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I returned, and saw under the sun, that the race is not to the swift, nor the

battle to the strong, neither yet bread to the wise, nor yet riches to men of

understanding, nor yet favour to men of skill; but time and chance happeneth

to them all.

(Ecclesiastes 9:11, KJV)
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Chapter 1

General introduction

1.1 Why mathematical epidemiology?

Recent outbreaks of animal diseases like classical swine fever (1997), foot

and mouth disease (2001) and avian influenza (2003) in The Netherlands,

the world-wide emerging of human diseases like SARS in 2002 and the con-

stant threat of new pandemic infections, like avian influenza, make it needless

to stress the importance of understanding and predicting the dynamics of the

spread of an infection. Mathematical models and their analysis play a natural

role in obtaining such understanding.

Computer-intensive models can be used for predictions, but many of those

models are mathematically intractable. Therefore, a challenge to epidemiol-

ogists, modellers and mathematicians is to find models that are both useful

and mathematically tractable.

The body of epidemiological literature is already immense. Although most

of the models and methods cannot immediately be applied to epidemics in

real-life, they do provide tools for the analysis of these real epidemics and

give qualitative insight in the dynamics of the spread of the infection. In

addition, real-life applications call for more advanced mathematical methods

to be developed.

Apart from the modelling of the spread of infections, results from epidemi-

ology have been used in other sciences as well. One can think of models for

rumour spread [26], the spread of information in economy [37], the spread of

computer viruses [17, 31] and even an application of an epidemic model in a

model on the spread of heresies in the Middle Ages [65].

1



2 General introduction

In this thesis I focus on the main purpose of mathematical epidemiology:

modelling the spread of infections. Notably, I develop new methods to provide

a better foundation for this modelling. The following sections of this general

introduction are used for introducing some basic deterministic and stochastic

epidemic theory and some theory of branching processes. Important epidemi-

ological terms and quantities (like the basic reproduction ratio R0) are intro-

duced here. Readers familiar with the material can skip this part of the thesis

without problems. After that a short introduction to the theory of percola-

tion is given. This field in probability theory is mainly used in mathematical

physics, but in this thesis an application of the theory in epidemiology is given.

This chapter ends with an overview of this thesis and a section on possible

directions for further development of (stochastic) mathematical epidemiology.

1.2 Deterministic epidemic models

In 1927, 1932 and 1933 W.O. Kermack and A.G. McKendrick published a series

of papers titled “Contributions to the mathematical theory of epidemics”.

Those papers are often seen as the basis of further research in mathematical

(especially deterministic) modelling of the spread of infectious diseases. The

first three papers of Kermack and McKendrick are reprinted in [46]. In the

book of Diekmann and Heesterbeek [27] some of the results of Kermack and

McKendrick and other deterministic models are presented and explained.

In many of the deterministic models randomly mixing populations are

assumed, i.e. every individual contacts every other individual with the same

rate, or in a multi-type process, contacts between individuals of certain types

all happen at the same rate.

First, I consider the basic single-type SIR (Susceptible → Infectious → Re-

moved) epidemic model. Generalisation to multi-type models is often straight-

forward, but the notation becomes more cumbersome. In the model the popu-

lation is closed and is of size N , i.e. births, deaths and migration are ignored.

All pairs of individuals have contacts at the same rate N−1β. If an infec-

tious individual has a contact with a susceptible individual, the susceptible

individual becomes infectious. Infectious individuals recover at rate α.

Define S(t) as the number of individuals susceptible at time t and s(t) =

N−1S(t) as the fraction of the population that is susceptible at time t. I(t),

i(t), R(t) and r(t) are defined similarly. Let i(0) = i0 and s(0) = 1 − i0.
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This leads for large N to the following set of approximating differential

equations:

ds(t)

dt
= −βs(t)i(t),

di(t)

dt
= βs(t)i(t) − αi(t) = i(t)(βs(t) − α),

dr(t)

dt
= αi(t).

This is the place to introduce the concept of the basic reproduction ratio (or

basic reproduction number) R0. The basic reproduction ratio is defined as the

number of secondary infections per initial infective individual, in a very large

population where s(0) ≈ 1. In this model an initially infected individual will

on average infect
(N − 1)β

Nα
≈ β

α

other individuals. So R0 ≈ β/α.

Some remarks have to be made:

• It can be seen from the differential equations that if a small number (rel-

ative to the total population size) of infective individuals is introduced in

a completely susceptible population, the number of infectives will initially

grow if β − α > 0, i.e. if R0 ≈ β
α > 1. On the other hand, if R0 ≤ 1 the

epidemic will go extinct very soon. This is the reason why R0 is such an

important quantity in epidemiology: It is a threshold parameter, like the

offspring mean in branching processes (see Section 1.4).

• It is proven [27] that log(s(∞)) = R0(s(∞) − 1). This does not lead to a

closed expression for s(∞), but it can be computed numerically. Note that

s(∞) is the fraction of the total population that is never infected.

• Other deterministic models for infection spread usually lead to a comparable

set of differential equations. In particular, it is easy to incorporate birth

and death in the model.

• If birth and death are considered in the model we can also deduce conditions

for an epidemic to become endemic, i.e. an epidemic for which i(t) 9 0 as

t → ∞.

• A varying environment can be treated by making β and α time-dependent.
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• The duration of an epidemic cannot be studied in a realistic way with a

deterministic model, because at the start and at the end of an epidemic

stochastic fluctuations play a very important role.

• For some infections it is not enough to use three states of infection (sus-

ceptible, infective and removed), but we also need to take a latent state or

more than one infectious states into account. One can deal with this by

using a system of more differential equations than the three already given,

but the main idea is still the same.

The notion of the basic reproduction ratio R0 is very important for con-

trolling an epidemic. By vaccinating a fraction larger than 1 − 1
R0

of a well

mixed population at birth with a perfect vaccine, one can bring the repro-

duction ratio in the vaccinated population below 1 and thus prevent a major

outbreak.

An interesting problem is the modelling of spread of an infection among

households. In this case two levels of infection are considered, the probability

of infecting others within a household is higher than the probability of infecting

individuals outside the own household. Note that for small households it is

not very realistic to use a purely deterministic model. In this setting it is

also very difficult to take a varying environment into account. The household

model is also used in stochastic models [6], but in those models it is even more

difficult to deal with varying environments (see Chapter 2).

1.3 Stochastic epidemic models

Deterministic models have drawbacks and may cause some rather amusing

mistakes: Murray et al. ([60], see also page 693 of [61]) proposed a determin-

istic model to predicted the dynamics of the prevalence of rabies among foxes

in England. The dynamics predicted by the model seems to be rather spectac-

ular. The number of infected foxes will rapidly increase until the number of

available susceptible foxes is too low and then the disease seems to disappear,

but after a period of about 2 years there is a sudden reappearing of rabies

in foxes predicted. In 1991 Mollison [59] gave an explanation for this phe-

nomenon, which he called the atto-fox phenomenon. Murray et al. have used

a continuous approximation of the number of infected foxes (like is done in the

differential equations in the deterministic SIR-model) and during the years
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that the infection seemed to have disappeared (in the predictions based on the

model), there still was a minimum of around one infected atto-fox (10−18 of a

fox) per square kilometre and this fox-part eventually caused the new wave of

infection.

This example shows the danger of continuous approximations of the num-

ber of individuals. Furthermore, as explained in the previous section for dis-

crete models one has to assume that the number of infectious individuals is

large and that the number of possible contacts with susceptible individuals is

large as well. Therefore, deterministic models are not the most relevant for

modelling the start and the end of an epidemic (where the number of infectious

individuals is small) and for modelling the spread of infections on networks

(where the number of available susceptible individuals that an infective in-

dividual can infect, is small). In this thesis we will mainly focus on these

problematic cases i.e. we focus on stochastic and discrete models.

Much of the work already done on stochastic epidemic models is described

and explained in the lecture notes of Andersson and Britton [3]. In this section

I give some of the results and the methods they describe.

1.3.1 The Reed-Frost model

The most basic model is the “Reed-Frost model”. This model is generation-

based. We assume that the population is closed, i.e. during the epidemic no

new individuals are introduced in the population and there are no deaths.

The probability of a susceptible to become infectious in generation i + 1 only

depends on the number of infectives in generation i. We assume that the

probability of escaping infection by a specific infective is q for each suscepti-

ble. Conditioned on the number of infectives in generation i the events that

different susceptibles escape from the infection in generation i + 1 are inde-

pendent. Note that in the last assumption, a fixed infective period and the

same infectivity rate for all infectives is implicitly assumed. We get:

P(I(j + 1) = n|S(j) = k, I(j) = l) =

(

k

n

)

(1 − ql)n(ql)k−n

(and S(j + 1) − S(j) = I(j + 1)).
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We are interested in the final size (the number of initially susceptible in-

dividuals that are ultimately removed) of an epidemic. We can write this

as:

P(R(∞) = k|S(0) = n, I(0) = m) =
∑

l:|l|=k P(I(1) = l1, . . . , I(j) = lj , I(j + 1) = 0|S(0) = n, I(0) = m),

where |l| =
∑

j≥1 lj . For practical purposes this formula is useless for large

populations, because the needed number of computations grows very fast and

worse: they are numerically unstable.

1.3.2 The standard stochastic SIR epidemic model

For the stochastic SIR model we have the following assumptions:

• The population is closed, so no births, deaths and migration are considered

in the model.

• Initially there are N − m susceptibles and m infective individuals.

• The population is homogeneous and randomly mixing, i.e. the probability

that two individuals contact each other does not depend on which two

individuals we consider and all individuals have the same characteristics.

• At each contact between an infective and a susceptible the infection is trans-

mitted.

• Each individual contacts a given other individual at the time points of a

Poisson process with parameter β
N . With some abuse of terminology β is

called the infection rate or contact rate.

• An individual is in the R-class if its infectious period is terminated.

• Individuals have independent and identically distributed (i.i.d.) infectious

periods, all distributed as the random variable I with mean ι and finite

variance σ2.

The process described above is denoted by EN−m,m(β, I).

One remark on the terminology: from now on in this thesis the word “rate”

in a stochastic setting will mean the density of a one dimensional Poisson

process.

The model proposed in this section slightly differs from models proposed

in the literature (e.g. [3]). Andersson and Britton and many other authors
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working on stochastic epidemics assume that the contacts are made according

to a Poisson-process with parameter β
N−m . In this model a process started

with 2 infective and n susceptible individuals will behave in another way than

a process initiated by 1 infective, and n+1 susceptibles, given that one of the

initially susceptible individuals is infected immediately. Note that replacing β

by β(N − m)/N in the model proposed in [3] brings us back at the standard

stochastic SIR epidemic model described above.

The basic reproduction number, R0, is given by βι, i.e. the rate at which

an infective individual contacts susceptible ones times the expected length of

the infective period, or better: The expected number of secondary infected

individuals directly infected by a single initially infected individual.

We can look at the SIR model from a different perspective. Sellke gives

such an alternative construction of the model [68]. In Sellke’s construction

each susceptible is associated with a threshold. As soon as the total infec-

tive pressure (i.e. β
N
∫ t
0 I(u)du: the number of infective individuals times the

infection rate integrated up to time t) is above the threshold the susceptible

becomes infective and adds to the total infectivity pressure. More formally:

The initial infectives are labelled: −(m − 1),−(m − 2), . . . , 0 and the initial

susceptibles are labelled: 1, 2, . . . , n, where n = N −m. We introduce random

variables for the (possible) infectious periods, Ij for −(m − 1) ≤ j ≤ n, all

distributed as I. The initially susceptibles each get an exponential distributed

random variable with mean one, Qj associated to it. The number of infectious

individuals at time t is I(t). Let

A(t) :=
β

N

∫ t

0
I(u)du

be the total infection pressure exerted on a given susceptible up to time t.

Now the susceptible labeled j becomes infective as soon as A(t) is greater or

equal than Qj . The j-th individual that becomes infected (not necessarily the

susceptible labeled j) stays infective during a period Ij , after this period it is

removed. As soon as there are no more infectives the epidemic ceases. It is

proved [3] that this model is equivalent to the SIR-model constructed earlier.

Note that we can use this construction for the final size equation:

Z := R(∞) − m = min
{

j|Q(j+1) >
β

N

j
∑

k=−(m−1)

Ik

}

.
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Here Q(j) denotes the j-th order statistic of the Qj ’s. The total infection

pressure up to the end of the epidemic is now given by

A := A(∞) =
β

N
Z
∑

k=−(m−1)

Ik. (1.1)

Andersson and Britton give the following results (first given by Ball in [4]):

Lemma 1.3.1 Consider the standard SIR epidemic En,m(β, I) and let A be

the total infection pressure of the epidemic. Then

E[e−θA/φ(βθ/N )Z+m] = 1, θ ≥ 0,

where φ(θ) = E(e−θI) is the Laplace transform of I.

This lemma, which is interesting on its own, is used to prove the following

result:

Theorem 1.3.2 Consider the standard SIR epidemic En,m(β, I). Denote by

Pn
k the probability that the final size of the epidemic is equal to k, 0 ≤ k ≤ n.

Then

l
∑

k=0

(

n − k

l − k

)

Pn
k /[φ(β(n − l)/N )]k+m =

(

n

l

)

, 0 ≤ l ≤ n.

With this theorem we can find the final size probabilities recursively. Note

that we do not need to assume the absence of a latent period and we may

replace β by β(τ), where τ is the time since infection of an individual.

1.4 Branching processes

Two of the chapters (2 and 3) of this thesis have branching processes as their

main subject, while in Chapter 5 basic theory from branching processes is

heavily used to analyse infection spread on random networks. Indeed, there is

a strong relation between epidemiology and the theory of branching processes,

or to do more justice to the facts: mathematical epidemiology heavily relies

on the theory of branching processes and draws inspiration from it. Branching

processes were first developed to describe the extinction probabilities of family
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names and can be seen as the mathematical study of family trees. (For an

overview of the history of branching processes see the introduction of [39].)

The basic (Galton-Watson) branching process model can roughly be seen

as follows: There are some (male) ancestors that each have a random number

of sons. The number of sons of the different ancestors are independently and

identically distributed (i.i.d.). The sons of the ancestors have sons themselves,

and the numbers of these sons are again i.i.d. and distributed as the offspring

of an ancestor. In this way we can define a model for the whole family tree.

All individuals have independently a number of sons, all according to the same

distribution.

The model can be enriched by considering the family tree in real time. In

such an extended model not only the generation number of an individual is

important, but also the times of birth and death are. Such a model is useful

(and even needed) if, for example, one wants to make predictions about the

number of people with surname Johnson in the year 2100 (Of course under

the assumption that life expectancy, the distribution of the number of sons

and the age at which people get their sons does not change between now and

2100).

The relation between epidemics in large randomly mixing populations and

family trees can heuristically be explained as follows. The individuals that in-

troduce an infection into a population are seen as the ancestors. During their

infectious period they contact a random number of individuals uniformly cho-

sen from the population and infect those individuals if they are still suscepti-

ble. These newly infected individuals can be seen as generation 1 individuals.

During their infectious period, these generation 1 individuals contact the other

individuals according to the same law as the ancestors contacted other indi-

viduals.

If the population is very large, the probability that an infective individual

contacts an already infected individual during the first stage of the epidemic

(which may last rather long) is very small, and therefore the progress of the

epidemic can be described by a branching process.

In the next subsection the so-called Galton-Watson processes are rigorously

defined and some of the basic results on these processes are given. Further-

more, some extensions, like multi-type Galton-Watson processes, are defined

and generalisations of the results on Galton-Watson processes are given. For

proofs of the results and for further theory on branching processes one might
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consult [39]. In subsection 1.4.6 a theorem from [5] on the approximation of

epidemics by branching processes is given.

From now on we use the common convention of using the maternal termi-

nology, so we speak of mothers that give birth to daughters.

1.4.1 Definition of the Galton-Watson process

In this subsection we consider branching processes seen from a generation point

of view, namely Galton-Watson processes. We assume that there is only one

ancestor. This assumption is just for notational convenience and can easily be

dropped.

A Galton-Watson process is a process generating a family tree, where every

individual has a finite (not necessarily bounded) number of daughters. The

ancestor is labelled by a. The jn-th daughter of the jn−1-th daughter . . . of

the j1-th daughter of the ancestor is labelled by the vector (a, j1, . . . , jn). If

an individual can give birth to more than one daughter at once, one can use

a random ordering to label the daughters.

The set of all possible labels J is given by

J = {a ∪
∞
⋃

n=1

{(a; x);x ∈ N
n}},

where N is the set of positive integers (0 not included). This set of labels is

countable.

From now on “individual x” will mean the individual with label (a, x) ∈ J

and “individual a” is the ancestor.

Note that there are far too many labels, indeed if the ancestor has only 1

daughter, there are no individuals with the labels of the form

(a, 2, j2, · · · jn;n ∈ N, ji ∈ N).

Let rx be 1 if the individual x is realised, i.e. rx = 1 if the label (a, x) is

assigned to an individual. Otherwise rx = 0.

Let {ξx, x ∈ J} be a set of random variables that are i.i.d. and distributed

as a random variable ξ. If rx = 1, then ξx denotes the total number of

daughters of individual x. Furthermore, let pk := P(ξ = k).
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Now define the random variables Xn for n ∈ N,

Xn :=
∑

x∈Nn

rx =
∑

x∈Nn−1

rxξx,

as the total number of individuals in generation n. Let X0 be the number of

ancestors, which we have assumed to be 1. {Xn;n ∈ 0∪N} form a homogeneous

Markov chain.

1.4.2 The generating function and the extinction probability

The (probability) generating function of a discrete random variable R [32, 39]

is defined as

fR(s) := E(sR) =

∞
∑

i=0

P(R = i)si

for all s ∈ R≥0 for which this sum converges. If s ≤ 1 the sum converges. The

generating function has useful properties like

f ′
R(1) = E(R),

f ′′
R(1) = E(R(R − 1)),

f
(k)
R (0) = k!P(R = k),

where f
(k)
R (s) is the k-th derivative of fR(s) and f ′

R(1) = lims↑1 f ′
R(s) if the

generating function is not defined for s > 1. The last property shows that

fR(s) determines the distribution of R.

For the analysis of Galton-Watson processes we consider the following gen-

erating functions

f(s) := fξ(s) = E(sξ),

fk(s) := fXk
(s) = E(sXk)

for k ∈ N.
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Note that

fk+1(s) = E(sXk+1)

= E(E(sXk+1 |Xk))

= E([E(sξ)]Xk)

= E([f(s)]Xk)

= fk(f(s))

and by induction we obtain fk+1(s) = f(fk(s)).

The generating function is extremely important in the theory of Galton-

Watson processes, because it is the key to finding the extinction probability

of the process, and it is the quest for extinction probabilities that led to the

development of the theory of branching processes.

Some simple arguments can explain the relation between the generating

function and the extinction probability. Let q be the probability that the

progeny of a single ancestor goes extinct. If the progeny of the ancestor goes

extinct this means that she has no daughters at all or that the progeny of all

of her daughters goes extinct. However, the number of daughters of different

individuals are i.i.d. This brings us to the equation

q =
∞
∑

i=0

piq
i = E(qξ) = f(q). (1.2)

This argument has been used in Chapter 2 to obtain equations to compute

the probability of a major outbreak of an epidemic.

If the offspring mean m := E(ξ) is larger than 1, then the equation above

has two roots in [0, 1]. In that case, it is well known [39] that the extinction

probability is the smallest of the two. The other root is always 1. If m ≤ 1 and

p1 6= 1, then 1 is the only root in [0, 1]. Galton-Watson processes with m = 1

are called critical processes, and if m is greater or less than 1 the processes

are respectively supercritical and subcritical.

An important property of Galton-Watson processes is that with probability

1 they either go extinct or explode, i.e. with probability 1, limk→∞ Xk is either

0 or ∞ (Theorem 2.3.2 of [39]).

In this thesis I mainly consider supercritical branching processes. In Chap-

ter 2 the extinction probability of a special branching process is computed. In
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Chapter 3 moments of the offspring distribution are estimated. The estimators

only converge on the set where the process does not go extinct. In Chapter 5

we use branching processes to determine features like the reproduction ratio

R∗ (a quantity similar to R0, which in turn can be interpreted as the off-

spring mean m) and the extinction probability for the spread of an infection

on random networks.

1.4.3 Martingale convergence

Martingales play an important role in the theory of branching processes, espe-

cially for proving convergence results one can hardly do without. This becomes

apparent in Chapter 3 where we make frequent use of martingales in order to

prove convergence of estimators for the moments of the offspring distribution.

The theorems used is Chapter 3 indirectly use the following basic theorem from

Branching processes (compare this with Theorems 2.7.1 and 2.7.3 of [39]),

Theorem 1.4.1 If E(ξ log(ξ)) < ∞ the martingale Wn := m−nXn converges

almost surely and in L1 norm to a non-degenerate random variable W , which

is 0 if and only if Xn → 0.

1.4.4 Multi-type Galton-Watson processes

In this subsection some results from the theory of multi-type Galton-Watson

branching processes are given (See Chapter 4 of [39]). We consider processes

with only one ancestor. Results can easily be generalised to processes with

more ancestors.

There exist results similar to those of single-type branching processes for

r-type Galton-Watson processes. Let Xn(i) be the vector with the number

of individuals of the different types in generation n, given that the ancestor

is of type i. For 1 ≤ i, j ≤ r, let mij be the mean number of j-daughters of

one i-individual (i.e. mij = E[(X1(i))j ]). This defines an r × r matrix m. We

assume that the matrix m is positively regular, i.e. there exists an n > 0 such

that all entries in mn are strictly positive. Let ρ be the positive eigenvalue of

m which is greater than or equal to all other eigenvalues in absolute value (this

eigenvalue exists by the Perron-Frobenius theorem for irreducible matrices).

Furthermore we use the following vector notation.
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s = [s1, . . . , sr] ∈ [0, 1]r,

k̃ = [k1, . . . kr] ∈ Z
r
+,

0̃ = [0, . . . , 0] ∈ Z
r
+,

f (i)(s) =
∑

k̃

P((X1(i))j = kj ; 1 ≤ j ≤ r)sk1

1 . . . skr
r for 1 ≤ i ≤ r,

f(s) = [f (1)(s), . . . , f (r)(s)].

Let qi be the probability of extinction of the branching process given that

it started with one i individual. From Theorem 4.2.2 of [39] we know that the

[q1, . . . , qr] is the solution of f(s) = s with the smallest Euclidean distance to

the origin. If ρ > 1, then qi < 1 for all i and if ρ ≤ 1, then qi = 1 for all i.

Furthermore, Theorem 4.2.6 of [39] states that if ρ > 1 then ρ−nXn(k) →
Wkv, where v is the left eigenvector of m and Wk is a random variable with the

property that {Wk > 0} differs from {limn→∞ Xn(k) 6= 0̃} only on a null-set.

1.4.5 General branching processes

Galton-Watson processes are used to describe a family tree from the perspec-

tive of generations. However in epidemiology one may be more interested in

the real time development of the number of infective individuals. Usually it

is not possible to observe the size of an “infection generation”, but it may be

possible to observe the number of infective individuals at a certain time.

The theory of branching processes goes further than only Galton-Watson

processes, and it is possible to define a branching process in real time. How-

ever, results are much harder to obtain. The process is defined as follows.

Assign i.i.d. a pair (λx, ηx) to every label x ∈ J . If x is realised in the branch-

ing process, the non negative random variable λx is the life length of individual

x, while ηx is a point process on the non-negative real line denoting the repro-

duction of individual x. Let ηx([t1, t2]) denote the number of points of ηx in

the interval [t1, t2] and use ηx(t) as a shorthand for ηx([0, t]). The total number

of daughters of x is given by ηx(λx) = ηx(∞). From now on, we drop the sub-

script x, if it does not lead to confusion. We define µ([t1, t2]) := E(η([t1, t2]))

and µ(t) := E(η(t)) < 1. For technical reasons we assume that the process is

non-lattice i.e. there is no d > 0 such that
∑∞

k=0 µ({kd}) = µ(∞). Further-

more, we assume that µ(∞) < ∞ and µ(0) < 1. It is proven [39] that this
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last assumption is enough to guarantee that at any given time the number of

living individuals is finite.

We are interested in the number of living individuals younger than a at

time t, Xa
t . The following theorem from [39] can be used:

Theorem 1.4.2 For a general, non-lattice branching process with µ(∞) > 1

and V ar[η(∞)] < ∞, let α be the Malthusian parameter, i.e. the root of

∫ ∞

0
e−αtµ(dt) = 1.

It holds that limt→∞ e−αtXa
t exists a.s. and in mean square. The limit can be

written as

lim
t→∞

e−αtXa
t = Z

∫ a

0
e−αt

P[λ > t]dt/β = Z{1 − E[e−α(a∧t)]}/(αβ),

where β =
∫∞
0 te−αtµ({dt}) is the mothers average age of child bearing and Z

is a random variable such that E[Z] = 1 and P[Z = 0, X∞
t 9 0] = 0.

