) - - - - w ( t ) E  R z  (resp.

r e s p . R T , r e s p . R'4.) s u c h  th a t  it  is  a(R ")x .1 1(1r1 )x at(1V 2)
W3 ) x  a t ( W4 )-measurable for every t  and

(10) (x ., go.)=F(xo, B., M.) a.s..

B y the above arguments, every solution must be given in this way and
hence, the uniqueness in the sense of Def. 2  of solutions is obvious.

(ii) Now we consider the general case. We shall reduce it to the
above special case by the following three transformations;

a )  a transformation of the B row nian motion.
Let I = ( x t , B 1, M1 , (ot ) be a solution on (12, ,F , P; F t )  corresponding

to [6, b, r, ,8 1. Let p (x ), x  E RI. is a measurable n X n-orthogonal matix
and set
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B t=-Ç
p ( x s ) d B „ ( i .e . ,  1.3 = i  p i i ( x s ) d B i

s ) .0 =1 0

Then P t i s  a n  n-dimensional Brownian m otion and it  is  e a sy  to  se e

that TZ=(xt, f3 t5 Mt, ço t )  is  a solution on (2, P ; g - t)  corresponding to

b, 7 , 13 1-

b) a  tim e  change.

Let N,=(x t, B t, M t, 40t) be a solution on (2, P; .F t )  corresponding

to  [0 , b , r, 81. L et c (x ) , x  E R T  be a  measurable function such that

c i c(x ) c 2  fo r  som e constants c z > c i> 0 .  L e t  A ( t ) = .  c ( x s )ds,

i - 1=xA T 1, B t = t c ( s )  d B A ;i ,
0 = MAT', t = soA;- '  and 3, 7

1 = g 'A i l .  Then,

P t , R 1, o t )  is  a solution on (2 ,  .F, P; .F i )  corresponding to [V c  16,

3 ] .  This can be proved easily if  w e note the following general

f a c t :  i f  ( Y1, .F t )  i s  a  system  of m artingales su c h  th a t  < Y i , Y l> 1

O1 ( t )  an d  211 i s  a  strictly increasing continuous process adapted to

t such that  A = o o  a . s . ,  th e n  ( 17-1= ..F A I )  i s  a  sy stem  of

m artingales s u c h  th a t  < P--1>t=ç b il(A i1 ) . T h is  f a c t  i s  a  d irect
consequence of Doob's optional sampling theorem.

c) a transformation of the drift.

L et (x i , B1, Mt, Sot) b e  a so lution  on (2 , P ; .F t)  corresponding

t o  [o", b, r, 3 ] .  L e t  d ( x ) =( d 1 (x ), d 2 (x ) , •  •• , d n (x ))  be d e f in e d  on

x E R ! „  bounded a n d  m easurab le . Let P ( d a )  b e  t h e  probability

m easure on  (12, such  th at, fo r  each  t ,  1 '( B ) = 1 e x p [ o d(x s )d B ,

d1 2 (x 8 ) d s 1 P ( d o ) )  for e v e r y  B  E Then, (x t , E1 =  Bt

— S  d (x s)d s , M t, so t) is  a solution on (2, P ;  ..Ft )  w hich corresponds

t o  [ 6 ,  — b + 61, r, 431. T h is  is w e l l  k n o w n  a n d  is  ca lled  u su a lly

Girsanov's theorem.

Now suppose the coefficients [6 ,  b, r, 8 1 s a t is f y  the condition of
the th eo rem . T h en  it is  e a sy  to  see  th a t th e re  ex is ts  an orthogonal
m atrix  p ( x ) ,  Lipschitz continuous in  x  su ch  th a t if =6.p -

1
- h a s  the
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form

(a(x),*0,*• • •, 0)

Since a(x ) 2 -= E 0 - }(x) 2 ,  there exist positive constants c l  a n d  c2 such

that ci a(x ) c2 . L et I. = (xt, 131, M 1, ç°,) b e  a solution of (1 ) on
(2 , 37, P; I f  we perform on it the transformation of the Brownian

motion determined by p , the time change determined by c (x )=a(x ) 2 and

the transformation of the drift determined by d(x )=( —[a(x)1 -  2 bi (x), O,
0 ) successively, then we get a solution (3--

 
Er, Mr, Ot) o n  (D , t-6 1 7 5

P ; .F t )  which corresponds to  rei , b, r, 8 1  where [6-  , b r , ,3 1  are bounded

and Lipschitz continuous such that ô-'1(x)=---.-- 1, 66 (x )= .0 , j=2, 3, ..., n
and 61 (x )= 0 , that is, they satisfy the condition of the case (i). Then,

as we saw in (i), the joint distribution of the process (3-c t ,  Et, Mt, Ot) is
uniquely determined by giving the distribution of -io• Since x t can be

obtained from Et} by the transformation of the drift determined by

— d (x )  and then by the time change determined by c (x ) 1 ,  the proba-

b ility  law  o f  th e  process x t is uniquely determ ined by giving the

distribution of x o . Thus, th e uniqueness in  th e  sense o f  Def. 2  of

solutions holds. The existence of solutions is also clear; as is shown

in  ( i ),  a solution ( i t ,  Et , 1i,, ço,) corresponding to [ 8- , 6, r, ig ]  exists.

I f  we perform  on  i t  the transformation of the drift determined by

— d (x ),  the time change determined by c ( x ) 1 and the transformation

o f th e  Brownian motion determined by p - 1  successively, w e get a

solution (x,, B,, M,, (at )  which corresponds to [6 , b, r, /31 . The theorem

is completely proved.

Remark 2 .  Our result can be used to construct diffusion processes

with boundary conditions on a manifold with boundary since the con-

struction can be localized and therefore reduced to the case of the half-

space.

Remark 3 .  B y  a form ula on stochastic integrals, c f .  [ 4 ] ,  we
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have, for f  E C8(R'1)* ) ,

f (x 1)—  f (x0= a martingale +  Ç A f (x.,) ds+ ()"' ,) d ,

where

A f (x )=i
n  a 11(x)0 2 f  x ia x ' + E bi(x)Of /6 x i

1=1

L f  ( )=t  c e u ( -- )6 2 f  x i  x i  +  8i(i)Of /ax 1 +Of/Ox'
d= 2 i

2 a i l ( x ) =  o- L al: a n d  2a )=  En  r  r i
k .

k=1 k= 2

T hus w e see that th e  infinitesimal generator of the semigroup of the
diffusion process x t constructed above is an  extention of the differential
operator A with the domain g (A )= I f  E CP(R r

+ ) ; aR:=0}.
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