1.4.6 Approximating epidemics by branching processes

The start of an SIR epidemic in a large population can be approximated by

the start of a continuous time branching process. Ball and Donnelly give some

useful results in [5]. I give one of those results here:

Theorem 1.4.3 There is a probability space (Ω,F , P) on which are defined a

sequence of epidemic models indexed by n (the initial number of susceptibles)

and the approximating branching process, with the following properties:

Let In(t) be the number of infectives at time t in a population of size n. And

X(t) the number of individuals in the branching process at time t.

Denote by A the set on which the branching process X(·) does not go extinct:

A =
{

ω ∈ Ω : lim
t→∞

X(t, ω) 6= 0
}

.

We use Ac to denote the complement of A. Then, as n → ∞,

sup
0≤t≤∞

|In(t) − X(t)| → 0

for P−almost all ω ∈ Ac.
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Further for any c1 < (2α)−1 and c2 > (2α)−1,

sup
0≤t≤c1 log n

|In(t) − X(t)| → 0

and

sup
0≤t≤c2 log n

|In(t) − X(t)| → ∞

as n → ∞, for P−almost all ω ∈ A. Here α is the Malthusian parameter

and µ(t) is the expected number of “children” of an ancestor of the branching

process up to time t as before.

This theorem implies that if the initial number of susceptible individuals

goes to infinity, then the probability of a small outbreak in the population

converge to the probability of extinction in the corresponding branching pro-

cess. Furthermore, if there is a small outbreak, then the distribution of the

final size of the epidemic is in the limit equal to the distribution of the final

size of the corresponding branching process on the extinction set. Finally it is

shown that epidemic processes are well described by branching processes up

to a time of order log n.

1.5 Percolation

Consider a very large orchard with trees planted at regular distances in such

a way that the positions of the trees can be seen as the vertices of the square

lattice. Now assume that one of the trees somewhere near the centre of the

orchard is infected by a disease. The infection has the following characteristics.

Exactly one time unit after being infected a tree will die. As long as a tree is

infectious (i.e. until its death) it will spread infectious material to its nearest

neighbours, which thereby become infected if they were not already so. The

probability that a given nearest neighbour receives infectious material from the

infectious tree is p and infections of nearest neighbours happen independently

of each other.

No infectious material is spread farther than the nearest neighbours. Note

that the infection under consideration has SIR dynamics, where the R state

stands for death. To model the spread of such an infection on a square lat-

tice we use percolation theory. (For a rigorous and extensive treatment of

the subject see [33]). In the percolation model the dynamic character of the
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epidemic spread has been dropped and only the static clusters of the spread

are considered.

1.5.1 The model

The “network” that is mainly studied in percolation theory is the graph where

the vertices (sites, nodes) are the points of the regular lattice Z
d and edges

(bonds, connections) are drawn between any two vertices at Euclidean distance

1. However, other networks can be studied as well. Vertices connected by an

edge are neighbours. Edges are open with probability p independently of each

other. If an edge is not open then it is closed. Examples of question to be

answered are: Is there a positive probability that one can reach infinitely

many vertices from the origin by crossing only open edges? (i.e. is the origin

contained in an infinite open cluster?) How does this probability depend on

p? Does there exists a value pc, strictly between 0 and 1, with the property

that the probability the origin is part of an infinite open cluster is 0 for p < pc

and strictly larger than 0 if p > pc?

The model described above is called bond percolation. We can also consider

site percolation, where vertices are open with probability p independently of

each other. The open cluster of the origin here consists of the vertices that

can be reached by paths consisting of edges with two open end-vertices.

In more mathematical notation we use the measure Pp for the measure

associated to the bond percolation model described above. We drop the sub-

script if we are not immediately interested in how the probability of an event

dependent on p. The probability that the origin is part of an infinite cluster is

denoted by θ(p) := Pp(0 ↔ ∞) and pc := inf{p : θ(p) > 0}. Kesten [45] proved

that for bond percolation on Z
2 the critical probability is given by pc = 1/2.

For site percolation pc on the square lattice is unknown.

In fact we should have mentioned the underlying graph in the above nota-

tion as well, but in general it is clear which graph we consider. Note that we are

using product measure, so generalisations to other graphs are straightforward.

For epidemiological purposes it is more natural to consider a directed un-

derlying graph. In such a graph edges are replaced by directed edges. The

presence of an edge from vertex v1 to vertex v2 does not necessarily imply that

there is an edge from v2 to v1, although in some models (like the one presented

in Chapter 5) only graphs where this implication holds, are considered. It is
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still the product measure that is considered, so whether or not the edge from

v1 to v2 is open is independent of the “state” of the other edges, in particular

it is independent of the state of the edge from v2 to v1. The cluster of the

origin consists of those vertices that can be reached by an open path from the

origin.

1.5.2 A relation between percolation and SIR epidemics

In this subsection we consider undirected graphs. One can explore the static

(bond) percolation cluster of the origin in the following dynamic way. The

construction of a percolation cluster on directed graphs is similar to the con-

struction below. Say that the origin is the generation 0 vertex. Now explore

the states (open or closed) of all the edges with the origin as one of the end-

points. The other endpoints of the explored open edges are the generation

1 vertices. The following step is to explore all the edges with a generation

1 vertex as endpoint, that were not explored before. The endpoints of the

newly explored open edges are the generation 2 vertices, if there was no other

generation number assigned to it yet. If a vertex has a generation number

assigned to it, it keeps that number for ever. The n+1-th step is to explore

the states of all the edges with a generation n vertex as end vertex, that were

not explored before, and say that all the end vertices of the open edges that

had not assigned a generation number to it yet, are generation n+1 vertices.

This procedure will stop in a finite number of steps if and only if the cluster

of the origin is finite.

Now return to the example of the orchard above and explore whether or

not infectious material is transmitted between a pair of trees. First explore

the trees next to the initial infective tree. If infectious material is transmitted

to such a tree from the initial infective tree, it is said to be a generation 1

tree. Now explore whether or not infectious material is transmitted from the

generation 1 trees to its neighbours for the pairs that have not been explored

before. In such a way the whole cluster of infected trees can be explored, and

in fact this exploration procedure is exactly the same as the exploration pro-

cedure of the percolation cluster. So the probability of an infinite outbreak of

the tree-infection in an infinite orchard is θ(p). In particular, if the probability

that a tree transmits infectious material to a given neighbouring tree is larger

than 0.5, there is a positive probability of a large outbreak of the infection.
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Here we use that it does not matter for the size of the cluster whether or

not the edges are directed. Because the second endpoint of an edge of which

the corresponding edge in opposite direction has already been explored is not

susceptible anymore.

The exploration procedure can easily be generalised to more than one (but

finitely many) initial infectives on more general graphs that are locally finite

(i.e. graphs where each vertex has a finite number of neighbours).

1.5.3 Locally dependent percolation

The main extension of percolation theory that is used in this thesis, is “locally

dependent percolation” by which locally dependent random graphs are con-

structed (see Chapter 5 and [25, 51]). We consider percolation on a directed

graph, where each vertex has a finite number of edges starting at it. We in-

troduce randomness at two levels. First we assign “infectious periods” I(v)

independently and identically distributed to each vertex. The second step

is declaring the edges in the graph “open” or “closed” again using product

measure, but in this model the edge from v1 to v2 is open with probability

p(I(v1)) = 1 − exp[−τI(v1)], for some “infection rate” τ . By using the terms

“infectious period” and “infection rate” we already gave away the relation with

epidemic spread. We need this extension because in real-life response to an

infection may differ between individuals. One of the things that may be dif-

ferent is the period that an individual stays infectious. In the epidemic model

corresponding with locally dependent percolation, these infectious periods are

assumed to be i.i.d.

Now define p := E(1 − e−τI) as the marginal probability that a given

bond is open. Kuulasmaa [51] proved that if we compare locally dependent

percolation with the same marginal probabilities that edges are open, a fixed

infectious period gives a worst case scenario, in the sense that the probability of

the origin being in an infinite cluster is maximal. This model corresponds with

bond-percolation. In [25] it is shown that the process where all edges going

out of a vertex are open with probability p and all of them are closed with

probability 1−p gives a “best-case” scenario, in the sense that the probability

of the origin being in an infinite cluster is minimal.
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1.6 An overview of this thesis

The goal of the research presented in this thesis is the development of new

stochastic epidemic models and methods, to extend the existing methods and

to apply models and methods from other areas of probability theory or more

general mathematics to epidemiology. When I started the project The Nether-

lands had just been hit by several outbreaks of infectious diseases of animals,

that have had great impact on animal health and welfare and the economy

of the country. During the outbreaks the government and the farmers took

measures to stop the epidemic and to save animals. One of the effects of the

measures is that the dynamics of the spread changes during the outbreak itself.

Of course this is exactly what the measures are for: reducing the probability

that the infection is transmitted from an infected farm to a susceptible one.

However, this change in the dynamics is hard to incorporate in the existing

models in epidemiology. In Chapter 2 a model is developed that can be used

to study the real-time dynamics of the spread of an infection in varying envi-

ronments. This model has been used to analyse the effects of various control

measures.

The model proposed in Chapter 2 is mainly on branching processes in

varying environments. In that branching model properties of the infection

and the parameters that describe the spread of the infection in a non-varying

environment are used and it is assumed that these parameters are known. In

Chapter 3 the leading question is whether we can obtain the needed parameters

from a branching process if we only have restricted observations?

It is proven in [34] that if we only observe the generation sizes, then we

can only estimate two parameters of the branching process consistently. This

means that even if we observe the process for an infinite period of time, we can

only be sure about two of the parameters. In our case we do not observe the

generation sizes, but only the individuals that stop being in the process (the

farms at which an infection is detected). Surprisingly, with these observations

it is possible to estimate three parameters consistently. One drawback of

the approach is that two of the three estimators converge very slowly and

for practical purposes much too slow. One of the conclusions drawn in this

chapter is that more information is needed than only the “detection times”

of the farm in order to estimate the parameters in the branching model of

infection spread.



1.6 An overview of this thesis 21

In Chapters 2 and 3 real-time processes are studied in large randomly

mixing populations. However, for some purposes the assumption of randomly

mixing populations is strong and seems to be unrealistic. In Chapters 4, 5

and 6 methods are provided to study the spread of infections on networks.

However, the cost of this extra structure is that in the Chapters 5 and 6 we

loose the real-time perspective on the epidemic. In the three chapters on

infection spread on networks some of the properties of the (social) network on

which the infection spreads are captured in the models.

In Chapter 4 the method of pair-approximations is discussed. This method

is used in deterministic models and it can roughly be seen as a model of ran-

domly mixing pairs of individuals in stead of randomly mixing single individ-

uals. Although the intuition behind this model seems to be clear, it is hard

to make all the assumptions and approximations, usually used in pair approx-

imation models, explicit. In this thesis I look at the approximation from the

viewpoint of a probabilist. The model assumptions are made explicit and the

approximations used in the existing models are analysed. Furthermore, the

dynamics of the expectation of the number of infected individuals are described

instead of assuming that this expectation is the same as the actual number of

individuals (which is the assumption in most of the deterministic models in

epidemiology). Furthermore a new proposal for a useful reproduction number

is made.

In Chapter 4 the time dynamics of the epidemic are studied. However

keeping track of this time dynamics makes it necessary to make some extra

assumptions. In Chapter 5 the real-time perspective is replaced by a genera-

tion perspective, where we do not consider the times at which infections took

place, but instead of that we use the “infection tree”, where connections are

the actual infections that took place. Note that for quantities like the prob-

ability of a large outbreak and the expected number of individuals that will

ultimately be infected, the perspective does not matter. Still, mathematical

analysis of the spread of an infection on a general network is far too difficult,

therefore we replace the general network by a random network which has some

features in common with the original network. We determine a reproduction

number and the probability of a major outbreak on the random network.

Replacing networks by random networks for modelling purposes is not

new. However, in the existing models on epidemics on networks, the random

network that is used has no or only few triangles in it. In real-life triangles
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naturally arise in social networks (the friends of my friends are often also my

friends). In Chapter 5 random networks are constructed that do have an a

priori given expected number of triangles.

Finally, in Chapter 6 the relation between a certain type of random net-

works (the generalised random graphs) and epidemic spread is established

and results known from percolation theory (especially the results of Kuulas-

maa [51], see Section 1.5) are generalised to these random graphs in order

to give worst case scenarios for epidemics in heterogeneous populations. The

generalised random graphs are well fit to model the spread of an infection in

a heterogeneous population, where individuals have random “infectivity” and

“susceptibility’ (the weights of the individuals). This chapter can be seen as

an “ansatz” for further research.

1.7 Possible future work in epidemiology

As mentioned above, Chapter 6 gives a foundation for further work on mod-

elling the spread of infections in heterogeneous populations. Especially the

important question on the population effect of vaccines which do not give to-

tal protection and which cause a change in infectivity, can be tackled. Other

future work can be expected from the field of percolation theory.

1.7.1 Long-range percolation

The model described in Section 1.5 is elegant, but it does not give a very

realistic description of the spread of an infection. A possible extension of the

model is long-range percolation. This model has not directly been used in this

thesis, but it is useful to compare this section with the generalised random

graphs of Chapter 6. While edges in generalised random graphs are open

based on the weights of the vertices, in long-range percolation they are open

based on the distance between two vertices. We change the terminology a

bit by replacing “open” by “present” and “closed” by “absent”. Using this

terminology makes it clearer that we are actually constructing a random graph.

The construction is done as follows: We start with a vertex set V in some

metric space. For simplicity we assume V = Z
2 or more general V = Z

d.

For each pair of vertices (v, w) there is an edge joining them with probability

p(‖v−w‖), where ‖v−w‖ denotes the Euclidian distance (any other metric will
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do as well). The presence or absence of an edge is independent of the presence

or absence of other edges, so we still use product measure. It is natural to

assume that p(x) is a decreasing function.

Long-range percolation provides a much richer way of modelling the spread

of infections than ordinary percolation. Of course analysis becomes much

harder as well. In general it is very hard to answer questions on extinction

probabilities. However, questions that are little studied in ordinary percola-

tion arise in long-range percolation. One of those questions is concerned the

diameter of large subgraphs of Z
d. Consider the block BN := [0, N ]d ∩ Z

d.

Edges are added according to the rules of long-range percolation. The ran-

dom graph obtained in this way is called G. Define for v, w ∈ BN , D(v, w)

as the graph distance or chemical distance between v and w, i.e. the minimal

number of edges in G that has to be crossed to go from v to w. If there is no

path from v to w the chemical distance is said to be infinite. The diameter

DN is defined as

DN := max
v,w∈BN

D(v, w). (1.3)

In general one restricts attention to a connected component of the graph,

because DN = ∞ is not informative.

Results on DN and D(v, w) for different regimes of p(x) are given in [15,

16, 18, 24]. Marek Biskup proved the following theorem:

Theorem 1.7.1 Consider long-range percolation on Z
d. Let s ∈ (d, 2d). Let

p(x) = 1 − exp[−q(x)], with

lim
|x|→∞

log q(x)

log |x| = −s (1.4)

and assume that, the random graph G a.s. contains a unique infinite component

C∞. Then for all ǫ > 0,

lim
|x|→∞

P

(

∆ − ǫ ≤ log D(0, x)

log log |x| ≤ ∆ + ǫ|0, x ∈ C∞
)

= 1, (1.5)

where

∆ = ∆(s, d) =
log 2

log(2d/s)
. (1.6)
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In an unpublished paper Biskup [19] has proven that (with the same no-

tation as before) if p(1) = 1 for all ǫ > 0,

lim
|N |→∞

P

(

(log N)∆−ǫ ≤ DN ≤ (log N)∆+ǫ
)

= 1. (1.7)

Here the assumption p(1) = 1 makes sure that the graph is connected.

For epidemiological purposes one might be interested in the number of

vertices within chemical distance n of the origin. We denote this number of

vertices by Zn. A natural question for epidemiologists is, whether it is possi-

ble to have exponential growth of Zn in n for long-range percolation? Only if

that is the case it is sensible to use the concept of R0 in this setting, because

although R0 is defined as the expected number of individuals an initial indi-

vidual infects, it is usually interpreted as the base of the exponential growth

of the generations in the infection tree, e.g. if the generation sizes grow poly-

nomially, the base of the exponential growth will go to 1 and the only sensible

reproduction ratio will be hardly informative. It can be proven that for certain

slowly decreasing p(x) with the property that

∑

v∈Zd

p(|v|) < ∞,

like p(x) = x−d(log x)−2, there exists 1<m1 <m2 such that (m1)
−n

E(Zn)→∞
and (m2)

−n
E(Zn) → 0 [71]. However, this does not imply that there exists an

ǫ > 0 and an m3 > 1 such that there is a positive probability that m−n
3 Zn > ǫ

for all n. In other words, it is possible to generate a long range percolation

cluster such that E(Zn) grows exponentially, but it is not yet proven whether

it is possible that Zn grows exponentially for some function p(x) with positive

probability. It is also not proven whether or not there is a positive probability

that Zn grows exponentially in the regime that is studied in the papers of

Biskup [18, 19], where d < s < 2d. Simple arguments from spatial branching

processes show that for s > 2d, the vertex at graph distance n with the largest

Euclidean distance to the origin grows with probability 1 slower than an for

every a > 1.

The results of the previous paragraph are interesting in interpreting the

results of Chapters 4 and 5, because we made plausible that in long-range

percolation models the reproduction ratio is determined by the tail of p(x),

while the number of triangles in the long-range percolation graph is mainly due
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to short edges and therefore mainly depends on p(x) for small x. However, we

can justify the use of the models in Chapters 4 and 5 by the fact that although

there is a spatial component in social networks, they are not purely spatial.

1.7.2 Continuum percolation

In this thesis the idea of percolation is introduced by the example of the

spread of a disease in an orchard, where the locations of the trees form a

two-dimensional grid. However, we may ask what can be done if an infection

spreading in a forest is considered? In a forest the positions of the trees are

not in any sense “grid like”, but these positions seems to be random.

A mathematical model to study the spread of an infection in a forest is

continuum percolation [55]. Like in locally dependent percolation, there are

two levels of randomness. First, the position of the trees are assumed to be

generated by a random point process in R
d (e.g. a Poisson process in R

2),

after that connections are made between pairs of trees based on the distance

between the trees. There are two major models in continuum percolation, the

Boolean model and the random connection model. In the Boolean model i.i.d.

radii are assigned to the points of the underlying point process and there is

a connection between a pair of points v and w if their distance is less than

rv + rw, where rv and rw are the radii of the points v and w.

In the random connection model the vertices v and w are connected with

probability p(‖v − w‖) where p(·) is a decreasing function. The connections

are made independently of each other.

Continuum percolation seems to be a useful tool to get insight in infection

spread. However, only very few results are known for these models and the

results that are obtained can hardly be used in a quantitative setting. One

of the open problems that is interesting for epidemiological purposes is the

question: “How do percolation probabilities depend on the point process that

is used for the continuum percolation?” More specific: instead of using a

Poisson point process, one might want to use other Markov point processes

[52] to model the positions of the individuals that can spread an infection.

Relevant questions are: “Is it possible to give a worst-case point-process like

we can give a worst case infectious period for locally dependent percolation?”

and “Do attracting or repulsive point processes make percolation more or less

probable?”



26 General introduction

1.8 List of publications

(a) Trapman, P.; Meester, R. and Heesterbeek, J.A.P. (2004), A

branching model for the spread of infectious animal diseases in varying

environments, Journal of Mathematical Biology 49 553-576.

(b) Meester, R. and Trapman, J.P. (2005), Estimation in Branching

Processes with restricted observations, submitted: available at

http://www.math.vu.nl/~ptrapman/ebartikel221205.pdf

(c) Trapman, J.P.(2006), On analytical approaches to epidemics on net-

works, submitted: available at

http://www.math.vu.nl/~ptrapman/TPBpaper.pdf

(d) Trapman, J.P.(2006), A reproduction number for epidemics on net-

works, preprint.

Chapter 2 is based on (a), Chapter 3 is almost identical to (b), Chapter 5

is based on (c) and Chapter 4 is based on (d).



Chapter 2

A branching model for the

spread of infectious animal

diseases in varying

environments

2.1 Introduction

Recent outbreaks of infectious diseases of animals (e.g. classical swine fever

(CSF), foot and mouth disease (FMD) and Avian Influenza (AI)) in Western

Europe have had great impact on the economy, public life and animal health

and welfare in the countries involved. During such an outbreak one would

like to be able to compare the effectiveness of proposed control measures in,

for example, their ability to reduce the expected final size and the expected

duration. Typical for the strategies aimed at stopping outbreaks of impor-

tant diseases of farm animals, is that infected herds are removed from the

population by culling upon detection. A second characteristic is that due to

increasing quantity and quality of the imposed control measures, the environ-

ment that the infectious agent experiences, is changing. By this we mean that

consecutive measures can make, for example, contact opportunities between

herds different in different phases of the outbreak, or can make the infectious

period, or rate with which infectivity is produced, differ for farms infected at

different times.

27
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Mathematical methods for computing outbreak characteristics such as ex-

pected final size and expected duration in most cases assume a constant en-

vironment in that the control measures are not compounded in time and do

not lead to changes in the rates that govern epidemic spread (see e.g. [27]).

In this chapter we aim to develop stochastic methods, based on the theory

of branching processes, which allow us to compare the effectiveness of control

strategies during such outbreaks where the environment is varying because of

changes in subsequent measures of control.

Much work has already been done to describe the spread of classical swine

fever (see e.g. [49, 56, 69] and Chapter 3) and foot and mouth disease (see

e.g. [29, 30, 40, 42]). In this chapter, we will model the spread of infections

in a much more analytic way than is done in earlier models [29, 30, 42, 49].

We use an iterative method that computes properties of the spread, like the

probability of a major outbreak of the infection and the final size of an epidemic

(i.e. the total number of infected herds), very efficiently. Furthermore, we can

derive some properties of the duration of the epidemic. We allow for different

types of herd.

In our model, it is essential that once the infection in a herd is detected,

the whole herd will be culled. Therefore, our main interest is the number of

infected herds. However, the number of infected animals in an infective herd is

important for determining the infectivity of a herd and the distribution of the

detection times. We model the spread of the infection at two levels, namely

the spread of the infection within a herd and the spread of infection between

herds; both are described by a stochastic process. The distribution of the

number of infective animals within a herd is incorporated in the model for the

spread of the infection among herds.

We use a special branching process to describe the spread of the infection

among herds. The parameters of this branching process depend on the time

since the infection of the herd and on the environment, which is determined

by the real time (as opposite to the time since the infection of a specific

herd). Using branching processes to describe epidemics is of course not new

(see e.g. Section 1.4 and [39]), but no theory exists that gives short-term

predictions (as opposed to asymptotics) for general branching processes in

varying environments, with an age-dependent “birth rate”.
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For computations it is necessary that after a certain moment the environ-

ment is constant. To achieve this we assume that after some time no new

measures will be taken and the effects of all measures taken in the past will

either be constant or absent. In other words, although the values of the pa-

rameters may differ from those before certain measures were taken, the values

are assumed to be constant after a given moment in time.

Our model can be used to predict the effects of various control measures

and strategies during an ongoing outbreak. Meester et al. gave a method

to estimate the parameters from the data available during an outbreak ([56]

and Chapter 3). We consider measures like single vaccination of all herds of a

certain type, a total transport ban or killing of animals just after birth. Some of

these measures cause a varying environment. The fraction susceptible animals

in a herd or the fraction susceptible herds of the total number of herds may be

varying and so the infection rate may vary in time too. In fighting outbreaks,

additional measures will be implemented as soon as present measures turn

out to be insufficient. A change in measure will change the values of the

parameters. We assume that the changes in the environment are deterministic.

We develop the theory using a classical swine fever outbreak in herds of

pigs as motivating example throughout. In this chapter we use data of classical

swine fever (CSF) for our computations. These are the same as the input data

Klinkenberg et al. used in [49].

2.2 Spread of the infection within a herd

2.2.1 The model

As mentioned in the introduction, we first need to model the spread of the

infection within one herd, since the infectivity of an infective herd and also

the time at which the infection is detected in a certain herd, depend on the

number of infected animals in that herd. We use t for the time elapsed since

the first measures were implemented. The variable τ is used for describing

the spread of the infection within the herds, it is the time since infection of

a particular herd and therefore relative. The τ -clock starts ticking at the

moment the first animal in the herd becomes infected. From now on, we will

call τ the “infection-age” or “age” of the herd.
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We use only four types of disease-related parameters:

λ: The infection rate of individual animals within a herd.

µ: The recovery rate of individual animals in a herd.

α: The per capita detection rate of infected animals within a herd.

β: The rate at which one infected animal infects susceptible herds.

In this section we only use the first two, in the next section we also use α and

β.

We assume that as soon as an infection at a particular herd is detected, the

whole herd will be culled instantaneously. Further we assume that the rate of

detection is proportional to the number of infected animals at infection-age τ ,

I(τ), i.e. the detection rate is αI(τ), where α does not depend on the infection-

age. We assume that the infection in a herd develops as an autonomous process

until detection. The number of infected animals in a herd therefore depends

only on the infection-age τ , and not on the absolute time t.

We describe the number of infective animals by an ordinary birth and death

process [32]. Writing pi(τ) = P(I(τ) = i) for the probability of i infective

animals in a herd at infection-age τ and δij for the Kronecker Delta function

(i.e. δij = 1 if i = j and δij = 0 otherwise), we have (see e.g. [32]):

pi(0) = δi1,

dp0(τ)

dτ
= µp1(τ),

dp1(τ)

dτ
= −(λ + µ)p1(τ) + 2µp2(τ),

dpi(τ)

dτ
= −i(λ + µ)pi(τ) + (i − 1)λpi−1(τ) + (i + 1)µpi+1(τ) ∀ i ≥ 2.

Solving these differential equations leads to:

p0(τ) =
erτ − 1

Rerτ − 1
,

pi(τ) = (1 − p0(τ))(1 − Rp0(τ))(Rp0(τ))i−1 ∀ i ≥ 1,

where r = λ − µ and R = λ
µ is the reproduction ratio. We assume λ > µ,

otherwise the infection will only cause a minor outbreak within a herd and

between herd infections are very rare.
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Hence, conditioned on the event that the epidemic in a herd does not

go extinct before age τ , i.e. I(τ) > 0, I(τ) is geometrically distributed with

parameter (1 − Rp0(τ)) = R−1
Rerτ−1 , which is small for large τ .

The ceiling of an exponentially distributed random variable with parameter

x is a geometric random variable with parameter 1− e−x. For small x we can

use the approximation 1− e−x ≈ x. Furthermore, on the set {I(τ) > 0}, I(τ)

is large with high probability for large τ . Therefore, for large τ , I(τ) can be

approximated by H̄(τ), where H̄(τ) is an exponential random variable with

parameter R−1
Rerτ−1 .

Further, if X is exponentially distributed with parameter x, than cX is

exponentially distributed with parameter x/c. Therefore, H̄(τ) is distributed

as H(erτ − 1
R), where H is an exponential random variable with parameter

R−1
R . For large τ , the term 1

R is negligible compared to erτ . So we use the

approximation:

I(τ) ≈ Herτ , (2.1)

where the approximation is in the distribution sense.

We can interpret this approximation as follows, using the terminology of

branching processes (Section 1.4). The random variable H is due to the ran-

dom character of the start of the outbreak in a herd, when only a few animals

are infective. If the disease will not go extinct, after the initial phase many

animals are infected in the herd, each of which causes an expected offspring

of er new infections per time unit. Hence the growth rate is eventually almost

deterministic due to the law of large numbers, but the initial dynamics of the

spread are viewed as random. We also use this approximation for small τ .

We use the word infective for animals or herds that are able to spread the

infection. We use the notation I(τ ;h) for the number of infective animals in

a particular herd, with H = h given.

2.2.2 Discussion of the within-herd model

1. We assume that the infection and recovery rate of individual infected ani-

mals are independent of time and age.

2. It is not necessary to use a birth and death process to describe the spread

within a herd. We may also use other processes, for example the one dimen-

sional nearest neighbour contact process (in this chapter called the contact

process). In this model we think of a situation where all animals are posi-
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tioned in a row and do not change position. Each animal can only infect

its two nearest neighbours. We assume that recovered animals with two in-

fective neighbours are re-infected immediately. Therefore, we only consider

the animals at the edge of a row of infective animals. We still assume that

the recovery rate is µ. An infective animal infects each of its susceptible

neighbours with rate λ. Now we have:

pi(0) = δi1,

dp0(τ)

dτ
= µp1(τ),

dp1(τ)

dτ
= −(2λ + µ)p1(τ) + 2µp2(τ),

dpi(τ)

dτ
= 2(−(λ + µ)pi(τ) + λpi−1(τ) + µpi+1(τ)) ∀ i ≥ 2.

We denote the number of infectives by I(τ). One can show that

E(I(τ)|I(τ) > 0) = 2rτ + o(τ). Further we can show that

Var(I(τ)|I(τ) > 0) = o(τ2). This implies that for I(τ) > 0 we have
I(τ)

E(I(τ)|I(τ)>0) → 1. So, in contrast to the birth and death model, we may ap-

proximate the random variable I(τ) for large τ by a deterministic variable:

2rτ .

3. For infections in different types of herds, we may need different models for

the within-herd spread. Some animals live in small compartments in a row.

Other animals live in large herds where all susceptible animals are equally

likely to be infected by one infective animal. For the former we use the

contact model and for the latter we use the birth and death model.

4. In the original model, the number of animals in one herd is assumed to

be very large compared to the number of infected animals. Therefore, we

assume that the contact rate between infected and susceptible animals is

constant, and hence so is the birth rate. From data of outbreaks of CSF

in the past, we can see that the number of infected animals until detection

of the infection within the herd, is small compared to the total number of

animals in the herd, so these assumptions seem justified in this case [69].

5. The within-herd infection and recovery parameters λ and µ can be measured

experimentally or from data of past or on-going outbreaks.

The parameter α depends on the development of symptoms of infected an-

imals and how attentive the farmers are. Therefore, in reality this α will
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change at the first detection of the infection in the country (or in neigh-

bouring countries), due to higher awareness of farmers and veterinarians.

It is very difficult to estimate α for the period before the time of the first

detection. For the time after the first detection, we can estimate α from

data of past outbreaks in the same area or try to estimate this parameter

during the ongoing epidemic. Using data from past outbreaks is dangerous,

because the characteristics of the virus and of the farming practice may

have changed. Estimation of the parameters, during an on-going outbreak

is done by Meester et al. [56] and in Chapter 3. This method has some

problems, e.g. the time necessary to get enough data for a reliable esti-

mate. Another problem is that in [56] and in Chapter 3 the infectivity of a

herd does not depend on the “age” of the herd. This independence of age

is essential for the estimations made.

For our model it is not necessary that α is constant in time. It is possible

to extend the model and use α(t) instead of α. For varying values of α we

need to use the model for varying environments.

6. We assume that culling is the only measure which influences the within-

herd spread of the infection. Vaccination is assumed to show no effect on

the spread in the herd. For CSF this assumption is justified by the fact

that vaccination will lead to immunity only after two weeks. Therefore,

during this first two weeks the spread of the infection is not affected by this

measure. For the time after these two weeks, we assume that we can use the

same speed of propagation of the infection, for computational reasons. The

approximation leads to results that are conservative, that is, too pessimistic.

7. We do not take characteristics of individual animals into account that might

cause the individuals to differ in infectivity, susceptibility or contact pattern.

Often age and type of species can have a substantial influence. For CSF

this implies we do not distinguish between the age of animals in one herd.

The detection rate and infectivity of herds with many young animals does

not significantly differ from the detection rate and infectivity of herds with

especially older animals [49, 69].

8. We also use the approximation I(τ) ≈ Herτ for small τ on {I(τ) > 0}. This

is not correct, but due to the small number of infective animals at small τ ,

the probability that the disease is detected at small τ , will be small too. We

will later see that the number of infections in that period is small too, so
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the overall influence of the between-herd-events (infections and detections)

while the herd is “young”, is small.

9. For classical swine fever, the spread of the infection seems to be well de-

scribed with a birth and death model. For this reason the parameter values

for the contact model were not estimated and we did not do computations

in this model. We included the description of the contact model because

other infectious diseases may spread according to this model. We note that

including this model makes computations easier than in the case of the birth

and death model, because we do not have to deal with a random variable

for the within-herd spread. So if we have estimated the values of the pa-

rameters, we can easily estimate the same properties as we do for the birth

and death model.

2.3 Spread of the infection between herds

2.3.1 The model for non-varying environments

In this section, we consider classical swine fever as a concrete example.

We distinguish between two types of farms (or herds): multipliers (m) are

roughly speaking farms where young piglets are born, and finishers (f) are

farms that buy piglets and fatten them. The parameter pm denotes the frac-

tion multipliers of the total number of herds and pf is the fraction finishers.

We assume that within either of these types, a birth and death model (with

the same parameters for both types) describes the within-herd spread. The

infectivity per non-transport contact of both types of herds develops in the

same way too. However, transport contacts are only allowed from multipli-

ers to finishers. Therefore, we take a larger infection rate for contacts from

multipliers to finishers.

We define Aξ(t, τ ;h) as the infectivity of a herd (the rate at which contacts

are made with other herds) at time t, while the herd was infected τ time units

ago and with H = h, where ξ is a two-dimensional vector, denoting the two

types of herds involved in the contact, so that ξ can be ff , fm, mm or mf .

When no measures are implemented, Aξ(t, τ ; h) is proportional to the number

of infected animals in the herd:

Aξ(t, τ ;h) = βξI(τ ;h).



2.3 Spread of the infection between herds 35

Here βξ is a constant depending only on ξ. Because the non-transport contacts

all happen at the same rate we can define βm := βfm = βmm. Further we write

βf := βff and βmf is βf plus some additional term for infections caused by

transport of piglets from multipliers to finishers. Because all non-transport

infections happen at the same rate the ratio βm : βf is exactly the ratio of the

multipliers to the finishers. Note that the infectivity does not depend on the

absolute time t (if there are no measures implemented).

We define β by β := βm + βf . So βm = pmβ and βf = pfβ. In order to

consider transport contacts we also define βmf = pfβ + βtr, where βtr is the

proportionality factor of the part of the infection rate that is due to transport

contacts. There is no term pf in front of βtr, because all transport contacts

are from multipliers to finishers. We assume that the total number of herds is

very large; in our computations, we assume it infinite.

We already know from the definition of α in the previous section, that the

detection-rate is given by αI(τ ; h) = αherτ . From this we can deduce (See

page 113 of [27]), for given h, the probability that an infected herd of age τ is

not yet detected, pnd(τ ; h):

pnd(τ ;h) = e−
∫ τ

0
αhersds = e−

α
r

h(erτ−1) (2.2)

In the case where no measures are implemented, the expected number

of infected multipliers by one infective multiplier up to age τ , for given h,

µmm(τ ;h), is given by:

µmm(τ ;h) =
βm

α
(1 − e−

αh
r

(erτ−1)). (2.3)

To see this, we first consider only one type of herd. We prove the following

proposition:

Proposition 2.3.1 Suppose that the infection and detection rate are propor-

tional to the number of infective animals in a herd and that the environment

is non-varying. Then the distribution of the size of the progeny of an infective

herd does not depend on the number of infective animals in that herd at the

start of the process.
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Proof. The infection and the detection rate are proportional to the number

of infective animals in a herd. The ratio of infection rate and detection rate

is given by β : α. We call the detection of the herd and the infections by

this herd events. The probability that an event is an infection is β
α+β and

a detection α
α+β . Therefore, the number of events, including detection, is

described by a geometric random variable with parameter α
α+β . Therefore,

the direct offspring distribution does not depend on the size at the start of the

process. Moreover, the same holds for the offspring of this direct offspring. ✷

In the same way we can prove that the size of the future offspring of an infective

herd is independent of its age.

To prove (2.3), consider two types of herds. Let Nmm, be the number

of multipliers infected by one infective multiplier. We note that Nmm + 1 is

distributed as a geometric random variable with parameter α
α+βm

(1 is added

because the final event will be the only detection, and the number of events is

described by a geometric random variable, where an event is defined as in the

proof of the proposition). So the expected number of future infections of an

infective multiplier is βm

α , at all times. The probability that an infective herd

is not yet detected at age τ is given by e−
α
r

h(erτ−1). From this and Proposition

2.3.1 we deduce that the expected number of infections after age τ is given by
βm

α e−
α
r

h(erτ−1). By subtracting the expected number of infections after age τ

from the expected total number of infections by one herd we get the expected

number of infections until age τ . In the same way we can deduce

µmf =
βmf

α
(1 − e−

αh
r

(erτ−1)),

µfm =
βm

α
(1 − e−

αh
r

(erτ−1)),

µff =
βf

α
(1 − e−

αh
r

(erτ−1)).

Now consider the probability pf
kl that a finisher infects k multipliers and

l finishers. All events (infections of multipliers, infections of finishers and

detection of an infected herd) happen at a rate proportional to the number of

infective animals in the infective herd. Therefore, the proportions of the rates

stay the same. First, we only consider infections and detections, and we do

not yet consider the different types of herds infected. Detection occurs with

rate αherτ and infection occurs with rate βmherτ + βfherτ = βherτ . As in
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the proof of Proposition 2.3.1 we can describe the total number of events, D̄

say, by an ordinary geometric random variable with parameter α
α+β . So the

probability that n+1 events occur, i.e. n herds are infected by one finisher, is

P(D̄ = n + 1) =
( α

α + β

)( β

α + β

)n

If in total n herds are infected by one finisher, we know by the lack-of-

memory property of the infection process that the number of infected multi-

pliers, Nfm, is binomially distributed with parameters n and βm

β . That is,

P(Nfm = k|D̄ = n + 1) =

(

n

k

)

(βm

β

)k(βf

β

)n−k
.

Note that

pf
kl = P(Nfm = k, Nff = l)

= P(Nfm = k|D̄ = k + l + 1)P(D̄ = k + l + 1)

=

(

k + l

k

)

(
βm

β
)k(

βf

β
)l(

α

α + β
)(

β

α + β
)k+l.

The generating function of {pf
kl} is now given by

gf (s1, s2) =

∞
∑

k=0

∞
∑

l=0

pf
kls

k
1s

l
2 =

α

α + β − βms1 − βfs2
.

We can deduce

gm(s1, s2) =
α

α + β + βtr − βms1 − (βf + βtr)s2

in the same way. Note that we did not need the distribution of the random

variable H, we only needed the proportionality factors of the parameters.

In the special case where infection and detection rates are proportional

and these rates are known for the time before the first detection, we can also

give the distribution function of the number of infective herds at the time of

the first detection. This distribution function is the same as the distribution

function of the number of direct infections by one herd, because it still holds

that an event is a detection with probability α
α+β and the probabilities of
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infections of finishers and multipliers are respectively
βf

α+β and βm

α+β .

We are also interested in the probability that a herd infects k multipliers

and l finishers, before the herd reaches age τ . We consider a finisher. We write

P(Nfm(τ ;h) = k, Nff (τ ;h) = l) for this probability when the detection age τd

and H = h are given. The infections before age τd occur independently of each

other and have the lack of memory property. Therefore, for τ ≤ τd the times

of infections of the different types of herds are described by an inhomogeneous

Poisson-process with rate βξherτ . So the number of infections until age τ is

Poisson distributed with parameter

hβξ

∫ τ

0
ersds = hβξ(e

rτ − 1).

Now we see:

P(Nfm(τ ;h) = k,Nff (τ ;h) = l) =
(hβm

r
(erτ − 1))k

k!

(h
βf

r
(erτ − 1))l

l!
e−h

β
r
(erτ−1).

Note that now we know the life length distribution, the expected number of

infections by a herd up to age τ and the underlying Galton-Watson process of

the branching process, we can use the general theory of branching processes to

determine some other properties, like the expected duration of the outbreak.

(Chapters 2 and 6 of [39]).

2.3.2 Discussion

1. We use a branching idea to describe the spread of the infection among

different herds. For this approach, we assume that one herd has contacts

with many other herds. In our model we do not take spatial distribution

of the herds into account. As long as there are many herds in an area, the

local exhaustion of susceptible herds can be ignored. If the outbreak is in an

advanced state, however, local depletion of susceptible herds (either by the

epidemic progression or by so-called pre-emptive culling) will certainly play

a role. As long as there are relatively few infected herds in a neighbourhood,

(i.e. a group of herds that have contacts with each other) we assume that

the infection rate does not directly depend on this number of infected herds.

Measures like ring-culling (culling of all herds within a certain distance of

an infected herd) and ring vaccination cannot be considered in our model.



2.3 Spread of the infection between herds 39

2. We distinguish between two types of contacts, transport contacts and indi-

rect contacts. We have assumed that the indirect contacts are the same for

all herds. Transport contacts are only from multipliers to finishers. Indirect

contacts include transport of the virus by wind, by visits from an infective

herd to a susceptible herd etc. Transport contacts are transports of infected

animals from a multiplier to a finisher.

3. We simplify the model by assuming that the measures are implemented at

the time of the introduction of the virus in the population (or, in other

words, that the infection is detected immediately). It would be desirable to

implement the measures from the moment of first detection. It is difficult,

however, to estimate parameters like α and β for the time before the first

detection, when awareness is not yet heightened by announcement of the

outbreak, and when increased hygienic measures on farms are not yet taken.

If we know the value of the parameters of the model for the period between

introduction and first detection, we are able to estimate the probability of

extinction and the expected final size of such a situation. However, these

calculations still require that we use the information from our simplified

model, where measures are started directly upon introduction.

4. The function µmm(τ ;h) is not required for our calculations of the final size

and the probability of extinction. The reason why we include this function

in our chapter is that this function is interesting in its own right. It gives

the expected offspring τ time units after an infective herd is infected itself.

In practical applications, it is possible that by contact tracing some herd

is suspected of being infected τ time-units ago. This µmm(τ ;h) is then

the expected number of infected multipliers by the suspected herd, if that

suspected herd is a multiplier and if it is really infected.

5. The proportionality of the infection rate to the detection rate is essential

in this section. Due to this property, we can find an underlying ordinary

Galton-Watson process. Without this proportionality, we may ask whether

it is possible to give a nice expression for the generating function? We also

lose the independence of h in the generating function, which gives some

computational problems.

6. Knowing the generating function of the number of infected herds at the

first detection is important, because if in some way it is possible to esti-

mate parameters for the time before the first detection, we can use the
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distribution function of the number of infective herds at the time measures

are implemented. We do not have the ‘ages’ of the infective herds at the

first detection, but we can find a worst-case-scenario, by finding what age of

a herd at t = 0 leads to the biggest offspring. If the detection and infection

rate does not depend in the same way on the number of infected animals,

we cannot deduce the distribution function at the time of the first detection

in this way.

2.4 The model for varying environments

2.4.1 The approach

In the previous section, we considered the model for the spread of an infectious

disease in non-varying environments. We heavily used the proportionality of

the infection and detection rate of herds. This proportionality does not hold

in a varying environment. Therefore, we need a different approach.

We consider only one type of herd; the multi-type model is a straightfor-

ward generalisation of this. We assume that the spread within a herd is not

influenced by the state of the environment. The detection rate only depends

on the number of infected animals in a herd and is written as αI(τ ;h), where

I(τ ;h) is the number of infected animals as described in Section 2.2. In this

section, we assume that the within-herd spread is described by a birth-and-

death process. So I(τ ;h) = herτ . We can easily deal with other descriptions

of the within-herd spread.

The infection rate may change due to control measures. Some measures

lead to an infection rate that only changes finitely many times, other measures

cause a continuously varying infection rate. We assume that in either case the

environment is constant after some given time, t = T . That is the moment

that measures have no more added value and therefore do not lead to new

changes in the values of the model parameters. The infection rate is given by

A(t, τ ;h) = βφ(t)I(τ ;h),

where φ(t) describes the effects of the measures implemented. We assume that

φ(t) is deterministic. Because the environment does not influence the within-

herd spread, φ(t) does not depend on the age τ . For the rest of this section it

is assumed that φ(t) = 1 for t ≥ T .
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The assumption of constant environment after some given time is often

realistic. With a vaccination for instance, we know the moment that all vacci-

nated animals no longer live. In other control measures, like a transport ban,

we can vary the time T and compute the effects.

We are looking for the probability of extinction of the infection, the ex-

pected final size and a generating function for the number of infected herds at

a certain moment. To do this we use a discrete approximation of φ(t), so we

have only a finite number of changes. Because the environment is non-varying

after a certain moment, we can use the ordinary theory of branching processes

to get all interesting properties for herds infected after t = T . By using back-

ward iteration we will find the relevant properties of the epidemic for a herd

infected in another interval, because these properties only depend on what

happens in the intervals after the interval of infection. We can compute these

properties for a herd that was already infected at t = 0.

2.4.2 The probability of extinction

Because an infected herd will almost surely be detected in finite time, the

probability of extinction of the “progeny” of an infected herd, x, is equal to

the probability of extinction of the progeny of all the herds infected by x.

The probability of extinction of the “progeny” of a herd infected at time t, is

denoted by q(t). So:

q(t) = E(
∏

i

q(ti)) (2.4)

(see Section 1.4). Here, the times ti are the times that herds are infected by

the herd infected at time t; the expectation is over these random times of

infection. The empty product is defined as 1.

In order to make computations possible we use a discrete time approxima-

tion. We divide the positive real line into N+1 intervals, labeled 1, 2, · · · , N+1.

The interval (0, T ] is divided into N intervals of equal length, where t is in

interval i, if t ∈ ((i− 1) T
N , i T

N ], 1 ≤ i ≤ N . The final interval N + 1 is (T,∞);

in this final interval all the model parameters are constant. The time t = 0,

the moment of the first infection, is not included in one of the intervals, we

treat this point in our notation as interval 0.

If the function φ(t) is discontinuous we may choose another discretisation,

so that the discontinuities are on the boundaries of intervals. It is not essential
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that all intervals have the same length.

For t in interval i, 1 ≤ i ≤ N , q(t) and φ(t) are approximately constant.

In our “discrete time model” we will write q(i) and φ(i) for the value of q and

φ in interval i. For instance, we can take φ(i) to be the value of φ(t) at the

midpoint of interval i. Because we accept discontinuities in φ(t), this function

may differ significantly for neighbouring intervals.

Now, with n(i, j) the number of infections in interval j, due to one herd

infected in interval i, we can write (2.4) as:

q(i) = E

(

q(i)n(i,i)q(i + 1)n(i,i+1) · · · q(N + 1)n(i,N+1)
)

, (2.5)

Now, the expectation is over the numbers of infections in each interval. q(0) is

the probability of extinction of the progeny of the herd infected at time t = 0.

We assume that all infections and detections take place on the midpoint of

the interval, except of course for the events in the final interval, because there

we can compute everything explicitly.

Given that a herd is not yet detected and H = h, the probability of

infection in a certain interval by that herd does not depend on the number of

infections in previous intervals. Consider a herd infected in interval i, denote

by {D(i) = k} the event that this particular herd is detected in interval k.

After detection no further infections occur. Define n(i, l, k;h) as the number

of infections in interval l due to a particular herd infected in interval i, while

H = h and the interval of detection k, are given. Now, by using independence

we have (writing PH for the distribution function of H.)

q(i) =

∫ N+1
∑

k=i

E(q(i)n(i,i,k;h)q(i + 1)n(i,i+1,k;h) · · ·

· · · q(k)n(i,k,k;h)|D(i) = k)P(D(i) = k|H = h)dPH

=

∫ N+1
∑

k=i

E

(

k
∏

l=i

(q(l)n(i,l,k;h)|D(i) = k)

)

P(D(i) = k|H = h)dPH

=

∫ N+1
∑

k=i

k
∏

l=i

E(q(l)n(i,l,k;h)|D(i) = k)P(D(i) = k|H = h)dPH .

Here the expectation inside the integral depends on h, contrary to the non-

varying environment case. We condition on the event {H = h}, which is

allowed by Section 4.6 of [32]. Note that the number of infections in a certain
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interval is not independent of the interval of detection. It does not make any

difference for the number of infections whether a herd is detected shortly after

the considered interval or very long after that, but it does make a difference

whether the detection is in the considered interval itself. So p(n; i, l, k;h) :=

P(n(i, l, k;h) = n) depends on the detection interval k. For computational

reasons we suppose in this discrete model that for i ≤ N , p(0; i, i, k; h) = 1.

We write pdet(i, k;h) for Ph(D(i) = k). We are interested in the probability of

extinction of a herd infected at time 0, q := q(0). We can easily compute all

these probabilities in our model.

Because we assume a birth-and-death process for the within-herd spread,

we have to take the random character of H into account. Doing this leads to

the following formulae:

q(i) =

N+1
∑

k=i

∫ ∞

0

R − 1

R
e−h R−1

R (E(q(i)n(i,i,k;h)) · · ·E(q(k)n(i,k,k;h)))pdet(i, k, h)dh.

Here we have conditioned on the time of detection and on h. We can rewrite

this formula as:

q(i) =

N+1
∑

k=i

∫ ∞

0

R − 1

R
e−h R−1

R (

k
∏

l=i+1

(

∞
∑

n=0

p(n; i, l, k; h)q(l)n))pdet(i, k; h)dh.

Here q(i) depends on q(l) for l > i. As mentioned before, we can compute

q(N + 1) by the ordinary theory of branching processes. We use backward

iteration to compute q(0).

Note that we also know the probability of extinction for herds infected after

time t = 0. If we estimate (for example by contact tracing) the moment of

infection of a certain herd, we can use this information to improve predictions.

2.4.3 The expected final size of the epidemic

In almost the same way as we calculated the probability of extinction, we can

calculate the expected final size of the epidemic, i.e. the expected total number

of infected herds, G. This will also be done for only one type of herd.

If q < 1, there is a positive probability for the final size to be infinite

and therefore the expected final size will always be infinite; so to have the

possibility of a finite expected final size we assume q = 1. We denote by G(t)
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the size of the progeny of a particular herd, infected at time t (including this

ancestor) and write G(0) = G. The expected number of herds in the progeny

of a given infected herd, including that infected herd itself, is 1 plus the sum

of the expected size of the progenies of all herds directly infected by this herd,

i.e.

E(G(t)) = 1 +
∑

i

E(G(ti)),

where the ti’s are again the random times at which infections by the element,

infected on time t, occur. The empty sum is defined to be equal to 0.

In the same way as we deduced the formulae for q(i) we deduce the formulae

for E(G(i)) in the discrete approximation. We write Ḡ(i) for E(G(i)):

Ḡ(i) = 1 +

N+1
∑

k=i

∫ ∞

0

R − 1

R
e−h R−1

R E(n(i, i, k;h))Ḡ(i) + · · ·

· · · + E(n(i, k, k; h))Ḡ(k)pdet(i, k;h)dh

= 1 +

∫ ∞

0

R − 1

R
e−h R−1

R

N+1
∑

k=i

(

k
∑

l=i

(

∞
∑

n=0

np(n; i, l, k; h)Ḡ(l)))pdet(i, k;h)dh

For α > β, Ḡ(N +1) is known from the ordinary theory of branching processes

(see e.g. [39]). For φ(N + 1) = 1, Ḡ(N + 1) = α
α−β .

2.4.4 A generating function for the number of infective herds

We will give the generating function for the number of infective and infected

(infective plus removed) herds at any given moment. Here we will consider

the generating function for the infective and infected herds at time t = T , the

time after which the parameter values are considered to be constant.

Remember that the age of an infective herd only influences the number of

infective animals in that herd. From Proposition 1 in Section 3.1, we know that

the expected direct offspring of a herd, born after t = T , is independent of the

age of that herd, given the herd is not yet detected at that time. Furthermore

we know that the size of the offspring (infected after time t = T ) of a herd,

infective at that time, does not depend on the offspring of other herds that

are infective at time t = T . So for the distribution of the number of infections

after time t = T only the distribution of the number of infective herds at that

time is important.
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By using Proposition 1 and the theory for ordinary branching processes, we

can compute everything we want to know. We will determine the distribution

of X, the number of infective herds at time t = T . Xi is the number of infective

herds at time T , from the progeny of one particular herd infected in interval

i. (Here the herd itself is a part of its own progeny.) We denote X0 by X.

We also use Yi for the number of infected herds in the progeny of a particular

herd infected in interval i, that is detected before time t = T . The generating

function of the distribution of Xi and Yi is

g̃i(s1, s2) = E(sXi

1 sYi

2 ) =

∫ ∞

0

R − 1

R
e−h R−1

R (E(sXi

1 sYi

2 |h))dh.

We write g̃i(s1, s2;h) = E(sXi

1 sYi

2 |h).

We again assume that a herd does not infect other herds in the interval

wherein it becomes infected itself. So:

g̃i(s1, s2; h) = E(sXi

1 sYi

2 |h)

=
N+1
∑

k=i

pdet(i, k;h)E(sXi

1 sYi

2 |D(i) = k, h)

= s2

N
∑

k=i

pdet(i, k;h)E(

k
∏

l=i

g̃l(s1, s2)
n(i,l,k;h)) +

+s1pdet(i,N + 1;h)E(
N
∏

l=i

g̃l(s1, s2)
n(i,l,N+1;h))

= s2

N
∑

k=i

pdet(i, k;h)
k
∏

l=i

E(g̃l(s1, s2)
n(i,l,k;h)) +

+s1pdet(i,N + 1;h)
N
∏

l=i

E(g̃l(s1, s2)
n(i,l,N+1;h))

= s2

N
∑

k=i

pdet(i, k;h)
k
∏

l=i+1

∞
∑

n=0

p(n; i, j, k; h)(g̃l(s1, s2))
n +

+s1pdet(i,N + 1;h)

N
∏

l=i+1

(

∞
∑

n=0

p(n; i, l, N + 1;h)(g̃l(s1, s2))
n).

For interval N we have g̃N (s1, s2) = s2pdet(N,N) + s1pdet(N,N + 1).
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Now we can determine g̃0(s1, s2) point wise. Note that we only need to

compute g̃0(s1, s2) in m + 1 points to give a good approximation of the first

m derivatives of this function for a certain point. With this derivatives we

are able to compute the first m moments of the size at time t = T or to

approximate P(X = n) for all n ≤ m.

With this generating function we can also compute the probability of ex-

tinction and the expected final size of the epidemic. We can use the same

reasoning as before. The progenies of all herds, infective at time t = T have

to go extinct. This occurs with probability qX0 . So the probability of ex-

tinction is
∑∞

k=0 P(X0 = k)(q(N + 1))k = g̃0(q(N + 1), 1). Note that with

these s1 and s2 the model is exactly the same as the model in Section 2.4.2.

For the expected final size we add the expected number of infected herds, al-

ready detected, to the expected size of the progeny of all the infective herds

at time t = T (again including the herds infective at that time). This is
d

ds1
g0(s1, 1)|s1=1Ḡ(N + 1) + d

ds2
g0(1, s2)|s2=1. We can only use this property

if after time t = T the infection and detection rate are proportional to each

other, because otherwise we need to know the ages of the infective herds at

time t = T .

In a non-varying environment, we know for q = 1 the “speed” at which

P(Z(t) > 0) decreases, for t → ∞, where Z(t) is the number of infective

individuals at time t, descending from one individual infected at time t = 0

[39]. So we can give an upper bound for the probability the disease is already

extinct at a certain time. We do this by assuming that all infective herds at

time t = T are infected at that time. So all herd at time T have age τ = 0.

Now with the notation St for the probability that the progeny of a herd

infected at time T , will not survive until time T + t and with Z(t) for the

number of infected herds at time t, we have that:

P(Z(T + t) = 0) =
∞
∑

k=0

P(Z(T ) = k)(St)
k = g̃(St, 1).

2.4.5 Discussion

1. By using this iterative method, we can compute the expected final size of an

outbreak very fast, but for computing any higher moments of this final size,

we need substantially more computational effort. By using simulations, it

is possible to estimate these higher moments too. (see [49])
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2. The lack of memory property is very important for our computations. We

used it to write the formula of q(i) in a ‘convenient’ form, with expectations

in front of every q(l)n.

The speed of computations also heavily depends on the lack of memory

property of the infection rate. In each interval the number of infections

by one herd is Poisson distributed. We can easily integrate h out of the

formula for q(i), for Poisson distributed numbers of infections. (With the

given distribution of H).

2.5 Results

In this section we use the Dutch classical swine fever epidemic of 1997 as exam-

ple. We use the same data as Klinkenberg et al. in [49]. However Klinkenberg

et al. used simulations and for every simulation the parameters were (pseudo-)

randomly chosen from the distributions of the parameters, while we used only

estimations of parameters for our computations.

We consider the following set of control measures:

A Total transport prohibition

B Killing of young piglets, in combination with a breeding ban

C Vaccination of all piglets (not sows) at multiplier herds, followed by

recurrent vaccination of newborn piglets

D Single vaccination of all pigs at finishing herds

E Vaccination of piglets on arrival at finishing herds

One measure or a combination of measures is called a control strategy or

scenario. The effects of different scenarios on the fraction of infective animals

in a multiplier, in a finisher and the possibility of transport-infections (φm(t),

φf (t) and φtr(t) respectively) are given in Table 2.1 (This table is adapted

from [49]). For example, the 0 for φtr in strategy A means that infection is

not possible by transport contacts. As another example, φf (t) = t/100 for

t ≤ 100 in strategy D means that at time t a fraction t/100 of the animals

in a finisher is infective. Note that the first 12 strategies are in a constant

environment. Therefore, for those strategies we can compute properties of the

spread of the disease directly.
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The probabilities of extinction for various strategies are given in Table

2.2. We also compute the expected final size of an epidemic (Table 2.3) We

only need to compute this for the strategies with almost sure extinction. The

expected number of infected multipliers, while the initially infected herd was

a finisher is denoted by Gfm. In a similar way we define Gmm, Gmf , Gff .

The last column of Table 2.3 is the expected number of infected herds, when

initially five multipliers and five finishers were infected. Note that we cannot

compare the expected final size with the results of Klinkenberg et al. (Table

6 in [49]), because they use the median of 1000 simulations, not the mean.

The results of Klinkenberg et al. are given in Table 2.4. The 95% confidence

intervals of the final size are also taken from [49] and were estimated by sim-

ulation.

We used the generating function for the number of infected and infective

herds at time t = T , the point in time after which the parameter values

are assumed to be constant, to estimate the size at time T (which varies for

different strategies). We estimate the first two moments of the size at time T

for the four pure strategies in a varying environment B, C, D, E. (Table 2.5)

Especially the results of B and C are of interest because they will give an idea

of the variance of the final size of a herd.

On the next pages we give covariance matrices (for different strategies and

different initially infected herds) of the number of infected multipliers not yet

detected, the number of infected multipliers already detected, the number of

infected finishers not yet detected and the number of finishers already detected,

respectively. We denote by V ari(J) the covariance matrix for an initially

infected herd of type i, while the strategy is J . By comparing the values in

these matrices to the results in Table 2.5, we know how much trust we may

put in the expected sizes.

Up to now we used exact parameters. In reality we usually cannot estimate

the parameters exactly. In order to get some insight into how the computed

properties depend on the values of the different parameters, we varied one

parameter while keeping the other parameters constant. The results for the

strategies B and D are given in Figures 2.1 and 2.2. The scales on the axes

differ for the different varying parameters. On the x-axes we put the ratio

between the value of the parameter and the point estimator of that parameter.

We see that for these strategies, the parameters r and R have little influence

on the computed quantities, while α and β do have significant influence.
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V arm(B) =











0.85 2.19 0.52 8.43

2.19 16.97 2.63 56.60

0.52 2.63 1.06 10.21

8.43 56.60 10.21 237.42











V arf (B) =











0.38 0.98 0.23 3.43

0.98 8.02 1.17 23.84

0.23 1.17 0.48 4.13

3.43 23.84 4.13 90.10











V arm(C) =











0.92 0.66 0.20 0.68

0.66 1.68 0.25 1.00

0.20 0.25 0.21 0.26

0.68 1.00 0.26 1.87











V arf (C) =











0.92 0.67 0.20 0.67

0.67 1.67 0.25 1.00

0.20 0.25 0.21 0.26

0.67 1.00 0.26 1.87











V arm(D) =











56.4 27.5 97.8 48.7

27.5 18.4 53.2 24.2

97.8 53.2 197.9 90.6

48.7 24.2 90.6 54.5











V arf (D) =











23.0 11.4 39.5 17.6

11.4 8.1 22.2 10.5

39.5 22.2 80.9 32.5

17.6 10.5 32.5 18.0










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V arm(E) =











55.0 29.0 65.3 46.8

29.0 21.0 38.9 29.7

65.3 38.9 95.5 59.4

46.8 29.7 59.4 53.0











V arf (E) =











24.3 12.9 28.3 18.3

12.9 9.9 17.2 12.0

28.3 17.2 41.9 22.7

18.3 12.0 22.7 19.0











In the constant environment the only thing that matters is the ratio β
α . For

varying environments we varied α, while keeping β
α and βtr

α constant. The

results are varying, but not very much.

2.5.1 Discussion

1. We cannot estimate the parameters exactly (see Chapter 3). Because the

expected final size, the probability of extinction and the generating function

for the number of infective herds at a certain moment heavily depend on

some of the parameters, we cannot really use the computed values in a

quantitative way. But we can use them to compare different scenarios,

while using the same parameter values.

2. We computed the probability of extinction for the progeny of one infective

herd, but in reality we may have more than one infected herd at the moment

the first measures are implemented, so the probability of extinction may be

much less than the computed q. We assumed that different infected herds

infect other herds independently of each other. If we simplify the model by

assuming that all herds at time t=0 have age 0, we can estimate the expected

final size by the number of initially infected herds times the estimated final

size of one infected herd. In the same way we can estimate the probability

of extinction by the computed probability for one herd, to the power of

the number of initially infected herds. From previous outbreaks of FMD,

CSF and Avian Influenza in the Netherlands one can see that as a rule

several farms are already infected at the moment the first case is suspected

or confirmed.
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3. The results are very much the same as the results of Klinkenberg et al. but

we do not need simulations to estimate the properties. Also, our method

is much faster than using simulations. In Table 6 of [49] it is suggested

that the expected final size, with initially five infected multipliers and five

infected finishers, is estimated by simulations. In reality the median of 1000

simulations is used in that paper. This explains why our results differ on

that point.

4. Note that strategy ABC gives an extremely high expected final size. Klinken-

berg et al.[49] did not even give this final size. This is because for the given

parameters the process is very near to a process with a positive probability

of surviving i.e. a positive probability of an infinite final size.

5. Using the expected size at t = T and the variance of this size, we see that

the expected final size is not very informative in some scenarios. Large

variance may imply that a large set of “numbers of infected herds” have a

not-ignorable probability, even if we know the exact parameters.

6. The computed covariance matrices do have values of different order in them.

Consider strategy B. The variance of the number of finishers and multipliers

already detected is much higher than the variance of the number of finishers

and multipliers that are still alive at time t = T . This is because the infec-

tion rate decreases for this strategy. In the start of the process one infective

herd may infect several other herds with a relatively high probability, while

after some time infections become rare. This is why the expected number

of infective herds at t = T is much less than the expected number of herds

infected during the epidemic.

7. For constant environments we are interested in the variance of the final size.

Note that in all of the strategies with almost sure extinction in a constant

environment, only one type of herd can be infected, so we only have to deal

with one type of herd. We use the underlying Galton-Watson process to

deduce the variance of the final size (see Section 2.11 of [39]). If we take

m for the expected number of direct infections by one infective herd, the

expected final size is 1
1−m and the variance is m(1+m)

(1−m)2
. Note that for a large

expected final size, the variance will be of the square order of the final size.

Due to this large variance, we cannot give exact quantitative predictions

about the final size of an epidemic. This also indicates that there is a large

intrinsic uncertainty in the problem.
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8. If the infection rates are increasing in time, the expected final size will

decrease for increasing r, while for decreasing infection rates the expected

final size will increase for increasing r. This is because r can be seen as a

parameter describing the speed of the process in a constant environment.

Large values of r correspond to short generation lengths compared to small

r. So, if the infection rate is increasing in time, the n-th generation for

small values of r will have a larger infection rate than the n-th generation

for large r.

The effect of decreasing R, the parameter describing the random effects at

the start of the within-herd spread, is less clear from formulae and defini-

tions. From the figures we can only see that R has relative small effect on

the expected final size and the probability of extinction.

9. Some parameters heavily influence the expected final size and the probabil-

ity of extinction. We have already seen that in a constant environment r and

R do not influence these quantities. For predictions the ratios β : βtr : α are

most important. So the estimation effort is best devoted towards estimating

these ratios.

2.6 Conclusion and final remarks

By using a stochastic model, we could estimate the probability of extinction

and the expectation of the final size of an epidemic in a varying environment.

We only need that the environment is not varying anymore after some given

time. We use a branching process in varying environments, depending on

the age of the individuals. In the constant environment the probability of

extinction and the expected final size are known. By using an iterative process,

we computed this probability and size for the time the environment is still

varying.

By using generating functions, we can compute many important properties,

like the moments of the final size, and a lower bound for the probability that

the process has gone extinct after a given time. These generating functions

are very useful especially if in a constant environment the expected number of

infections after a certain age does not depend on that age. This only holds if

the infection and detection rate are in direct proportion, for the non-varying

environment.
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It is difficult to estimate the parameters for the computations. Some of the

properties computed in this model, like the probability of extinction heavily

depend on the parameters α and β, describing the infection and detection

rate. The model presented in this chapter may be useful to compare the effect

of different measures, but it is very dangerous to use this model for absolute

quantitative predictions.

We used the model to describe the spread of classical swine fever. It is

worth investigating if the same model, with other parameters, may be used to

describe the spread of other animal diseases, with culling at detection, or even

human diseases, which lead to strict quarantine of detected infected individ-

uals (and suspected cases) and contact and movement restrictions. Emerging

infections such as SARS are possible examples of this.

1Table 2.1 is reprinted from Mathematical Biosciences, 186 (2), Klinkenberg, D.;

Everts-van der Wind, A.; Graat, E.A.M. and De Jong, M.C.M., Quantification of
the effect of control strategies on classical swine fever epidemics, 145-173, Copyright (2003),
with permission from Elsevier.
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Table 2.1: The effect of different strategies on φf (t), φm(t) and φtr(t).
1

Strategy Time interval φf (t) φm(t) φtr(t)

none t > 0 1 1 1
ABCD t > 0 0 365/1975 0
ABC t > 0 1 365/1975 0
ABD t > 0 0 1 0
AB t > 0 1 1 0
ACD t > 0 0 1009/1975 0
AC t > 0 1 1009/1975 0
AD t > 0 0 1 0
A t > 0 1 1 0
BCD t > 0 0 365/1975 0
CD t > 0 0 1009/1975 0
DE t > 0 0 1 1

BC 0 < t ≤ 100 1 − t/100 365/1975 0
t > 100 0 365/1975 0

BDE 0 < t ≤ 70 0 1 − 23t/1975 1
t > 70 0 365/1975 0

BD 0 < t ≤ 70 t/100 1 − 23t/1975 1
70 < t ≤ 100 0.7 365/1975 0
100 < t ≤ 170 1.7 − t/100 365/1975 0
t > 170 0 365/1975 0

BE 0 < t ≤ 70 1 − t/100 1 − 23t/1975 1
70 < t ≤ 100 1 − t/100 365/1975 0
t > 100 0 365/1975 0

B 0 < t ≤ 70 1 1 − 23t/1975 1
70 < t ≤ 170 1.7 − t/100 365/1975 0
t > 170 0 365/1975 0

C 0 < t ≤ 100 1 − t/100 1009/1975 0
t > 100 0 1009/1975 0

D 0 < t ≤ 100 t/100 1 1
t > 100 1 1 1

E 0 < t ≤ 100 1 − t/100 1 1
t > 100 0 1 1
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Table 2.2: Probability of extinction for various strategies.

Strategy qm(0) qf (0)

none 0.32 0.51
ABCD, ABC, ABD 1 1
ACD, AD, BCD, CD
AB 0.61 0.61
AC 0.80 0.80
A 0.61 0.61
DE 0.69 0.46

BC, BDE, BD, BE, B, C 1 1
D 0.38 0.61
E 0.39 0.59

Table 2.3: Expected final size for various strategies.

Strategy Gmm Gmf Gfm Gff G5m+5f ;f+m

ABCD 1.2 0 0.2 1 11.8
ABC 7.5 35.4 6.5 36.4 429.4
ABD 5.7 0 4.7 1 56.9
ACD 1.7 0 0.7 1 17.3
AD 5.7 0 4.7 1 56.9
BCD 1.2 0 0.2 1 11.8
CD 1.7 0 0.7 1 17.3

BC 1.1 0.8 0.3 1.8 21.6
BDE 2.7 3.6 0.9 2.0 45.4
BD 3.6 8.5 1.3 4.0 87.2
BE 3.2 5.8 1.2 3.2 66.6
B 4.5 13.2 1.9 6.8 132.3
C 2.4 1.0 1.4 2.0 33.8
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Table 2.4: Median and 95% confidence interval of the final size.

Strategy median of final size 95% CI

ABCD 11 10 − 16
ABD 42 13 − 452
ACD 16 10 − 35
AD 42 13 − 452
BCD 11 10 − 16
CD 16 10 − 35

BC 21 12 − 38
BDE 35 15 − 69
BD 67 20 − 157
BE 53 22 − 110
B 108.5 37 − 238
C 33 15 − 73

Table 2.5: Expected sizes at time T .

Strat. initially inf. undet. m detected m undet. f detected f

B multiplier 0.39 3.98 0.47 12.57
B finisher 0.18 1.61 0.22 6.50
C multiplier 0.35 1.72 0.14 0.82
C finisher 0.35 0.72 0.14 1.82
D multiplier 5.26 4.24 9.93 6.12
D finisher 2.39 1.72 4.57 3.28
E multiplier 5.34 4.55 6.88 6.27
E finisher 2.64 2.00 3.45 3.65
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Figure 2.1: The expected final size of an epidemic of classical swine fever initi-
ated by 5 multipliers and 5 finishers, with control measure B. The parameters
at the x-axis are scaled, such that the point estimator used in this chapter,
has value 1.
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Figure 2.2: The probability of extinction of an epidemic of classical swine fever
initiated by 1 finishers, with control measure D. The parameters at the x-axis
are scaled, such that the point estimator used in this chapter, has value 1.



Chapter 3

Estimation in branching

processes with restricted

observations

3.1 Introduction and motivation

It is known that it is impossible to consistently estimate more than two mo-

ments of the offspring-distribution in a supercritical Galton-Watson process

if only the generation sizes Xn of the process are observed, (Theorem 1.3 of

[34]). However, it is not a-priori clear what one can estimate consistently in

a situation, where in generation n, any individual is detected with unknown

probability π and the numbers of these detected individuals are the only obser-

vations we have. The detected individuals may produce a reduced offspring.

The kind of partial observations we are dealing with is especially inter-

esting for estimation in epidemics of infectious diseases. If the number of

susceptible individuals (where an individual may also refer to a herd instead

of an individual animal) is very large, we may describe the start of an idealized

epidemic by a Galton-Watson process, where discrete points in time index the

generations (see e.g. [3] or Chapter 2). As soon as an infectious disease is

observed in an individual, it stops being infective because of isolation (in the

case of human infections) or culling (in the case of very contagious animal

diseases like classical swine fever, foot and mouth disease or avian influenza).

59
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In the time interval of detection, the individual was only infectious during

a fraction of the interval length which implies that observed individuals have

reduced offspring. In this epidemiological setting, an individual that is infec-

tious but not detected in a certain generation, will still be infectious in the

next one, so a surviving individual will cause at least one infective individual

in the next generation, namely itself. Our task is to estimate parameters of

the offspring distribution using only this partial information. This interpreta-

tion should be compared to the work in [12]. In that paper, estimation takes

place under the assumption that one also observes, in addition to individuals

without further offspring, the total number of infectious individuals at the

beginning, and at the end of the observation period.

If Xn denotes the generation sizes of a branching process and πn a known

sequence converging to π, Jacob and Peccoud [38] have shown that if the

number of observations in generation n + 1 is binomially distributed with pa-

rameters Xn and πn and the offspring distribution has a finite fourth moment,

then it is also possible to estimate the first two moments of the offspring distri-

bution consistently on the explosion set (i.e. the set where limn→∞ Xn = ∞).

In their assumptions the observed individuals may produce offspring, but the

offspring of these individuals is supposed to be distributed like the offspring

of L unobserved individuals, where L is a non-negative integer.

Our set-up differs in two aspects from [38]. First, we are interested in

the case where πn = π is constant but unknown. Furthermore, we assume

that the offspring distribution of unobserved and observed individuals have a

finite fourth moment, but no further assumptions are made about the offspring

distributions. Our methods are also quite different; our martingales are based

on observable quantities. Besides proving some results analogous to [38], we

also show that π can under certain circumstances be estimated consistently.

Our main interest is in estimating the offspring mean and the parameter

π, because those parameters are extremely important for decisions about mea-

sures to be taken to stop an epidemic. We are able to estimate the offspring

mean very efficiently. On the explosion set, we are (under certain conditions)

able to consistently estimate two other functions of π and the parameters of

the offspring distribution. These three estimators will lead to a system of

three equations. For many models we also have three unknowns, namely the

offspring mean, the offspring variance and π. In principle, we can therefore of-

ten estimate these quantities. However, it turns out that what is theoretically
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possible, is not always practically feasible due to extreme slow convergence

of the second and third estimator. Note that one can only hope to obtain

consistency if the process explodes, otherwise the number of observations and

the number of involved individuals will be finite.

In the next section we set things up formally. In Section 3.3 we give

consistent estimators for three functions of the parameters and results about

the rate of convergence of these estimators. We apply this to real data from the

1997 epidemic of classical swine fever in The Netherlands. In Section 3.4 we

prove the consistency of two estimators for the offspring mean on the explosion

set of the branching process. In Section 3.5 we estimate a second function of

the parameters. This function can be interpreted as a second moment, as we

will explain. In Section 3.6 we show that the estimator for a third function of

parameters is consistent.

3.2 Formal set-up

We let Gn be the collection of infected individuals at the discrete time instants

n, n = 0, 1, 2, . . ., and we let Xn = |Gn| denote its cardinality. In our context,

the Xn are not observable. The dynamics from time n to time n + 1 is as

follows.

Between time n and n+1, a certain (random) number of the infected indi-

viduals in Gn is detected; we assume that each infected individual is detected

with probability π during this time interval, independently of each other. The

parameter π is unknown. The collection of detected individuals between time

n and time n + 1 is denoted by Dn+1 and the number of individuals in Dn+1

is denoted by Zn+1; this random quantity is observable. So, given Xn, Zn+1

has a binomial distribution with parameters Xn and π. Individuals in ∪nDn

produce no offspring.

An individual in Gn which is detected (and which therefore produces an

element in Dn+1) may also produce offspring in Gn+1 (in our terminology,

‘offspring’ always means ‘direct offspring’). An individual in Gn which is not

detected will remain infective, and possibly infect other individuals. The off-

spring of such an individual in Gn+1 therefore consists of at least one individ-

ual, namely itself. Note that as a result, one physical individual corresponds

to various individuals of the process. The whole process now constitutes a

two-type branching process.



62 Estimation in Branching Processes

The offspring distributions of detected and undetected individuals are dif-

ferent. We denote by m+ the expected number of X-offspring of an infected

individual at time n (that is, offspring in Gn+1), given that it is not detected

between time n and time n + 1. Similarly, m− is the expected number of X-

offspring of an infected individual given that it is detected. The corresponding

variances are denoted by σ2
+ and σ2

− respectively. In formulas, this reads as

follows:
m+ := E(X1|X0 = 1, Z1 = 0),

m− := E(X1|X0 = 1, Z1 = 1),

σ2
+ := E((X1 − (m+))2|X0 = 1, Z1 = 0),

σ2
− := E((X1 − (m−))2|X0 = 1, Z1 = 1).

Finally, we write m for the unconditional expected number of X-offspring of

an infected individual:

m = E(X1|X0 = 1) = (1 − π)m+ + πm−.

Similarly, the unconditional variance is denoted by σ2. We have from Lemma

2.1 of [34] that for a random variable Y , an event F and F c the complement

of F ,

V ar(Y ) = P(F )V ar(Y |F ) + P(F c)V ar(Y |F c) +

+(E(Y |F ) − E(Y |F c))2P(F )P(F c).

Applying this with F = {Z1 = 0} yields

σ2 = V ar(X1|X0 = 1) = (1 − π)σ2
+ + πσ2

− + (m+ − m−)2π(1 − π).

We assume that the offspring distributions have finite fourth moment, i.e.

for i ∈ {0, 1}

E([X1 − E(X1|X0 = 1, Z1 = i)]4|X0 = 1, Z1 = i) < ∞.

Define A as the explosion set, that is, the set where limn→∞ Xn = ∞.

Because A is a tail-event, conditioning on this event is strictly speaking not

proper for estimation purposes, but analysing the behaviour of the process on

the set A is necessary, for only on this set we obtain infinitely many observa-

tions.
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We are able to estimate several functions of m+,m−, σ2 and π on A. One

of those functions is m, the other two are given by

γ := γ(m+,m−, σ2, π) := (1 − π)m + πσ2 + πm2 + m2 − 2πmm−,

γ∗ := γ∗(m+,m−, σ2, π) := (m2 + m)γ − 2m3 + 2πm2m−.

The reason for these somewhat complicated expressions will become clear soon.

3.3 Results and application

3.3.1 The main result

In this section, consistent estimators for three different functions of the pa-

rameters are given.

Theorem 3.3.1 Using the notation and assumptions of Section 2, we have

as n → ∞

(a) m̄n → m, a.s. on A,

(b) m̃n → m, a.s. on A,

(c) n−1S̃n(m̃n) → γ, in probability on A,

(d) n−1S̃∗
n(m̃n) → γ∗, in probability on A,

where

m̄n =
Zn+1

Zn
,

m̃n =

∑n+1
i=2 Zi

∑n
i=1 Zi

,

S̃n(m) =
n
∑

i=1

(Zi + 1)

(

Zi+1

Zi + 1
− m

)2

,

S̃∗
n(m) =

n
∑

i=1

(Zi + 1)

(

Zi+2

Zi + 1
− m2

)2

.

In principle, this theorem gives three equations with four unknowns, namely

m,π, σ2 and m−. If we have further information, or make further assumptions

about the relation between m and m−, then we can estimate all parameters

consistently, in theory at least.
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The speed of convergence of our estimators is given by the following theo-

rems.

Theorem 3.3.2 The random variables

(

n
∑

i=1

Zi

) 1

2

(m̃n − m)

converge in distribution to a sum of three normal random variables with zero

mean and finite variance.

This theorem implies that (m̃n−m) converges with a rate of order
(

∑n
i=1 Zi

)− 1

2

to 0.

Theorem 3.3.3 As n → ∞, for all δ > 0 we have

(a) n
1

2
−δ
(

n−1S̃n(m̃n) − γ
)

→ 0,

(b) n
1

2
−δ
(

n−1S̃∗
n(m̃n) − γ∗

)

→ 0,

in probability on A.

This theorem implies that n−1S̃n(m̃n)− γ and n−1S̃∗
n(m̃n)− γ∗ converge with

a rate of order at least n− 1

2
+δ, for any δ > 0.

The proofs of Theorem 3.3.1(a) and (b) and Theorem 3.3.2 are given in

Section 3.4. The proofs of Theorem 3.3.1(c) and Theorem 3.3.3(a) are given

in Section 3.5. Finally, the proof of Theorem 3.3.1(d) is given in Section 3.6.

Theorem 3.3.3(b) can be proved in exactly the same way as Theorem 3.3.3(a)

and the proof is omitted.

3.3.2 Application to an epidemic model

In this subsection, we apply our results to a concrete example from epidemic

theory. We analyse the discrete approximation of the standard stochastic SIR

epidemic (see e.g. [27] and Chapter 1, Section 1.3.2), where we take the number

of susceptible individuals to be infinite.

The Model:

We assume that if an infective individual is not detected in a certain interval,

the number of new infections by this infective individual is Poisson distributed
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with parameter λ. Since an individual that is not detected remains infective

itself, this leads to

m+ = λ + 1,

σ2
+ = λ.

Next we need to make a choice for what happens during the interval that an

individual is detected. In order to keep the model rather general we assume

that the detected individual was infective during a (known) fraction φ of the

detection interval. It then follows that

m− = φλ,

σ2
− = φλ,

and hence

m = (1 − π)(λ + 1) + φλπ,

σ2 = (1 − π)λ + φλπ + π(1 − π)((1 − φ)λ + 1)2.

One remark: if we assume that the detection time is uniformly distributed over

the interval of detection, m− will be λ/2. The variance of the offspring in the

interval of detection will be slightly larger than λ/2 because the randomness of

the detection time will cause some extra variance. In fact the variance would

be λ/2 + λ2/12.

We are particularly interested in estimating m (which describes the mean

growth of the number of infectious individuals) and π (needed to estimate the

number of infectious individuals at a certain time, which is very important in

order to make decisions about measures to stop the epidemic).

In the context of the present example, Theorem 3.3.1 gives that on A,

m̃n → (1 − π)(λ + 1) + φλπ a.s.,
1
n S̃n(m̃n) → (1 − π)λ + (1 − π)2 + (1 − π)(λ + 1)2 + φλπ in probability,
1
n S̃∗

n(m̃n) → (m2 + m)γ + 2m2(1 − π)(λ + 1) in probability.

(3.1)

For ease of notation, we did not expand the last quantity at the right-hand

side. In (3.1) we have, after substituting the estimates for m, γ and γ∗, three

equations with two unknowns, λ and π. At this point, it seems that the third
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equation does not help us very much. There are several ways to proceed now.

First of all, we can ignore the third equation and solve the other two for

λ and π. However, it turns out that n−1S̃n(m̃n) converges very slow, and we

need a huge number of generations to obtain reliable estimates (see the next

subsection). But there is a way to use the information contained in the third

equation in a meaningful way. To this end, we reparametrise the epidemic

process by using m and π instead of λ and π. The parameter m is estimated by

m̃n while we may use the combination (1+m̃−1
n )n−1S̃n(m̃n)−m̃−2

n n−1S̃∗
n(m̃n)

to estimate 2(1 − π)(λ + 1). Since m = (1 − π)(λ + 1) + φλπ we may write:

λ + 1 =
m + φπ

(1 − π) + φπ
,

so again we have a system of two equations with two unknowns. From sim-

ulation results it turns out that we can give reasonable estimates for π much

faster than in the case where we use only the estimators for m and γ, but for

practical purposes our new estimators for π still converges too slow.

The Data:

We did the analysis of the data of the 1997 Dutch classical swine fever (CSF)

outbreak as treated in [56]. In that paper the outbreak is modelled by a

Galton-Watson process. Because of changing measures of the government,

the parameters π and λ differ for different stages of the epidemic. For this

reason the epidemic is divided into 5 stages. The time unit is one week and it is

assumed that on average detections take place in the middle of a time interval,

Table 3.1: Estimates from the 1997 Dutch CSF-outbreak; The epidemic is
divided into 5 stages (st.), 4 of which are used. The number of weeks (wk.)
and the number of detected farms (obs.) during the stages are given. The
values obtained by computing m, γ and γ∗ using the MLE’s of π and λ as
given in [56] are compared with our current estimates.

mle’s computed estimates
st. wk. obs. π λ m γ γ∗ m γ γ∗
2 10 101 0.4 0.6 1.08 2.376 3.098 1.15 1.03 0.942
3 8 160 0.5 0.7 1.025 2.220 2.822 1.04 1.87 2.57
4 9 107 0.3 0.3 0.955 1.928 1.940 0.857 0.813 0.935
5 30 51 0.05 0.25 1.194 2.631 3.505 0.880 0.859 0.867
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Table 3.2: Estimated values at different generations of simulated data when
λ = 0.6, π = 0.4 and φ = 0.5.
generation (n) m̃n n−1S̃n(m̃n) (n − 1)−1 ˜Sn−1(m̃n) estimated π

20 1.112 2.907 2.745 −
50 1.082 2.849 3.142 −
100 1.082 2.928 3.750 −
250 1.080 2.478 3.424 0.4601
500 1.080 2.522 3.288 0.2852
750 1.080 2.398 3.059 0.3318

so φ is set to 0.5. In [56], an expensive algorithm is used find the maximum

likelihood estimators for π and λ in the different stages. Klinkenberg et al.([48],

Chapter 6) already showed that these maximum likelihood estimates are not

very reliable.

We will use our estimators to estimate m and γ for the different stages.

We omit the first stage, because for that stage we have only one observation.

We compare our estimates with the m and γ computed from the maximum

likelihood estimates of λ and π given in [56]. The results are given in Table

3.1. We also give the duration of the stage (in weeks) and the number of

observed individuals in a stage of the epidemic in this table.

In the second, third and fourth stage of the epidemic our estimate for m

seems to be rather good, as we might expect. The estimate for γ does not

seem to be very informative. In the final stage of the epidemic only few cases

were observed and there were many weeks without any observation. Due to

this few observations we may expect our estimators not to converge very fast.

In none of the stages we could estimate π and λ by using our estimated m and

γ in (3.1), as the solutions of this system of equations gave no real π between

0 and 1. We have simulated the epidemic with the MLE’s from [56] as the

real parameter values to get some idea about the speed of convergence of the

estimator of π (Table 3.2), we see that even after 750 weeks π is not accurately

estimated.
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3.4 Estimating the offspring mean m

In this section we discuss the two consistent estimators for m given in 3.3.1.

We start with the estimator

m̄n :=
Zn+1

Zn
,

and Theorem 3.3.1(a) states that this estimator is indeed consistent on the

explosion set A.

Proof of Theorem 3.3.1(a). The proof is based on a simple martingale argu-

ment. Let

Mn :=
n
∏

i=0

Zi+1 + 1

πXi + 1

Note that this is a (positive) martingale with respect to Fn, the σ-algebra

generated by {Zi+1, Xi; 0 ≤ i ≤ n}. Since supn E(Mn) ≤ 1, the martingale

convergence theorem implies that Mn converges almost surely to an almost

surely finite random variable M .

We also need to show that M is strictly positive on A. To do this, we

define

M̄n :=
n
∏

i=0

π(Xi + 1)

Zi+1 + 1
.

Elementary computations yield

E

[ 1

Z1 + 1
|X0 = k

]

=
1

π(k + 1)
(1 − (1 − π)k+1)

≤ 1

π(k + 1)
, (3.2)

so M̄n is a supermartingale with respect to Fn. By the martingale convergence

theorem we know that M̄n converges almost surely to an almost surely finite

random variable M̄ . Now write

MnM̄n =
n
∏

i=0

π(Xi + 1)

πXi + 1
=

n
∏

i=0

(

1 − 1 − π

πXi + 1

)

.
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The Xi’s almost surely grow exponentially on A, so

∞
∑

i=1

1 − π

πXi + 1
< ∞

almost surely on A, which implies that

MM̄ = lim
n→∞

MnM̄n =
∞
∏

i=0

(

1 − 1 − π

πXi + 1

)

> 0, (3.3)

almost surely on A. Because M̄ is almost surely finite, (3.3) is only possible

if M is almost surely positive on A.

Now since Xi+1/Xi → m a.s. on A (Theorem 2.1 of [34]), we have that

(Xn+1 + π−1)/(Xn + π−1) → m a.s. on A. So we have

Zn+1 + 1

Zn + 1
=

Mn/Mn−1

Mn−1/Mn−2

πXn + 1

πXn−1 + 1
→ m, a.s. on A, (3.4)

because from 0 < M < ∞ a.s. on A, it follows that

Mn

Mn−1
→ M

M
= 1, a.s. on A.

On A, Zn will almost surely tend to infinity, so (Zn+1 + 1)/(Zn + 1) will

have the same limit as (Zn+1)/Zn, proving the theorem.

Clearly, m̄n does not use all the available information. To this end, we also

considered the second estimator, namely

m̃n :=

∑n+1
i=2 Zi

∑n
i=1 Zi

.

Theorem 3.3.1(b) states that m̃n also is a consistent estimator for m. To prove

this theorem, we start with a lemma from [35].

Lemma 3.4.1 Let (Sn =
∑n

i=1 ξi,Fn, n ≥ 1) be a martingale and let

(Un, n ≥ 1) be a non decreasing sequence of positive random variables such

that Un is Fn−1-measurable. Then U−1
n Sn → 0 a.s. on the set

{

limUn = ∞,
∞
∑

i=1

U−2
i E(ξ2

i |Fi−1) < ∞
}

.
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Corollary 3.4.2 On the explosion set A we have a.s. as n → ∞,

∑n
i=1 Zi

∑n−1
i=0 Xi

→ π.

This corollary is intuitively obvious because the denominator is the total num-

ber of individuals in the first n generations (including generation 0), while the

numerator is the number of observed individuals in these generations. Here is

a formal proof.

Proof of Corollary 3.4.2. Write

∑n
i=1 Zi

∑n−1
i=0 Xi

=

∑n
i=1(Zi − πXi−1)
∑n−1

i=0 Xi

+ π.

We define Un =
∑n−1

i=0 Xi, ξi = Zi −πXi−1 and Sn =
∑n

i=1 ξi. Note that Un is

Fn−1-measurable, where Fn−1 is the σ-algebra generated by X0, X1, . . . , Xn−1,

Z1, . . . , Zn−1. Furthermore,

∞
∑

i=1

U−2
i E(ξ2

i |Fi−1) =

∞
∑

i=1

E((Zi − πXi−1)
2|Fi−1)

(
∑i−1

j=0 Xj)2

=
∞
∑

i=1

π(1 − π)Xi−1

(
∑i−1

j=0 Xj)2
≤

∞
∑

i=1

π(1 − π)

Xi−1
.

This last sum is almost surely finite on A, because Xi is strictly positive and

almost surely grows exponentially in i. So the set

{limUn = ∞,
∞
∑

i=1

U−2
i E(ξ2

i |Fi−1) < ∞}

contains A up to a set of measure zero. Now we may apply Lemma 3.4.1 and

conclude that
∑n

i=1 Zi
∑n−1

i=0 Xi

→ 0 + π = π a.s. on A.

as n → ∞.
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Proof of Theorem 3.3.1(b). From Theorem 2.1 of [34] we have

(
∑n

i=1 Xi)/(
∑n−1

i=0 Xi) → m a.s. on A. We apply Corollary 3.4.2, giving

∑n+1
i=2 Zi

∑n
i=1 Zi

=
(
∑n+1

i=2 Zi)/(
∑n

i=1 Xi)

(
∑n

i=1 Zi)/(
∑n−1

i=0 Xi)

∑n
i=1 Xi

∑n−1
i=0 Xi

→ π

π
m = m, a.s. on A,

which proves the theorem.

The rate of convergence follows from Theorem 3.3.2. We use a part of

Theorem 2.3 of [34] as a lemma to prove Theorem 3.3.2.

Lemma 3.4.3 Assume that m > 1 and let Y be a standard normal random

variable, independent of (Xn). For any x we have

P

[ 1

σ

(

n
∑

i=1

Xi−1

) 1

2
(

∑n
i=1 Xi

∑n
i=1 Xi−1

− m
)

≤ x|Xn > 0
]

→ P(Y ≤ x).

In the same way one can prove that

P

[ 1
√

π(1 − π)

(

n
∑

i=1

Xi−1

) 1

2
(

∑n
i=1 Zi

∑n
i=1 Xi−1

− π
)

≤ x|Xn > 0
]

→ P(Y ≤ x).

Proof of Theorem 3.3.2. First we rewrite
(

∑n
i=1 Zi

) 1

2

(m̃n − m) as

(

n
∑

i=1

Zi

) 1

2

(m̃n − m)

=
(

n
∑

i=1

Zi

)− 1

2

n
∑

i=1

(Zi+1 − mZi)

=
(

n
∑

i=1

Zi

)− 1

2
[

n
∑

i=1

(Zi+1 − πXi) + π
n
∑

i=1

(Xi − mXi−1)

−m
n
∑

i=1

(Zi − πXi−1)
]

(3.5)

We already know that on A, (
∑n

i=1 Zi)/(
∑n

i=1 Xi−1) converges a.s. to the

constant π and (
∑n

i=1 Xi)/(
∑n

i=1 Xi−1) converges a.s. to the constant m. Now

the second term on the right-hand side of (3.5) can be rewritten as
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π
(

∑n
i=1 Zi

∑n
i=1 Xi−1

)− 1

2
(

n
∑

i=1

Xi−1

)− 1

2

n
∑

i=1

(Xi − mXi−1)

= π
(

∑n
i=1 Zi

∑n
i=1 Xi−1

)− 1

2
(

n
∑

i=1

Xi−1

) 1

2
(

∑n
i=1 Xi

∑n
i=1 Xi−1

− m
)

.

From Lemma 3.4.3 we see that the second term converges in distribution to

a normal distribution with zero mean and finite variance. We can treat the

other terms on the right-hand side in the same way, which proves the theorem.

3.5 Estimating a second function of the parameters

Next we want to prove Theorem 3.3.1(c), which gives a consistent estimator

for γ. We first do this for the special case where m− = σ2
− = 0. After that we

treat the general case, and finally we interpret the function of the parameters

that we can estimate.

3.5.1 The case m− = σ2
− = 0

If m− = σ2
− = 0, then γ = (1−π)m+πσ2 +πm2 +m2. Theorem 3.3.1(c) now

reads:

Theorem 3.5.1 As n → ∞, we have

n−1
n
∑

i=1

(Zi + 1)

(

Zi+1

Zi + 1
− m̃n

)2

→ (1 − π)m + πσ2 + πm2 + m2

in probability on A.

We first compute E

[

(Z1 + 1)
(

Z2

Z1+1 − m
)2

|X0 = k

]

. To do this, we remem-

ber (3.2):

E

[ 1

Z1 + 1
|X0 = k

]

=
1

π(k + 1)
(1 − (1 − π)k+1); (3.6)

and note that elementary computations yield

E

[ X1

Z1 + 1
|X0 = k

]

=
m

π
(1 − (1 − π)k); (3.7)

E

[ (X1)
2

Z1 + 1
|X0 = k

]

=
m2k

π
(1 − (1 − π)k−1) +

m2 + σ2

π
(1 − (1 − π)k). (3.8)
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Now we can compute the desired expectation in a straightforward way:

E

[

(Z1 + 1)
( Z2

Z1 + 1
− m

)2
|X0 = k

]

= E

[π(1 − π)X1

Z1 + 1
|X0 = k

]

+ E

[(πX1 − m(Z1 + 1))2

Z1 + 1
|X0 = k

]

= ((1 − π)m + πσ2 + πm2)(1 − (1 − π)k) + m2(1 − kπ(1 − π)k−1)

= ((1 − π)m + πσ2 + πm2)P(Z1 6= 0|X0 = k) + m2
P(Z1 6= 1|X0 = k).

With this expression in our hand, we can identify a suitable martingale. We

denote by Fn the σ-algebra generated by {Zi; 1 ≤ i ≤ 2n}.

Lemma 3.5.2

Mn :=
n
∑

j=1

(

(Z2j−1 + 1)

(

Z2j

Z2j−1 + 1
− m

)2

−
[

((1 − π)m + πσ2 + πm2)11{Z2j−1>0} + m211{Z2j−1 6=1}
])

is a martingale with respect to Fn.

Proof. It is clear that Mn is measurable with respect to Fn. Let

ξn+1 := Mn+1 − Mn be the increments and note that E(ξn+1|X2n,Fn) =

E(ξn+1|X2n) = 0, where the last equality follows from the previous computa-

tion. Hence,

E(Mn+1|Fn) = Mn + E(E(ξn+1|X2n,Fn)|Fn) = Mn.

Theorem 3.5.3 We have, as n → ∞, a.s. on A,

n−1
n
∑

j=1

(Z2j−1 + 1)

(

Z2j

Z2j−1 + 1
− m

)2

→ (1 − π)m + πσ2 + πm2 + m2.

Furthermore, writing

S̃n(m) :=
n
∑

i=1

(Zi + 1)

(

Zi+1

Zi + 1
− m

)2

,
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we have a.s. on A,

n−1S̃n(m) → (1 − π)m + πσ2 + πm2 + m2.

Proof. From Lemma 3.5.2 we have that Mn is a martingale with respect to

Fn, with increments,

ξj := (Z2j−1 + 1)

(

Z2j

Z2j−1 + 1
− m

)2

−
[

((1 − π)m + πσ2 + πm2)11{Z2j−1>0} + m211{Z2j−1 6=1}
]

.

Now we apply Lemma 3.4.1 with the given ξj and Un = n. On the set A, we

have Un → ∞. To show that
∑∞

i=1 U−2
i E(ξ2

i |Fi−1) < ∞ on A, we claim that

there exists a constant C < ∞ such that

V ar

[

(Z1 + 1)

(

Z2

Z1 + 1
− m

)2

|X0 = k

]

< C,

uniformly in k. The computations that justify this claim are lengthy but

straightforward, and are given in the appendix. Now we have

E(ξ2
i |Fi−1) = V ar

[

(Z2i−1 + 1)

(

Z2i

Z2i−1 + 1
− m

)2

|Fi−1

]

= E

(

V ar

[

(Z2i−1 + 1)

(

Z2i

Z2i−1 + 1
− m

)2

|X2(i−1)

]

|Fi−1

)

< C,

and we conclude that
Mn

n
→ 0.

Now write n−1M̄n = n−1
∑n

j=1 ξ̄j , where

ξ̄j = (Z2j + 1)

(

Z2j+1

Z2j + 1
− m

)2

−
[

((1 − π)m + πσ2 + πm2)11{Z2j>0} + m211{Z2j 6=1}

]

are the martingale increments. Define F̄j as the σ-algebra generated by

{Z1, . . . , Z2j+1}. Now with the same arguments as for the a.s. convergence of
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n−1Mn we may prove that n−1M̄n → 0 a.s. on A. Finally note that

1

2n
(Mn + M̄n) =

1

2n

2n
∑

i=1

(Zi + 1)

(

Zi+1

Zi + 1
− m

)2

−
[

(1 − π)m + πσ2 + πm2
]

11{Z2j−1>0} − m211{Z2j−1 6=1},

and the second result of the theorem follows.

We remark that

n
∑

i=1

(Zi + 1)(
Zi+1

Zi + 1
− m)2 − [(1 − π)m + πσ2 + πm211{Zi>0} + m211{Zi 6=1}]

is not a martingale itself, so we can not use Lemma 3.4.1 directly.

Because we do not know m, we cannot use S̃n(m) for estimation purposes,

and we also need to analyse the behaviour of S̃n(m̃n). Some algebra yields

n−1
(

S̃n(m) − S̃n(m̃n)
)

= n−1(m − m̃n)2
n
∑

i=1

Zi + (m2 − m̃2
n). (3.9)

From Theorem 3.3.2 we know that the square root of (m − m̃n)2
∑n

i=1 Zi

is the sum of three random variables, each converging in distribution to a

normally distributed random variable with finite variance. So the square root

of the first term on the right hand side converges in distribution to 0. Because

0 is a constant, the convergence is also in probability. If An → 0 in probability,

then A2
n → 0 in probability, so n−1(m−m̃n)2

∑n
i=1 Zi converges in probability

to 0 on A. Together with Theorem 3.5.3 this proves Theorem 3.5.1.

3.5.2 The general case

Until now we considered the situation where the observed individuals have

no further offspring. We now allow observed individuals to have some X-

offspring in the generation after the observation. So in terms of epidemics, in

this section we allow detected individuals to infect other individuals during

the interval of detection. Theorem 3.3.1 gives us a consistent estimator (in

probability) of (1− π)m + πσ2 + πm2 + m2 − 2πmm− on the explosion set A.
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To prove the theorem, one can compute that (we omit the lengthy details)

E

[

(Z1 + 1)
( Z2

Z1 + 1
− m

)2
−

[(1 − π)m + πσ2 + πm2]11{Z1>0} − m211{Z1 6=1} + 2πm(m−)11{Z1>1}|X0 = k
]

+E

[π[πσ2
− + (1 − π)(m−)]

Z1 + 1
11{Z1>0} −

π2(m−)2

Z1 + 1
(11{Z1>1} − 11{Z1=1})|X0 = k

]

= 0.

This leads to the following lemma, which can be proved as Lemma 3.5.2.

Lemma 3.5.4 Let Fn be the σ-algebra generated by {Zi; 1 ≤ i ≤ 2n}. Then

Mn :=

n
∑

j=1

[

(Z2j−1 + 1)

(

Z2j

Z2j−1 + 1
− m

)2

−

[(1 − π)m + πσ2 + πm2]11{Z2j−1>0} − m211{Z2j−1 6=1}

+2πm(m−)11{Z2j−1>1} +
π[πσ2

− + (1 − π)(m−)]

Z2j−1 + 1
11{Z2j−1>0}

− π2(m−)2

Z2j−1 + 1
(11{Z2j−1>1} − 11{Z2j−1=1})

]

is a martingale with respect to Fn.

Using this lemma we now prove

Theorem 3.5.5 Let γ and S̃n(m) be as in Theorem 3.3.1. As n → ∞, we

have a.s. on A,

n−1
n
∑

j=1

(Z2j−1 + 1)
( Z2j

Z2j−1 + 1
− m

)2
→ γ.

Furthermore, we have a.s. on A,

n−1S̃n(m) → γ.

We can prove this in the same way as we did for the special case of the

previous subsection. The only extra thing to prove is that there exists a C < ∞
such that

V ar

[

(Z1 + 1)

(

Z2

Z1 + 1
− m

)2

|X0 = k

]

< C,
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for all k in the general case too. Again the computations to justify this in-

equality are lengthy and straightforward, and are given in the appendix.

The argument to prove Theorem 3.3.1(c) can now be finished exactly as

in the previous section.

It seems rather difficult to establish the rate of convergence for the estima-

tor of the second function of parameters, but Theorem 3.3.3(a) gives a bound

for this rate.

Proof of Theorem 3.3.3. From Corollary 3.1 in [35] it follows that if

{Sni,Fn,i, 1 ≤ i ≤ n} is a square integrable martingale array with differences

Xni := Sni − Sni−1 (where Sn0 is defined as 0) and such that

n
∑

i=1

E(X2
ni|Fn,i−1) → 0 in probability,

and Fn,i ⊆ Fn+1,i for 1 ≤ i ≤ n, then Snn =
∑n

i=1 Xni → 0 in probability.

We use this with Snn = n−( 1

2
+δ)Mn, where Mi is as in Lemma 3.5.4, and

Xni = n−( 1

2
+δ)Ti, where Ti are the summands of Mn. We define Fn,i, 1 ≤ i ≤

n, as the σ-algebra generated by {Zi; 1 ≤ i ≤ 2n}, so Fn,i ⊆ Fn+1,i holds for

1 ≤ i ≤ n. We have already shown that E(T 2
i ) < C for some C, uniformly in

i, hence

n
∑

i=1

E(X2
ni|Fn,i−1) ≤ n−(1+2δ)nC → 0 in probability,

so n−( 1

2
+δ)Mn → 0 in probability. We can prove in the same way that

n−( 1

2
+δ)M̄n → 0, where M̄n is as in the proof of Theorem 3.5.3. Now by

the definitions of Mn and M̄n, we may see that on the explosion set A,

n
1

2
−δ(n−1S̃n(m) − γ) = n−( 1

2
+δ)Mn + n−( 1

2
+δ)M̄n + n−( 1

2
+δ)

n
∑

i=1

f(Zi),

where f(x) = O( 1
x). Since Zi+1

Xi
→ π a.s. on A and m−iXi converges almost

surely to a finite random variable, we know that m−iZi almost surely converges

to an almost surely finite and positive random variable, W̄ say. Now we use
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the Toeplitz Lemma (Lemma 1.2 in [34]) to see that

∞
∑

i=1

f(Zi) <

( ∞
∑

i=1

m−i

)

C
1

W̄
< ∞,

for some C. So n
1

2
−δ(n−1S̃n(m) − γ) → 0 in probability on the explosion set

A.

By using the rate of convergence of m̃n, equation (3.9) and the arguments

following that equation we see that for all δ1 > 0, n−δ1S̃n(m)−n−δ1S̃n(m̃n) →
0 in probability on A, and now with δ1 = 1

2 + δ the theorem follows.

3.5.3 Interpretation of γ

The expression

γ = (1 − π)m + πσ2 + πm2 + m2 − 2πmm−

which appeared as the limit in the previous subsection, turns out to have

a somewhat surprising interpretation: it appears as a second moment if we

treat our Z-observations as a Galton-Watson process itself. To explain what

we mean by this, we compute P(X0 = l|Z1 = k), when the a-priori distribution

of X0 is uniform on the integers between k and N , where N >> k. After this

we let N tend to infinity.

P(X0 = l|Z1 = k) =
P(Z1 = k|X0 = l)P(X0 = l)

∑N
i=k P(Z1 = k|X0 = i)P(X0 = i)

=
P(Z1 = k|X0 = l)

∑N
i=k P(Z1 = k|X0 = i)

.

First we compute the denominator for N → ∞

lim
N→∞

N
∑

i=k

P(Z1 = k|X0 = i) =
∞
∑

i=k

(

i

k

)

πk(1 − π)i−k

=
1

π

∞
∑

j=0

(

k + j

j

)

πk+1(1 − π)j .

The summands are exactly the probabilities of a negative binomial distribu-

tion, with parameters k + 1 and π, so
∑∞

j=0

(

k+j
j

)

πk+1(1− π)j = 1. Therefore
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we know that the denominator converges to π−1.

With some abuse of notation, we write a superscript ∗ when we discuss

probabilities and accompanying expectations after taking the limit for N →
∞. This leads to

P
∗(X0 = l|Z1 = k) =

(

l

k

)

πk+1(1 − π)l−k.

Now it is easy to compute that

E
∗(X0|Z1 = k) =

k + 1

π
− 1,

V ar∗(X0|Z1 = k) =
(1 − π)(k + 1)

π2
.

Now some straightforward computations yield

E
∗(Z2|Z1 = k) = (1 − π)m+ + mk,

V ar∗(Z2|Z1 = k) = [(1 − π)m + πσ2 + (1 + π)m2 − 2πmm−](k + 1)

−(1 − π)πm− − π2σ2
−.

We see that E
∗(Z2|Z1 = k) = mk + O(1) for k → ∞ and

V ar∗(Z2|Z1 = k) = γk + O(1) for k → ∞. In this sense, we again esti-

mate a first and second moment, just as in the classical case where the full

generation sizes are observed.

3.6 Estimating a third function of parameters

From Theorem 1.3 of [34] we know that we can estimate two moments of the

offspring distribution of a Galton-Watson process and no other functions of the

parameters consistently if only the generation sizes are observed. However, in

our context Theorem 3.3.1 gives that we can under certain conditions estimate

a third function of parameters.

We have already shown that for k → ∞

E

( Z2

Z1 + 1
|X0 = k

)

→ m,

E

(

(Z1 + 1)

(

Z2

Z1 + 1
− m

)2

|X0 = k
)

→ γ.
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We next compute E[(Z1 + 1)(Z3/(Z1 + 1) − m2)2|X0 = k]:

E[(Z1 + 1)
(

Z3

Z1+1 − m2
)2

|X0 = k]

= E[(Z1 + 1)
[(

Z3−πX2

Z1+1

)2
+ π2

(

X2−mX1

Z1+1

)2
+ m2

(

πX1

Z1+1 − m
)2]

|X0 = k]

= π(1 − π)mE

(

X1

Z1+1 |X0 = k
)

+ π2σ2
E

(

X1

Z1+1 |X0 = k
)

+m2
E

(

(Z1 + 1)
(

Z2

Z1+1 − m
)2

|X0 = k
)

− m2π(1 − π)E
(

X1

Z1+1 |X0 = k
)

= ((1 − π)m + πσ2 − m2(1 − π))E
(

Z2

Z1+1 |X0 = k
)

+m2
E

(

(Z1 + 1)
(

Z2

Z1+1 − m
)2

|X0 = k
)

.

Now note that on A,

E[(Z1 + 1)
( Z3

Z1 + 1
− m2

)2
|X0 = k]

= ((1 − π)m + πσ2 − m2(1 − π))E
( Z2

Z1 + 1
|X0 = k

)

+m2
E

(

(Z1 + 1)
( Z2

Z1 + 1
− m

)2
|X0 = k

)

→ (γ − 2m2 + 2πmm−)m + m2γ

= (m2 + m)γ − 2(1 − π)m2m+

= γ∗,

where the convergence is almost surely. Recall that

S∗
n(m) :=

n
∑

i=1

(Zi + 1)

(

Zi+2

Zi + 1
− m2

)2

.

We can use the same martingale argument as used for the proof of Theorem

3.5.5 to prove the following result.

Theorem 3.6.1 The quantity

n−1
n
∑

i=1

[([

∑n+1
j=2 Zj

∑n

j=1 Zj

]2

+

∑n+1
j=2 Zj

∑n

j=1 Zj

)

(Zi + 1)

(

Zi+1

Zi + 1
−
∑n+1

j=2 Zj
∑n

j=1 Zj

)2
]

− n−1S∗
n(m)

converges (on A) in probability to 2(1 − π)m2m+. Hence,

n−1S∗
n(m) → γ∗, in probability on A.
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In order to obtain an observable quantity (m is not), we need to bound

n−1|S∗
n(m̃n) − S∗

n(m)|, we compute

|S̃∗
n(m) − S̃∗

n(m̃n)|

= |
n
∑

i=1

(Zi + 1)

(

Zi+2

Zi + 1
− m2

)2

−
n
∑

i=1

(Zi + 1)

(

Zi+2

Zi + 1
− (m̃n)2

)2

|

= |
n
∑

i=1

[

(Zi + 1)(m4 − (m̃n)4) − 2Zi+2[m
2 − (m̃n)2]

]

|

≤ |
n
∑

i=1

[

Zi(m
4 − (m̃n)4) − 2m̃n+1m̃nZi[m

2 − (m̃n)2]
]

|

+|n(m4 − (m̃n)4) + 2(Z2 − m̃n+1Z1)[m
2 − (m̃n)2]|

≤ 2|Z2 − m̃n+1Z1||m2 − (m̃n)2| + n|m4 − (m̃n)4|

+|(m2 − (m̃n)2)2
(

n
∑

i=1

Zi

)

− 2(m̃n+1 − m̃n)m̃n[m2 − (m̃n)2]
(

n
∑

i=1

Zi

)

|

= 2|Z2 − m̃n+1Z1||m2 − (m̃n)2| + n|m4 − (m̃n)4|

+|(m + m̃n)(m − m̃n)3 + 2(m + m̃n)m̃n(m − m̃n+1)(m − m̃n)|
(

n
∑

i=1

Zi

)

≤ 2|Z2 − m̃n+1Z1||m2 − (m̃n)2| + n|m4 − (m̃n)4|

+|(m + m̃n)(m − m̃n)3|
(

n
∑

i=1

Zi

)

+|(m + m̃n)m̃n[(m − m̃n+1)
2 + (m − m̃n)2]|

(

n
∑

i=1

Zi

)

≤ 2|Z2 − m̃n+1Z1||m2 − (m̃n)2| + n|m4 − (m̃n)4|

+|(m2 − m̃2
n)|(m − m̃n)2

(

n
∑

i=1

Zi

)

+(m + m̃n)m̃n(m − m̃n)2
(

n
∑

i=1

Zi

)

+(m + m̃n)(m − m̃n+1)
2
(

n+1
∑

i=1

Zi

)

− (m + m̃n)(m − m̃n+1)
2Z1.

Now n−1Z1 and n−1Z2 converge almost surely to 0. We can use the same

arguments as used in Section 3.5 for the proof of convergence of n−1(Sn(m̃n)−
Sn(m)) to see that n−1(S∗

n(m̃n) − S∗
n(m)) converges to zero in probability,

which proves Theorem 3.3.1(d).
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Note that 2(1 − π)m2m+ is not necessary in the plane spanned by m

and γ, so we are able to estimate a third function of the parameters. Also

note that if m− = 0 we are unable to estimate the third parameter this

way. However, if we look at the case where we observe a binomial distributed

number of individuals from each generation, but observations do not influence

the offspring distribution (that is, m+ = m− = m and σ2
+ = σ2

− = σ2), we

have an estimator for (1−π)m3 and because we have an estimator for m that

converges a.s., we are in theory able to estimate π consistently.

3.7 Conclusions

(A) From Theorem 1.3. of [34] we know that we cannot estimate more than

two functions of the parameters (the first two moments) consistently only the

generation sizes Xn of a branching process are given. In [38] it is showed that

if we observe only a Binomial(Xn, π) distributed fraction of the generation

sizes, we can estimate two functions of parameters consistently, if π is known.

In this chapter we have shown that, under certain conditions, we can estimate

three functions of the parameters, even when we do not know π.

(B) For epidemiological purposes we want to estimate π as well, because this

parameter gives an indication of how many individuals are infectious at a

certain time, which may be important for implementing measures. In order to

estimate this parameter in reasonable time we apparently need more and other

information. We can possibly get this information by using contact tracing,

i.e. finding out what contacts are made by an individual before it was observed

and which contact may have caused the infection. Sometimes it is possible to

get experimental information about the time between infection and removal

of an individual, from that information we may also estimate π. Note that

Becker and Hasofer [12] are able to estimate π and λ but they need information

about the number of infectious individuals at the time of estimation, and this

information is typically not available.
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Appendix

In this appendix we show that for given i,

V ar[(Z1 + 1)(
Zi+1

Z1 + 1
− mi)2|X0 = k]

is bounded. This statement is equivalent to

lim sup
k→∞

E[(Z1 + 1)2(
Zi+1

Z1 + 1
− mi)4|X0 = k] < C

for all i > 0 and some C < ∞.

E[(Z1 + 1)2(
Zi+1

Z1 + 1
− mi)4|X0 = k]

= E[(Z1 + 1)−2[Zi+1 − mi(Z1 + 1)]4|X0 = k]

= E[(Z1 + 1)−2[(Zi+1 − πmi−1X1) + mi−1(πX1 − m[Z1 + 1])]4|X0 = k]

= E[(Z1 + 1)−2(Zi+1 − πmi−1X1)
4|X0 = k]

+4E[(Z1 + 1)−2(Zi+1 − πmi−1X1)
3mi−1(πX1 − m[Z1 + 1])|X0 = k]

+6E[(Z1 + 1)−2(Zi+1 − πmi−1X1)
2(mi−1(πX1 − m[Z1 + 1]))2|X0 = k]

+4E[(Z1 + 1)−2(Zi+1 − πmi−1X1)(m
i−1(πX1 − m[Z1 + 1]))3|X0 = k]

+E[(Z1 + 1)−2(mi−1(πX1 − m[Z1 + 1]))4|X0 = k].

We have assumed that E[(X1 − m)4|X0 = 1] < ∞. Furthermore, we know

that E[(Z1 − π)4|X0 = 1] < ∞. We are dealing with branching processes.

therefore, E[(Z1 +1)−2(Zi+1 −πmi−1X1)
j |X1 = k] is the j-th central moment

of the sum of k independent random variables with finite fourth moment and

standard inequalities for sums of i.i.d. random variables give that there exists

positive constants c1, c2 and c3 such that

E[(Zi+1 − πmi−1X1)
4|X1 = k] < c1k

2,

E[(Zi+1 − πmi−1X1)
3|X1 = k] < c2k,

E[(Zi+1 − πmi−1X1)
2|X1 = k] < c3k. (3.10)

Taking these inequalities together brings us to
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E[(Z1 + 1)2(
Zi+1

Z1 + 1
− mi)4|X0 = k]

< E[(Z1 + 1)−2c1(X1)
2 + 4c2X1m

i−1(πX1 − m[Z1 + 1])|X0 = k]

+E[(Z1 + 1)−2[6c3X1(m
i−1(πX1 − m[Z1 + 1]))2]|X0 = k]

+E[(Z1 + 1)−2(mi−1(πX1 − m[Z1 + 1]))4|X0 = k].

Write

∆ := πX1 − m[Z1 + 1]

= π(X1 − m+(X0 − Z1) − m−Z1) + m+(πX0 − Z1) − m

= ∆1 + ∆2,

where ∆1 = π(X1 − m+(X0 − Z1) − m−Z1) and ∆2 = m+(πX0 − Z1) − m.

Observe that E(∆1|X0 = k,∆2 = x) = 0 and E(∆2|X0 = k) = −m. Let Γ+ be

the third central moment of the offspring of an individual that is not detected

and Γ− of an individual that is detected, Similarly let ξ+ be the fourth central

moment of the offspring of an individual that is not detected and ξ− of an

individual that is detected. Basic computations yield:

E(∆|X0 = k) = −m

E

( ∆2

Z1 + 1
|X0 = k

)

= E

(∆2
1 + ∆2

2

Z1 + 1
|X0 = k

)

= E

(π2(X0 − Z1)σ
2
+ + π2Z1σ

2
− + ∆2

2

Z1 + 1
|X0 = k

)

E

( ∆3

(Z1 + 1)2
|X0 = k

)

= E

(∆3
1 + 3∆2

1∆2 + ∆3
2

(Z1 + 1)2
|X0 = k

)

= E

(π3(X0 − Z1)Γ+ + π3Z1Γ−
(Z1 + 1)2

|X0 = k
)

+E

(π2[(X0 − Z1)σ
2
+ + Z1σ

2
−]∆2 + ∆3

2

(Z1 + 1)2
|X0 = k

)
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E

( ∆4

(Z1 + 1)2
|X0 = k

)

= E

(∆4
1 + 4∆3

1∆2 + 6∆2
1∆

2
2 + ∆4

2

(Z1 + 1)2
|X0 = k

)

= E

(π4[(X0 − Z1)ξ+

(Z1 + 1)2
|X0 = k

)

+E

(3(X0 − Z1)(X0 − Z1 − 1)(σ2
+)2]

(Z1 + 1)2
|X0 = k

)

+E

(π4[Z1ξ− + 3Z1(Z1 − 1)(σ2
−)2]

(Z1 + 1)2
|X0 = k

)

+E

( [π3(X0 − Z1)Γ+ + π3Z1Γ−]∆2

(Z1 + 1)2
|X0 = k

)

+E

(π2[(X0 − Z1)σ
2
+ + Z1σ

2
−]∆2

2

(Z1 + 1)2
|X0 = k

)

+E

( ∆4
2

(Z1 + 1)2
|X0 = k

)

.

To proceed we use that for all j:

E

[ ∆j
2

(Z1 + 1)2
|X0 = k

]

≤ 2E

[ ∆j
2

(Z1 + 1)(Z1 + 2)
|X0 = k

]

= 2

k
∑

l=0

(

k

l

)

πl(1 − πk−l)
∆j

2

(l + 1)(l + 2)

= 2

k
∑

l=0

1

(k + 1)(k + 2)

1

π2

(

k + 2

l + 2

)

πl+2(1 − π(k+2)−(l+2))∆j
2

≤ 2
k+2
∑

l=0

1

(k + 1)(k + 2)

1

π2

(

k + 2

l

)

πl(1 − πk+2−l)∆j
2

=
2

(k + 1)(k + 2)
E

[

∆j
2|X0 = k + 2

]

.
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Repeated use of this last inequality and inequalities like (3.10) implies that

there exists a C such that

lim sup
k→∞

E[(Z1 + 1)2(
Zi+1

Z1 + 1
− mi)4|X0 = k] < C. (3.11)



Chapter 4

On pair approximation

4.1 Introduction

Many models for describing the spread of an infection are based on the as-

sumption of a randomly mixing population, where contacts between any two

individuals are equally likely (see the previous chapters and e.g. [3, 27]). How-

ever, the assumption of random mixing is strong, therefore one may also want

to consider epidemics on (social) networks. Connections in the network are

possible contacts, e.g. if we consider sexually transmitted diseases and ignore

all spread by other than sexual ways, the connections are only between people

that have intercourse with each other.

We mainly consider an SIR description of infection spread, where indi-

viduals may be susceptible (S), infective (I) or removed/immune (R). A

susceptible individual becomes infective if it has a contact with an infective

individual and an infective individual becomes removed after some random

time, which is distributed according to some given distribution. A removed

individual never becomes susceptible or infective again. Contacts between two

individuals that are connected to each other are made with rate τ . Births,

deaths and migrations are ignored, i.e. we consider a closed population.

Our analysis is not restricted to this class of models. Other descriptions

of infection spread are allowed. e.g. SEIR dynamics, with latent/exposed

class E, SIRS dynamics and SIS dynamics, where recovered individuals be-

come susceptible again. Note that if the infectious periods are exponentially

distributed, the SIS process is the common contact process [53].

If the network, the initial states of the individuals and the relevant param-

87
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eters of infectivity and infectious periods are known, in theory we can describe

the epidemic process. However, analytic methods to describe the spread on

general complex networks are not available. So it is necessary to use tech-

niques that are not precise, but capture some features of the spread. One such

a technique is using pair approximation (see e.g. [3, 10, 41, 43, 44, 62, 66, 67]

for theory and [29, 30] for a computational intensive model on a real epidemic,

using pair approximation techniques). The idea of pair approximations is ba-

sically the same as the idea behind randomly mixing populations, but here

it are not the single individuals, but the pairs of connected individuals that

are randomly mixing. In the next section we are more precise in defining the

approximation. Out of the many different types of pair approximations, we

follow Keeling [41] and Rand [67] in our discussion. The model presented in

their papers is deterministic.

In this chapter we make the assumptions needed for pair approximation

explicit. For ease of reference, we have numbered equations where approxi-

mation assumptions are made as A1, A2, . . .. We start this chapter with some

notation and basic assumptions. After that we explain the method of pair

approximations. In Section 4.4 we discuss a new approximation of the repro-

duction number R∗ (which is interpreted similarly as R0). We also discuss

other fundamental quantities like the rate of growth of the number of infective

individuals, r and the critical infectivities τc and τ̂c (to be defined later). In

Section 4.6 an infection on a given network is analysed rigorously, and results

obtained by pair approximations are compared with exact results.

4.2 Set-up and notation

We consider a closed population of N individuals. We describe the population

as a network G = (V,E), where V is the set of individuals and E is the set

of connections between individuals. We use G(N ) if we want to stress the

dependence on the number of individuals in the network. If two individuals

are connected, they are called neighbours of each other. Let n be the average

number of neighbours of the individuals and nv the number of neighbours of

individual v. We assume that individuals can only infect their neighbours. In

randomly mixing populations n = N − 1.

As mentioned in the introduction of this chapter, we consider the SIR-

epidemic. Let [S] = [S](t) be the number of susceptible individuals at time t
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and define [I] = [I](t) and [R] = [R](t) similarly. [I](0) = I0, [S](0) = N − I0

and [R](0) = 0 are given. Because the population is closed [S](t) + [I](t) +

[R](t) = N . Let [SI] = [SI](t) be the number of (ordered) pairs of neighbours

of which the first is susceptible and the second is infective at time t. Note that

under the random mixing assumption [SI] = [S][I]. More generally we define

[AB] = [AB](t) as the number of (ordered) pairs of neighbours of which the

first is in state A and the second is in state B at time t, where A and B may

be S, I or R.

A triple vivjvk consists of three different individuals where vj is connected

to both vi and vk. A triple vivjvk is a triangle if vi is also connected to vk. The

position of an individual in the notation and the orientation of the triangle are

important, so one physical triangle in the network is counted as six triangles

in our notation and analysis. We write [ABC] = [ABC](t) for the number of

(ordered) triples of which the first individual is in state A, the second in state

B and the third in state C at time t, where again A, B and C may be S, I

or R. We distinguish between [ABC]△ and [ABC]∠, where the first denotes

the number of triangles of individuals in states A, B and C, and the latter

denotes the number of triples that do not form a triangle, with individuals in

states A, B and C.

The parameter φ is defined as the number of triangles in a network divided

by the number of triples. So

φ :=

∑

[ABC]△
∑

[ABC]

where the sums are over all possible combinations of states A, B and C. This

definition of φ cannot be used for infinite networks, therefore we introduce φv.

Let φv be the fraction of pairs of neighbours of v that are neighbours of each

other, i.e. φv is the number of triangles with v in the middle position, divided

by the number of triples with v in the middle position. We note that on finite

networks

φ =
∑

v∈V

nv(nv − 1)φv
∑

w∈V nw(nw − 1)
. (4.1)

We can extend the definition of φ to infinite regular graphs for which φv is the

same for all v; for these regular networks we define φ := φv, which is consistent

with (4.1).



90 On pair approximation

If [A](t), [B](t) > 0, we define the “correlation” CAB = CAB(t) as the

fraction of the connected pairs that is in state AB, divided by the fraction of

the individuals in state A times the fraction of the individuals in state B. In

formula this reads

CAB =
[AB]/(nN )

([A]/N )([B]/N )
=

N [AB]

n[A][B]
. (4.2)

For purposes becoming clear later, we also define

C̄II = C̄II(t) = [II](t)/(n[I](t)).

An infected individual has infectious contacts at rate τ = β/n with all of

its neighbours independently of each other. If an infectious contact is made

with a susceptible neighbour, the susceptible individual immediately becomes

infective. If the neighbour is already infected or removed, nothing happens. If

each individual has exactly n neighbours, then each individual makes contacts

with rate β. Assume that the infectious period is exponentially distributed

with parameter g. Choose g = 1 (which is always possible by rescaling time).

Note that using constant rates implies the Markov property of the system.

We are interested in finding a quantity similar to the basic reproduction

number R0. Remember that R0 is defined as the expected number of direct

infections caused by one infective individual if all contacts are with susceptible

individuals (see e.g. [27]). We do not use R0 itself, because of the network

structure: only for the first infected individual do we have that all possible

first contacts are with a susceptible. However, we can define another quantity

R∗, which is interpreted as the expected number of direct infections by one

individual, infected after the start of the epidemic. In Section 4.4, we will give

a more formal definition. It is still true that if R∗ ≤ 1, then the probability

that a substantial part of the population will become infected (i.e. the prob-

ability that a major outbreak occurs) is 0; whereas R∗ > 1 implies that this

probability is positive.

We are also interested in the rate of growth of the number of infective

individuals, r [27]. This r is only meaningful if the number of infective in-

dividuals grows or decreases exponentially, which holds in randomly mixing

populations. Because we consider a network that is not complete, we use r∗
for the rate of growth of the number of infective individuals on the network.
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We will define it formally in Section 4.4.

The quantities R∗ and r∗ depend on τ . We define τc as inf{τ : r∗ > 0} and

τ̂c as inf{τ : R∗ > 1}. Those two critical infectivities are the same in randomly

mixing populations and should be the same on networks, but because we need

approximations to find R∗ and r∗, the approximated τc and τ̂c may be different.

4.3 The approximations

4.3.1 Epidemics in randomly mixing populations

In this subsection we describe an epidemic in a randomly mixing population, so

G is a complete network. We can write differential equations for the dynamics

of E([S]), E([I]) and E([R]):

d
dtE([S]) = −τE([SI]) = −β E([SI])

N−1 ,

d
dtE([I]) = τE([SI]) − E([I]) = β E([SI])

N−1 − E([I]),

d
dtE([R]) = E([I]).

(4.3)

This system of differential equations is not closed, because E([SI]) is on

the right-hand side but not on the left-hand side. A way to solve this problem

is by approximating E([SI]) by the expectation of singletons. Using

E([SI]) = E([S][I]) ≈ E([S])E([I]) (A1)

brings us back to one of the basic deterministic epidemic models [27]:

d

dt
E([S]) ≈ −β

E([S])E([I])

N − 1
,

d

dt
E([I]) ≈ β

E([S])E([I])

N − 1
− E([I]),

d

dt
E([R]) = E([I]). (4.4)

If N → ∞, the dynamics of E([I]) in a randomly mixing population is well

described by the second differential equation (setting E([S])/(N − 1) = 1).

This is consistent with the following argument: Consider the sequence of

stochastic epidemic processes, {E(N )}N∈N, with a fixed number of initially
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infected individuals. For any given time t, [S](t)/(N − 1) → 1 almost surely,

so the number of contacts made by infective individuals with other infective

individuals before time t converges to 0 if N → ∞. This implies that at the

start of the spread of an infection the number of infective individuals may with

high probability be described by a birth and death process, with birth rate β

and death rate 1. (For a more rigorous derivation of this result see [5]).

In a randomly mixing population with the contact structure described

above, the basic reproduction number [27] is given by R0 = β and the rate of

growth of the number of infective individuals is given by r = β − 1.

One remark; in many papers the quantity E([A]) is expressed as [A] and

it is interpreted as the number of individuals in state A, where the notion

of expectation is not even mentioned [27, 41]. Thinking of the dynamics of

the epidemics, implicitly using expectations, but not making this explicit, may

cause problems in interpreting the dynamics: expectations need not be integer,

while the number of individuals in a certain state should be ([59] and the first

paragraph of Section 1.3).

4.3.2 Pair approximation on networks: a first attempt

In this subsection, we consider the spread of an infection on a network that is

not complete.

The differential equations describing the dynamics of E([S]), E([I]) and

E([R]), are given by (4.3). However, because of the network structure one

might expect more correlation between the states of neighbours. Therefore

the approximation (A1) is no longer considered adequate.

Instead of using an approximation for E([SI]) in terms of singletons, it is

also possible to take the time derivative of E([SI]) and other pairs. We obtain

[41, 67]

d

dt
E([SI]) = τE([SSI] − [ISI] − [SI]) − E([SI]),

d

dt
E([II]) = 2τE([ISI] + [SI]) − 2E([II]). (4.5)

We see that triples appear on the right-hand side. The differential equation

describing the evolution of triples will have 4-tuples at the right-hand side and

in general we need (k + 1)-tuples to describe the evolution of k-tuples. The

idea of pair approximation is that the number of triples in a certain state is
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approximated in terms of the number of pairs and singletons in certain states.

A natural way to close the system at the level of pairs is as follows. Let

[A·] be the number of pairs with an A-type individual in the first position and

[AB·] be the number of triples with an A-type individual in the first and a

B-type individual in the second position. The expected number of neighbours

of an individual is n, therefore we approximate as follows;

[A·] ≈ n[A], (A2)

[AB·] ≈ (n − 1)[AB]. (A3)

These approximations are exact if every individual has exactly n neighbours.

In order to approximate [ABC] we now assume that:

[ABC]

[AB·] ≈ [BC]

[B·] , (A4)

where the number of triples in a certain state is approximated, not only the

expected number of triples in those states. In [41, 67] the even stronger ap-

proximation

[ABC] ≈ ζ
[AB][BC]

[B]
(A5)

is used, where ζ = (n − 1)/n. The approximation is stronger, because [AB]

may be large.

The differential equations (4.5) can be approximated as

d

dt
E([SI]) ≈ τE

(

ζ
[SS][SI] − [IS]2

[S]
− [SI]

)

− E([SI]),

d

dt
E[II] ≈ 2τE

(

ζ
[IS]2

[S]
+ [SI]

)

− 2E([II]).

If we assume that the infection starts with no removed individuals and that

the initial number of infective individuals is small compared to the population

size, and if we regard the situation where N → ∞, then for any given time

t, [SS](t)/[S](t) → n and [SI](t)/[S](t) → 0 a.s. and in expectation, while

[SI](t) 9 ∞ and [I](t) 9 ∞ a.s. and in expectation. Furthermore,
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( [SS]

[S]
− n

)

[SI] → 0 a.s. and in expectation, (A6)

[IS]2

[S]
→ 0 a.s. and in expectation, (A7)

which implies
d

dt
E([SI]) ≈ (n − 2)τE([SI]) − E([SI]),

for large N . Taking β̄ = (n − 2)τ shows that under our assumptions the dy-

namics of E([SI]) are described by the same equation (with a slightly changed

parameter) as the dynamics of E([I]) if random mixing is assumed.

4.3.3 Triangles in the network

Up to now we did not take the topology of the network into account. Loops

in the network have been ignored, while these loops are present in many real

networks: The probability that the friends of my friends are also my friends

is larger than to be expected if links were established by pure chance alone.

Also when individuals are not “mobile” (e.g. if the “individuals” are farms as

in Chapter 2), it holds that if individual v2 is close to both v1 and v3 then v1

and v3 are probably close too.

We need to approximate the number of triples in a certain state in terms

of the number of individuals and the number of pairs. The arguments leading

to (A4) and (A5) and the approximation that the number of triples that

are not triangles in a certain state can be approximated by the fraction of

triples that are not triangles times the number of triples in a certain state, i.e.

E([ABC]∠) ≈ (1 − φ)E([ABC]), bring us to

E

( [ABC]∠
[AB]

)

≈ (1 − φ)ζE

( [BC]

[B]

)

(A8)

and

E([ABC]∠) ≈ (1 − φ)ζE

( [AB][BC]

[B]

)

. (A9)

Furthermore, we assume that the state of individual v2 in v1v2v3 does not

depend strongly on the presence or absence of a connection between the indi-

viduals v1 and v3 [67]. This motivates the approximation
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[ABC]△
[A · C]△

≈ [ABC]∠
[A · C]∠

. (A10)

The individuals v1 and v3 in a triple that is not a triangle v1v2v3 are not

connected and therefore the dependence between their states is ignored. This

leads to the approximation

[A · C]∠ ≈ (1 − φ)n(n − 1)N [A][C]

(N )2
=

(1 − φ)n(n − 1)[A][C]

N . (A11)

Note that this assumption is not in general consistent with

[A · C]∠ =
∑

B∈{S,I,R}
[ABC]∠.

The quantity [A ·C]△ is the number of triangles with an AC pair in it. A

natural approximation is

[A · C]△ ≈ [AC](n − 1)φ. (A12)

If we take the stronger variant of (A10)

[ABC]△ ≈ [ABC]∠
[A · C]∠

[A · C]△, (A13)

this gives the approximation given in [41, 67]:

E([ABC]△) ≈ φζE

(N [AB][BC][CA]

n[A][B][C]

)

= E

( [AB][BC]

[B]
CAC

)

. (4.6)

If we use this, we obtain from the set of differential equations (4.3) and

(4.5) the approximations

d

dt
E([SI]) ≈ τE

[

ζ
[SS][SI]

[S]
((1 − φ) + φCSI) − ζ

[IS]2

[S]
((1 − φ) + φCII) − [SI]

]

−E([SI])

d

dt
E([II]) ≈ 2τE

[

ζ
[IS]2

[S]
((1 − φ) + φCII) + [SI]

]

− 2[II]

d

dt
E([I]) = τE([SI]) − E([I]). (4.7)
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4.4 Computation of basic quantities

4.4.1 The reproduction number R∗

In this subsection we give a formal definition of the reproduction number

R∗. However, in the setting of this chapter this definition cannot be applied

immediately. Therefore, we also give an alternative definition R
(t)
∗ , which can

be applied in the context of pair approximations. We assume that R
(t)
∗ ≈ R∗

and therefore in the quest for R∗ we compute and approximate R
(t)
∗ .

For the definition of R∗ we consider a sequence of populations {G(N )},
with N → ∞ and structured in a given way (Constructing the sequence is

straightforward in randomly mixing populations and in the random graphs

constructed in the next chapter). The number of individuals infected after

exactly k infection-steps in a population of size N is denoted by Ik(N ). We

define

R∗ := lim sup
k→∞

lim sup
N→∞

(E[Ik(N )])1/k.

For infections spreading in randomly mixing populations or on random graphs

the lim sup’s can be replaced by lim’s. The reproduction number can be inter-

preted as the asymptotic rate of growth of the number of infective individuals.

In the dynamical setting of this chapter, we need another definition. We

obtain this alternative definition by using the following useful idea [10, 41]:

We use differential equations similar to the equations given in the previous

sections to describe the evolution of E(CSI(t)) and E(C̄II(t)). We can find

local minima (in time) for both of these expectations. Denote these minima

by respectively x and y. We assume that the expectations E(CSI(t)) and

E(C̄II(t)) are only slowly departing from x and y. If [I](t) = 0 define CSI(t)

as x and C̄II(t) as y. We follow [41] and use the following approximations for

computing R
(t)
∗ :

CSI ≈ x,

C̄II ≈ y.
(A14)

More formally, let At be the event that there are still infective individuals

at time t and the first infection after time t happens before the first removal

after time t. Let time T = T (ǫ) be the first time that CSI ≤ x + ǫ, where

ǫ > 0 and usually chosen to be small. Now consider a sequence of networks

with {G(N ) = G(N , φN , nN )}N∈N where N ∈ N and N → ∞, φN → φ and

nN → n. Let XN (t) be defined as the total number of direct infections by the
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first individual that is infected after time t on the graph G(N ). Define

R
(t)
∗ := lim sup

N→∞
E(XN (T )|AT ),

R
(t)
∗ := lim inf

N→∞
E(XN (T )|AT ).

If the limit exists (i.e. if R
(t)
∗ = R

(t)
∗ ), we define

R
(t)
∗ := lim

N→∞
E(XN (T )|AT ).

Note that R∗ can be interpreted as the expected number of infections by an

infected individual that is infected a long time after the introduction of the

infection, while R
(t)
∗ is defined as the expected number of infections by an

individual, infected just after some stopping time.

We give an approximation of R
(t)
∗ (and thus R∗), which seems quite natural.

A newly infected individual (say v2) at time t has approximately

E

( [ISS]∠(t)

[IS](t)

)

neighbours to which its “infector” (say v1) is not connected and

E

( [ISS]△(t)

[IS](t)

)

neighbours to which v1 is connected. Consider one of the susceptible neigh-

bours (say v3) of v2. The probability that v2 has at least one infectious contact

with v3 is τ/(τ +1), because of the Markov property of the epidemic model. If

v3 is also connected to v1, then the probability that there is a contact between

v1 and v3 during the infectious period of v1 but after the moment that v2 is in-

fected, is also τ/(τ +1), by the Markov property. For the moment we ignore all

other infectious contacts of infective individuals with v3. If there are infectious

contacts between v3 and both v1 and v2, then we ascribe the infection to v1.

In fact the probability that the first of these two infectious contacts is with v2,

is 1/2 but we ignore the probability that v3 is infected by some other infective

neighbour. In this way we hope to correct for that assumption. In Section 4.6

we show that on some regular networks this assumption is plausible. So we

use the approximation
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R
(t)
∗ ≈ E

( τ

τ + 1

[ISS]∠
[IS]

)

+ E

( τ

τ + 1

1

τ + 1

[ISS]△
[IS]

)

. (4.8)

By the assumptions (A10) and (A12), we obtain

R
(t)
∗ ≈ τ

τ + 1
E

( [ISS]∠
[IS]

)

+
τ

(τ + 1)2
E

( (n − 1)φ[ISS]∠
(1 − φ)n(n − 1)(N )−1[I][S]

)

. (4.9)

By using the same idea as used for approximation (A4) we write:

R
(t)
∗ ≈ τ

τ + 1
E

(

(1 − φ)ζ
[SS]

[S]

)

+
τ

(τ + 1)2
E

( ζφ[SS][IS]

n(N )−1[I][S]2

)

=
τ

τ + 1
E

(

ζ
[SS]

[S]

(

(1 − φ) +
1

τ + 1
φCSI

))

.

Recall that if N is large and the number of initial infective individuals is

relatively small, then at the start of the epidemic N−1[S] ≈ 1, N−1[SS] ≈ n.

Furthermore we have assumed in (A14) that CSI ≈ x. Using this, we obtain

R
(t)
∗ ≈ τ

τ + 1
(n − 1)(1 − φ) +

τ

(τ + 1)2
(n − 1)φx. (4.10)

The value of x may be deduced as follows. Compute the time derivatives

of E(CSI) and E(C̄II) under the assumption that [I] > 1. (Although Keeling

does not use expectations, the computations are similar to [41]):

d

dt
E(CSI) = τ

N
n

E

[ [S][I]

([S] − 1)([I] − 1)

[ISS] − [ISI] − [SI]

[S][I]

]

−τ
N
n

E

[

− [SI]2([S] − [I] − 1)

[S]2[I]2

]

,

d

dt
E(C̄II) = τE

[ [I]

[I] + 1

(

2
[ISI] + [IS]

n[I]
− [IS][II]

n[I]2

)]

− E

[ [I]

[I] − 1

[II]

n[I]

]

.

By using the assumptions (A3),(A4),(A10),(A11) and assuming that N → ∞
and N−1[S] → 1 we obtain:
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d

dt
E(CSI) = −τE

[ [I]

[I] + 1

(

CSI + C2
SI − (n − 1)(CSI − C2

SI)(1 − φ)
)]

−τE

[ [I]

[I] + 1

(

φ(n − 1)C2
SIC̄II

)]

,

d

dt
E(C̄II) = τE

[ [I]

[I] + 1

(

2φ(n − 1)C2
SIC̄II − nCSIC̄II + 2CSI

)]

−E

[ [I]

[I] − 1
C̄II

]

.

The quotients [I]/([I]+1) and [I]/([I]−1) are in the differential equations,

because of the correlation between the changes in [SI] and [I]. However, if

the process does not go extinct [I](t) will with high probability grow large,

and therefore the quotients can be approximated by 1. Note that we assume

(A14), so the right-hand sides are constants. We know that x and y are the

fixed points of the equations, so

y =
2τx

1 + nτx − 2(n − 1)φτx2
(4.11)

1 = (n − 1)(1 − φ)(1 − x) − 2(n − 1)φτx2

1 + nτx − 2(n − 1)φτx2
− x. (4.12)

Therefore, the equation from which x can be deduced is:

nζ(1 − x)(1 − φ) − 2nζτφx2

1 + nτx − 2nζτφx2
− x = 1. (4.13)

4.4.2 The rate of growth r∗

In a sequence of randomly mixing population {G(N )}N∈N the rate of growth

r is defined as

r := lim
t→∞

lim
N→∞

d

dt
log[E([I](t))]. (4.14)

The quantity can be of even more use than R0 because it is relatively easy to

estimate (Chapter 3). We also have the interpretation that if r < 0, then a

major outbreak will almost surely not occur, while if r > 0, a major outbreak

has positive probability.
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In our context we do not assume random mixing, but in a large populations,

we can still define some variant of r, by

r∗ :=
d

dt
log[E([I](T ))], (4.15)

where T is defined as in the previous section.

If N is large, the differential equations (4.7) can be further reduced to

d

dt
E([SI]) ≈ τE

(

[SI]
[

ζn(1 − φ) + ζnφCSI − ζnφCSIC̄II − 1
])

− E([SI])

d

dt
E([II]) ≈ 2τE

(

[SI]
[

ζnφCSIC̄II + 1
])

−2E([II])

d

dt
E([I]) = τE([SI]) − E([I]). (4.16)

For large N , the last of these differential equations can be reformulated as

d

dt
E([I]) ≈ nτE([I]CSI) − E([I]). (4.17)

With CSI = x is constant (assumption (A14)), we obtain

r∗ =
d

dt
log(E([I])) ≈ nτx − 1. (4.18)

The quantity r∗ gives us an indication on whether or not the infection can

spread in the population. So if r∗ > 0, spread is possible and if r∗ < 0, it has

probability 0.

Remark: The estimates of R∗ (R
(t)
∗ ) and r∗ are not consistent with each

other. In randomly mixing populations r > 0 ⇔ R0 > 1, but this does not

hold for R∗ and r∗. However in the random mixing case and if φ = 0 the

equivalence of R∗ > 1 and r∗ > 0 do hold.

4.4.3 The critical infectivities τc and τ̂c

Let τc be the value of τ for which r∗ = 0, so τc is the value of τ for which

τnx = 1 holds. The definition of τc together with (4.13) gives:

ζ(n − 1

τc
)(1 − φ) −

2ζφ 1
nτc

1 + 1 − 2ζφ 1
nτc

− 1

nτc
= 1. (4.19)
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We know by the remark at the end of the previous subsection that r∗ = 0

does not necessarily imply that R∗ = 1. We define τ̂c as the value of τ for

which R∗ = 1. So

τ̂c

τ̂c + 1
(n − 1)(1 − φ) +

τ̂c

(τ̂c + 1)2
(n − 1)φx = 1

We do not have an explicit expression for τ̂c based on this equality, but if we

know n and φ. We can give a numerical value of τ̂c.

4.5 Remarks

• The approximations (A9) and (4.6)

E([ABC]∠) ≈ (1 − φ)ζE

( [AB][BC]

[B]

)

E([ABC]△) ≈ φζE

(N [AB][BC][CA]

n[A][B][C]

)

,

may give nonsense: Consider E([III]), which is approximated by

(1−φ)ζE

[ [II]2

[I]

]

+φζE

[N
n

( [II]

[I]

)3]

= (1−φ)ζnE([II]C̄II)+φζNn2
E(C̄3

II).

For large N , we have assumed that C̄II stabilizes around y rather quickly.

This y will be positive if there are still infective individuals with susceptible

neighbours. Furthermore, y does not depend on N explicitly as long as N
is large by (4.11). If φ > 0 then the approximation for [III] grows linearly

in N . So for large enough N , the approximation for [III] may be much

larger than n(n− 1)[I], which is the real number of triples with an I in the

centre position, which should be impossible.

It is not clear what the consequences of this possibly failing approximation

are for the analysis of SIR epidemics. The number of triples [III] is not

in (4.3) and the approximations for [ISS] and [IIS] (which are used in the

differential equations) do not lead to such obvious problems, but it is not

altogether clear that the approximations are good. However, the results of

simulations in [41] are rather “consistent” with the predictions made using

pair-approximations, so simulations suggest that the approximations are fit

to describe SIR-dynamics.
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Problems will arise if one uses pair-approximations for other more involved

epidemic dynamics like in [8]. In the model described in that paper there

are two states of infectivity. An individual can be mildly and severely in-

fective. If a susceptible individual has a contact with an infective (mildly

or severely) individual, it becomes mildly infective. If a mildly infective

individual has a contact with another infective (mildly or severely) individ-

ual, it becomes severely infective. The contact rates of mildly and severely

infective individuals may be different. Let [Im] be the number of mildly

infective individuals and [Is] the number of severely infective individuals.

The differential equation for the dynamics of E([Is]) has a term E([IsIm])

on the right-hand side, while the differential equation for the dynamics of

E([IsIm]) has a term E([ImImIm]) on the right-hand side. Pair approxima-

tion for E([ImImIm]) will give inadequate results. This can be shown in the

same way as the inadequacy of the approximation for [III] in SIR-type

epidemics is shown above.

• The approximations used for our computation are the expectations of (A4):

E

( [ABC]

[AB·]
)

≈ E

( [BC]

[B·]
)

, (4.20)

the expectations of (A10):

E

( [ABC]△
[A · C]△

)

≈ E

( [ABC]∠
[A · C]∠

)

,

(A3), (A6), (A7), (A11), (A12) and (A14). Keeling and Rand [41, 67] are

less precise in stating what their assumptions are, but all of the assumptions

stated in this paper are implicitly used in their papers.

• The analysis of the spread of the infection by differential equations depends

very strongly on the Markov-property of the spread. So if the infectious

period has another distribution than the exponential distribution, or if the

infectivity depends on the time since infection, the analysis changes and, as

a rule, becomes much harder.

• It is generally not true that E([ABC]△) ≈ φE([ABC]) throughout the epi-

demic. In the literature this equality seems to be used implicitly (e.g. [41],

equation (10)), and it is the cornerstone for approximations as (A9) and

(A11). The approximation is not used directly in (A10), which would make
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analysis easier, but gives less reliable results. In [67] a correction is pro-

posed, but this correction needs to be obtained from simulations, and differs

from network to network.

• In [41] and in [10] the expression R0 is used. This R0 is not defined in the

usual sense. Although the claim is that their R0 means something similar

as R∗ in this chapter, it is in fact more like r∗ + 1. In [41] R0 = xnτ . If

φ = 0 (which implies that x = 1 − 2/n by (4.13)) and if τ is large, this

R0 may exceed n, which should be impossible, because only the neighbours

of an individual can be infected by it. In [10] this problem is noticed and

some ingenious methods are used to define an R0 that cannot exceed n.

However, Bauch is studying an SIS-type of infection. One can define R0

as the expected number of times susceptible individuals become infective

by a contact with the initial infective, during its first infective period. A-

priori there is no reason that this does not exceed n, because neighbours

may recover and become reinfected again. The way R0 is computed in [10]

also points in the direction of computing a quantity which can be directly

obtained from r (this is mentioned by Bauch, but the interpretation of

the computed R0 stays vague). Note that, even with the definitions of R0

proposed in [10] and [41], if CSI really converges, the critical value τ̂c for

which R∗ = 1 is approximated correctly, because nτ [SI]/(n[I]) = 1 implies

τ [SI] = [I], which implies that the expected number of infectives after the

next event (infection or removal) is the same as the number of infectives

just before that event.

• An important observation is that CSI stabilizes at a constant x by assump-

tion and we may therefore write d
dt [I] = τ [SI] − [I] ≈ nτx [S]

N [I] − [I]. This

describes a mean-field model with infection rate nτx and detection rate 1

(this is observed, but not explained in [44]).

• If R∗ > 1, it is still possible that the infection goes extinct very quickly.

The probability of a large outbreak cannot be obtained by the methods

presented in this chapter, because all of the used approximations are about

expectations.

• If the infection does not go extinct, the number of infected individuals is

predicted to grow exponentially at the start of the epidemic. However, if

the infection spreads on a regular two-dimensional lattice (e.g. the trian-

gular lattice), it spreads like a travelling wave, so the number of infected
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individuals will grow quadratically [58]. So, by using pair approximations

one implicitly assumes that on the networks we use, there is exponential

growth of the number of infectives at the start of the epidemic.

• It may be worth considering the invasory pair approximation idea of [10] in

an SIR setting. Describing the dynamics will become harder than in the

SIS-case, because of the extra state R.

4.6 An example

In this section we compare the R∗ computed using pair approximation tech-

niques, with the real R∗ on a graph, where we can analytically obtain R∗.

As before, we consider an SIR epidemic with exponentially (parameter 1)

distributed infectious period and assume that an infective individual makes

contact to every neighbour with rate τ . We choose an infinite network that is

not finite dimensional in structure, because if the network is finite dimensional

the number of infective individuals will grow polynomially [58]. Instead we

choose a network G = (V,E) that has a treelike structure and is transitive,

i.e. for all v1 ∈ V and v2 ∈ V there exists an automorphism on G that maps

v1 on v2. The network we take as an example can be seen as a tree of cliques

(complete sub-networks). Every individual is member of two cliques of size

four, where we assume that the cliques form a tree, i.e. the network has no

loops apart from loops within a clique (See Figure 4.1).

We assume that there is one initial infective. In the network all individuals,

apart from the initial infective, will cause the same expected number of direct

infections, conditioned on the event that they are infected themselves. Now

let the random variable X be the number of susceptible individuals in a clique

containing the initial infective individual, that ultimately become infected.

So X can take values 0, 1, 2, 3. Let the random variable Y be the number

of initially susceptible individuals in a clique containing the initial infective

individual, that are directly infected by the initial individual. Note that it

holds for every clique that if there has been an infective individual once, and

there are no infective individuals anymore, then the infection will never be

re-introduced in that clique because there are no loops in the network, apart

from the loops within a clique. Furthermore, apart from the initial infective

individual, every infected individual is the first infective in one clique and a

secondary infective in another clique.
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We may compute R∗ for the infection on this network. We consider a newly

infected individual, v1. In the household of which v1 is the first infective it

will directly infect a random number of individuals, this random number is

distributed as the random variable Y . The first infective individual in the

household of which v1 is a secondary individual is called v0. The number of

ultimately infected individuals in that particular household is Xv0
and the

number of those infected individuals that are directly infected by v0 is Yv0
.

Note that the pair (Xv0
, Yv0

) is distributed as (X, Y ). Because of “weighted”

(or “size-biased”) probabilities, the probability that the household in which v1

is a secondary infective individual, totally has k secondary infective individuals

is (E(Xv0
))−1kP(Xv0

= k). Because it is not possible to distinguish between

the secondary individuals, the expected number of individuals directly infected

by v1, in the household of v0 if the total number of secondary infections is

k ≥ 1, is given by E(k−1(k − Yv0
)|Xv0

= k). So the expected number of

individuals directly infected by v1 is given by

E(Y ) +

4
∑

k=1

kP(Xv0
= k)

E(Xv0
)

E(k−1(k − Yv0
)|Xv0

= k)

= E(Y ) +

4
∑

k=1

k
∑

l=0

P(X = k)

E(X)
P(Y = l|X = k)(k − l)

= E(Y ) +
4
∑

k=1

k
∑

l=0

1

E(X)
P(Y = l,X = k)(k − l)

= E(Y ) +
1

E(X)
(E(X) − E(Y ))

= E(Y ) + 1 − E(Y )

E(X)
.

To compute the distribution of X the following theorem from [3] (originally

in [4]) on epidemics in randomly mixing populations can be used:

Theorem 4.6.1 Consider the standard SIR epidemic starting with n̄ suscep-

tible individuals and m infective individuals. Let λ be the total infection rate

for an infective individual (i.e. λ = τ n̄) and I the infectious period. Denote by

P n̄
k the probability that the final size (without the initially infected individuals)

of the epidemic is equal to k, 0 ≤ k ≤ n̄, and let φ(θ) := E[exp(−θI)] be the
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O

Figure 4.1: Network where each individual is member of two cliques of size
four and where the cliques form a tree.

Laplace transform of I. Then

l
∑

k=0

(

n̄ − k

l − k

)

P n̄
k /[φ(λ(n̄ − l)/n̄)]k+m =

(

n̄

l

)

for 0 ≤ l ≤ n̄.

If the infectious period is exponential with parameter 1, then

[φ(λ(n̄ − l)/n̄)]k+m = [φ(τ(n̄ − l))]k+m = 1/[τ(n̄ − l) + 1]k+m.

Note that we consider the spread in a clique of size 4, with m = 1 and n̄ = 3,

so P(X = k) = P 3
k . Now we can iteratively obtain P(X = k). By long but

straightforward computations we obtain,

E(Y ) =
τ(6 + 54τ + 180τ2 + 267τ3 + 175τ4 + 44τ5)

2(1 + τ)3(1 + 2τ)2(1 + 3τ)
.

Using this we obtain for R∗:

R∗ = 1 +
λ(6 + 54λ + 180λ2 + 267λ3 + 175λ4 + 44λ5)

2(1 + λ)3(1 + 2λ)2(1 + 3λ)

−6 + 54λ + 180λ2 + 267λ3 + 175λ4 + 44λ5

6(1 + 11λ + 45λ2 + 73λ3 + 48λ4 + 12λ5)
. (4.21)
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Figure 4.2: Plot of exact R∗ (solid line), R
(t)
∗ (dashed line), max(R

(k)
∗ , 3)(dotted

line) and R
(ka)
∗ (alternating dot/dash line) against τ .

For the network in Figure 4.1, φv = 2/5 for all v and n = 6. This is enough

information to deduce x from (4.13).

We want to compare this exact R∗ with the R∗ obtained by pair approxi-

mations. In order to distinguish between the different approximations we use

R
(k)
∗ for the approximation of R∗ proposed by Keeling [41], R

(ka)
∗ for an alter-

native of this definition of Keeling, to be defined in the next paragraph, and

R
(t)
∗ for the new R∗ approximation proposed in (4.10).

We already observed that R
(k)
∗ = nxτ explodes for large τ . An alternative

definition of R∗ could be R
(ka)
∗ := nxτ(1+ τ)−1, with the intuition that an in-

fective individual has on average nx susceptible neighbours and the probability

that there is an infectious contact with a given neighbour is τ(1 + τ)−1, but

we also saw that under the assumptions of pair approximations τc = (nx)−1

is reasonable. In order to get R
(ka)
∗ = 1 if τ = τc, we change R

(k)
∗ to

R
(ka)
∗ =

nxτ

1 + τ

nx + 1

nx
=

(nx + 1)τ

1 + τ
. (4.22)

The different R∗ approximations are plotted for 0 ≤ τ ≤ 2 in Figure 4.2, where

we have cut off R
(k)
∗ . In Figure 4.3 the differences between the approximated

and the real R∗ are given.
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Figure 4.3: R
(t)
∗ − R∗ (dashed line), max(R

(k)
∗ − R∗, 0.6) (dotted line) and

R
(ka)
∗ − R∗ (alternating dot/dash line).

We observe that especially for τ < 1 the approximations of R∗ are good.

However, for large τ the approximations of R∗ are too large. This is because we

ascribe all secondary infected individuals in a clique, that has made infectious

contacts with the first infective individual in that clique, to that first infective

individual. In reality the spread of the infection can make detours, therefore

we could have expected to obtain an estimated R∗ that is too large.

From Figure 4.2 we see that the approximation for τ̂c (the value of τ

for which R
(t)
∗ = 1) is rather good (τ̂c, τ̂

(t)
c , τ̂

(k)
c and τ̂

(ka)
c are respectively

approximated by 0.34, 0.38, 0.37 and 0.37, where the superscripts in τ̂c denote

the approximation used.) We do not analyse r∗ on this network, because it is

hard to obtain the analytical results for this parameter on this network.

Suppose now that we look in retrospect to the spread of the infection on

the network and our only observations are whether or not an infectious contact

is made across a connection, but we do not know the times of the infectious

contacts. We have to analyse the spread in another way: We say that a con-

nection is open if an infectious contact is made across that connection, and

otherwise it is closed. Define the open chemical distance of an individual to

the initial infective individual as the minimal number of open connections that

must be crossed to reach that particular individual from the initial infective

and call all individuals at open chemical distance i from the initial infective

individual generation i individuals. Let Ai be the event that there is a gener-
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Figure 4.4: Difference of R
(t)
∗ , approximated as in (4.10), and R̂∗, defined in

(4.23)

ation i individual infected in the course of the epidemic. Let vi be a uniformly

chosen generation i individual that is infected in the course of the epidemic

and let R(vi) be the number of open connections of vi to individuals that have

no open connections to individuals at open chemical distance strictly less than

i from the initial infective. Define R̂∗ = limi→∞ E(R(vi)|Ai).

Let Y be the number of individuals in a clique containing the initial infec-

tive individual that have an open connection to the initial infective. Because

the marginal probability that a connection is open is (τ +1)−1τ and the num-

ber of individuals in a clique is 4, E(Y ) = 3(τ +1)−1τ . By the same arguments

as used for R∗ we have

R̂∗ = E(Y ) + 1 − E(Y )

E(X)
(4.23)

We can compare this R̂∗ with the approximation R
(t)
∗ . The difference of the

approximated R∗ (equation (4.10)) and R̂∗ is given in Figure 4.4. We see that

this difference is very small. We could have expected that R
(t)
∗ is a better

approximation for R̂∗ than for R∗, because in the approximation (4.10) the

way of ascribing infections to “infectors” is similar to the way this is done in

the definition of R̂∗.
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Chapter 5

Random graphs as an

approximation for networks

on which infection spreads

5.1 Introduction

In Chapter 4 we presented one way to analyse the spread of an infection on

a network, namely pair approximation. There are other ways to deal with

epidemics on networks (see [43] for references).

If it is assumed that an infectious disease has special features such as

fixed or exponentially distributed infectious periods and fixed infectivity, some

features of the epidemic can be explored analytically on special networks such

as regular lattices or trees (see [33, 39] for the needed theory.) However, for

many networks, analytical methods to study the spread of the infection are

not available.

Pair approximation as presented in the previous chapter has some draw-

backs: In order to use pair-approximation techniques one needs to assume that

the process has the lack-of-memory property, in the sense that all information

needed to predict the future of the spread, are the number of susceptible, in-

fective and removed individuals at the moment of prediction. In stochastic

models, this assumption corresponds to exponentially distributed infectious

periods of infected individuals and constant infectivity of the individual dur-

ing that period. The lack-of-memory property is a rather strong assumption,

111
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and therefore not desirable. Furthermore, the theory does not provide a way

to estimate the probability of extinction of the infection.

Of course, computer simulations can be used to explore the dynamics of

infection spread on networks, but a major disadvantage of simulations is that

it is very hard to explain why the dynamics are as they are and on what

properties of the graph and on what characteristics of the infection the overall

dynamics depend. Furthermore, the parameter space may be too large to be

sure that interesting behaviour of the spread does not occur in parts of the

parameter space that are not explored.

As an alternative to pair-approximation, random graphs are proposed to

describe the spread of the infection on large networks (see [28] for references).

The network on which the infection spreads is replaced by a random graph with

the same number of vertices as the original network and a degree distribution,

D, that is based on the original network (e.g. one may choose P(D = k)

to be the fraction of the individuals that have k neighbours in the original

network). On this random graph we can take some randomness of the spread

into account. In addition, we can compute or approximate the probability of

extinction of the infection on the random graph.

However, only a small number of triangles arise naturally by the construc-

tion of the random graphs. Small loops in the network are important for the

spread of the infection, because if two susceptible individuals, v1 and v2, that

are neighbours of each other, have a common infected neighbour, v3, they may

both become infected by v3. If that happens, v1 cannot be infected by v2 (and

vice versa). So, the random graph models proposed in the literature [28], will

overestimate the spread. The number of triangles in the network is used for

pair approximations, but not in random graph models.

The main purpose of this chapter is to construct a random network to

approximate a given network, that does have the desired expected number of

triangles. The network consists of members of “households” (fully connected

groups of individuals/cliques) and “bachelors” (single individuals, that are not

part of any household). By choosing the ratio of households and bachelors,

the distribution of the household sizes and the degree distribution of bachelors

in a specific way, we can construct a random graph with the desired degree

distribution and the desired fraction of “triples” that are also triangles.

One problem remains: It is very difficult to get analytic results for the

spread of general infections on a random network. However, we can give
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bounds for the reproduction number R∗ (see Chapter 4) and the probability

of extinction of the infection. Kuulasmaa [51] proved that it is possible to

compare infections with the same marginal probability, say p, that at least

one infectious contact between an infective and a given neighbour, is made

during the infectious period (see also [25]). If the infectious periods are fixed

and the infectivity is constant during this infectious period, R∗ is maximal and

the extinction probability of the infection is minimal. While if the infectious

period is infinite with probability p, and 0 with probability 1−p, R∗ is minimal

and the probability of extinction is maximal.

Analysing the spread of the “bounding infections” on the constructed ran-

dom graph is not harder than analysing the spread of the infection by pair

approximations, but now we can take the randomness of the spread into ac-

count. For the analysis of the epidemic on the random graphs we will use

techniques from branching processes (see e.g. [39]).

In this chapter, an obvious relationship between the spread of an infec-

tion across a network and the theory of percolation is used (see Chapter 1

and [25]): Consider the original network and replace all connections between

neighbours by two directed edges with opposite directions. Then ascribe pos-

itive random variables, I(v), to all individuals, where these random variables

are i.i.d. and distributed as the infectious period of the infection, I. Now the

edge directed from v1 to v2 is closed with probability e−τι(v1) (where ι(v1) is a

given realization of I(v1)) and open with probability 1 − e−τι(v1), where τ is

some constant.

This process can be coupled to a stochastic epidemic process. One can see

this by interpreting the random variable I(v) as follows: If individual v be-

comes infective it stays infective for a random time I(v). The individuals that

can be reached by paths from the initial infective individuals, are the individ-

uals that ultimately become removed. If the infectious period is fixed at ι and

p := 1− e−τι then the states of edges (open or closed) are independent of each

other. This means that the random process described above is the same as the

bond-percolation process on the directed network with parameter p [33]. If the

infectious period is infinitely long with probability p and of duration 0 with

probability 1−p, the random process described above is linked to site percola-

tion with parameter p: Vertices with infinite infectious period are open, while

vertices with infectious period 0 are closed. The individuals that ultimately

become removed are the individuals that are in the site-percolation clusters
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Figure 5.1: Triangular lattice

of the initial infective individuals, together with the neighbours of individuals

in those clusters. On infinite connected graphs the critical probability pbond
c is

the infimum of the connection probabilities for which the probability that the

origin is in an infinite bond percolation cluster is strictly positive. The critical

probability psite
c is defined similarly. (See Section 1.5).

In order to illustrate our analysis, we will consider the spread of an infection

on the triangular lattice (Figure 5.1). For this lattice, pbond
c and psite

c are known

explicitly. We may a-priori argue that our methods are not fit for analysing

the spread of infections on such a regular network, but the triangular lattice

can be used for demonstrating the method.

This chapter is organized as follows: In Section 5.2 some notation and ter-

minology is introduced. In Section 5.3 we give results from percolation theory,

which we use in the analysis of the epidemics. After that the construction of

the random graphs is discussed, where the construction of the random graphs

as previously done in the literature is our starting point. This construction

leads to the construction of the random graphs with a “given expected fraction

of connected triples that are also triangles”. Finally we discuss the results and

possible further research.

5.2 Notation and terminology

Some of the notation and terminology needed in this chapter is already given

in Section 4.1. In this section we give further notation and terminology that

we use for the definition of our networks and the description of the epidemic

spread on the network.
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First the words network and graph have the same meaning and we use the

words depending on the context. In a same sense we speak of the vertices

of a graph and the individuals in a network. Edges of the graph are possible

contacts or connections between individuals of the network. Two individuals

that are connected are neighbours of each other. We always assume that the

number of vertices in the graph is large and that the average degree of a vertex

(the number of edges with the given vertex as one of the endpoints) is small

compared to the number of vertices. Later on we will be more precise by what

is meant with “small” and “large”. We consider graphs G = (V,E), where

V is the set of vertices and E is the set of edges in the graph. As in the

previous chapter, N = |V | is the number of vertices in the graph. Let Nk be

the number of vertices with degree k. Define nv as the degree of individual v.

In the random graphs that are used in Section 5.4, the degree of v is

a random variable D(v), where the D(v) are i.i.d. and distributed as the

random variable D. The degrees of the individuals in the original network are

considered to be samples from D, so D should be chosen in a proper way, e.g.

the distribution may be defined as P(D = k) = N−1Nk. It is assumed that D

has finite variance and that it does not depend on the number of vertices in the

random graph. Vertices/individuals are denoted by vi and edges/connections

are denoted by vivj , where vi and vj are the endpoints of the edge. We count

vivj and vjvi separately.

We again consider SIR-type systems in a closed population, i.e. systems

where individuals may be susceptible (S), infected/infective (I) or removed/

immune/ death (R), and where, after removal, individuals never become sus-

ceptible or infective again. Birth and migration are ignored and deaths are

only possible by removal. A dead individual is still part of the network, so the

death of an individual does not influence the contacts between other individ-

uals (this is contrary to assumptions in most mass-action models).

An infected individual has infectious contacts at rate τ with all of its

neighbours. If an infectious contact is made with a susceptible neighbour,

the susceptible individual immediately becomes infective. If the neighbour is

already infected or removed, nothing happens. In this chapter we use p for the

marginal probability that an infective individual v1 has at least one infectious

contact with a given neighbour v2, so p is the marginal probability that an

infected individual infects a given susceptible neighbour. We use I(v) for the
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(random) length of the infectious period of individual v. The random variables

I(v) are i.i.d. and distributed as a given random variable I.

One remark: We do not need the assumption of a fixed infectivity during

the infectious period, and of SIR-dynamics. We only use the probability that

at least one infectious contact is made between an infectious individual and

a neighbour. If we assume that there is a latent period (SEIR-dynamics) or

that the infectivity depends on the time since infection, we can still compute

the probability that individual v1 has a contact with its neighbour v2, during

the infectious period of v1.

In this chapter we use the formal definition of R∗ from Chapter 4. So,

we consider a sequence of populations with growing sizes and structured in a

given way (Constructing the sequence is straightforward in randomly mixing

populations and in the random graphs constructed in this chapter). The num-

ber of individuals infected at the k-th infection-step in a population of size N
is denoted by Ik(N ). We define

R∗ := lim sup
k→∞

lim sup
N→∞

(E[Ik(N )])1/k.

For infections spreading in randomly mixing populations or on random graphs

the lim sup’s can be replaced by lim’s.

On infinite graphs, we use q = q(G, I, p) for the probability of extinction

of the infection, if the infection started with one uniformly chosen infected

individual. The threshold probability pc = pc(G, I) is defined by

pc := inf{p : q(G, I, p) < 1}.

The theory and terminology of multi-type branching processes [39] is used in

both the construction of random networks and in the spread of the infection.

If there is only one initial infective individual, this individual will be the root

or ancestor. Neighbours of this individual are in generation 1. Neighbours

of generation i individuals that are not in generation j, for any j ≤ i are in

generation i + 1. We use the maternal terminology, so we speak of mothers

and daughters. In the networks we construct, an individual can have at most

one mother. M is the mean offspring matrix. We use qi for the probability

that the branching process goes extinct if there is only one ancestor, which is

of type i. Define q̄ = (qi, · · · , qr) as the probability of extinction vector of an
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r-type branching process. Let s be a vector of length r. We always use f (i)(s)

for the generating function of the number of daughters of a type i individual.

The vector f(s) = (f (1)(s), · · · f (r)(s)) is the vector of generating functions all

with the same variable s.

In Section 5.4 we need a model, in which the ancestor has another offspring

distribution than her progeny. Let f(s) and qi be defined as before where the

offspring distribution is that of an individual that is the ancestor, let f̃(s) be

the vector of generating functions of the offspring distributions of individuals

that are not the ancestor. Similarly, define q̃i as the probability that the

offspring of an individual of type i, which is not the ancestor, goes extinct.

Finally define q̃ = (q̃i, · · · , q̃r).

5.3 Results from percolation theory

In the introduction of this chapter and in Chapter 1 we already discussed the

relation between percolation theory and epidemics on networks. In Section 5.4

we use this relation to determine upper and lower bounds for R∗, q and pc on

random networks, if we do not know the actual distribution of the infectious

period. We refer to [33] for an introduction to percolation theory.

We consider a percolation system that we will call locally dependent perco-

lation [25, 51]: Assign a random variable I(v), 0 ≤ I(v) ≤ ∞ to each vertex v,

where the random variables are i.i.d. and distributed as some random variable

I. Edges going out of v are open with probability 1 − e−τι(v), where ι(v) is

a realization of I(v) and τ is a positive constant. Conditioned on the real-

izations of I(v), the states of the edges are independent of each other. The

marginal probability that an edge is open, is p = E(1−e−τI). The probability

that a given edge v1v2 is open only depends on the realization of I(v1): The

state of v1v2 is correlated with the states of the other edges with v1 as its first

end vertex, but is independent of the states of the edges with another first

vertex. The parameters τ , p and I can be interpreted in the way as they are

defined in Section 5.2.

As noted in the introduction of this chapter, bond percolation and site per-

colation on directed graphs are special cases of locally dependent percolation.

In [33] undirected graphs are considered. However, by [25] we know that the

clusters of points that can be reached by open paths from a given vertex does

not depend on whether the graph is directed or not. Particularly, the critical
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(marginal) probability of connections

pc = inf{p; P(|C0| = ∞) > 0}

does not depend on whether the graph is directed or not, where C0 is the set

of vertices that can be reached by an open path for the origin. Note that in

general pc does depend on I.

In [51] different epidemics of infections on a connected graph G are com-

pared. The infections have different infectious periods, but the marginal prob-

ability p of having an infectious contact with a given neighbour is the same

for all infections. Theorem 4.1 of [51] states implicitly that for given p, fixed

infectious periods will give the smallest threshold value above which a major

outbreak has positive probability. So the threshold for a major outbreak is

above the critical value pbond
c = pbond

c (G) of bond percolation on G. A direct

consequence of Theorem 4.1(i) of [51] is that the infection with the fixed infec-

tious period gives R∗ = Rbond
∗ which is larger than or equal to the R∗ of any

infection with the same marginal probability of at least one infectious contact

across an edge. Furthermore, the infection with the fixed infectious period has

a probability of extinction, qbond, which is less than or equal to the probabil-

ity of extinction of any other infection with the same marginal probability of

infectious contacts.

Consider an infection, say A, such that with probability p an infectious

individual will have infectious contacts with all of its neighbours and with

probability 1 − p it will have infectious contacts with none of his neighbours.

A direct consequence of Theorem 2.1 of [51] (observed in [25]) is that A will

have the largest threshold value above which a major outbreak has positive

probability (i.e. for an infection with general infectious period this threshold

will be less than the critical value psite
c = psite

c (G) for site percolation on

G.) Another direct consequence of [51] (but not mentioned before in the

literature) is, that A also has the smallest R∗ (Rsite
∗ ) and the largest probability

of extinction (qsite) among all infections with marginal infection probability p.

So, for the critical probability pc, the probability of extinction q and the

reproduction number R∗ holds that on every G

pbond
c ≤ pc(I) ≤ psite

c ,

qbond ≤ q(I) ≤ qsite,

Rsite
∗ ≤ R∗(I) ≤ Rbond

∗ .

(5.1)
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Example: It is known [33] that on the triangular lattice the critical prob-

abilities for bond and site percolation are given by

pbond
c = 2 sin(π/18) ≈ 0.347, (5.2)

psite
c = 1/2, (5.3)

Hence, for the critical marginal infection probability pc for infections spreading

on the triangular lattice it holds that 2 sin(π/18) ≤ pc ≤ 1/2. Closed formulae

for the extinction probabilities and R∗ of epidemics on the triangular lattice

are not known.

5.4 Random networks

5.4.1 Introduction to random networks

In the literature on pair approximations deterministic models to analyse the

spread of an infection on a network are discussed. In this section we use a

stochastic model. We approximate the given non-random network on which

the epidemic spreads by a random network, which has a degree distribution

“based” on the original network. The expected fraction of triangles, φ (see

Chapter 4) in the random graph is the same as φ is the given non-random

network. On the random network we have more tools to analyse the spread of

the epidemic (see Chapter 2 of [28]). Throughout we assume that the number

of individuals, N is large and that all individuals have a small (compared to

N ) number of neighbours.

We use a sequence of random graphs to approximate the network. The

limit behaviour for the epidemic as the number of vertices in the random graph

grows to infinity, is analysed. The random graphs have a given expected φ

and degree distribution, D, where P(D = k) can be chosen to be the fraction

of the individuals in the original network, that have k neighbours. This gives

insight in the spread of the epidemic on a graph with large N . We use N ∗ for

the number of vertices in the random graph.
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5.4.2 Construction of an approximating network, not taking φ

into account

The material in this subsection is entirely covered by [28], but we need the

methods for the construction of random graphs with given φ. Here is how we

construct a random graph G(N ∗, D), with N ∗ vertices and degree distribution

D:

• Let there be N ∗ vertices and assign a random number of so called half-edges

(edges with only one endpoint assigned to a vertex) to each vertex, where

the number of half-edges assigned to the vertices are i.i.d. and distributed

as D.

• If the total number of half-edges is odd repeat the first step until the number

of half-edges is even.

• Pair the half-edges at random (In such a way that all possible pairings have

equal probability).

Because D has finite variance, the number of self loops (an edge that connects

a vertex to itself) and the number of parallel edges (two edges with the same

endpoints) in the constructed graph are asymptotically Poisson distributed

with parameters independent of N ∗ (Theorem 2.1.1 of [28]). So if N ∗ is large,

self loops and parallel edges are sparse in the network.

We consider a sequence of random graphs, {G(N ∗, D)}N ∗ , constructed as

above, for a strictly increasing sequence, N ∗. For each of the graphs a vertex

is uniformly chosen to be the origin (this individual at the origin will be the

initially infected individual). The probability that the origin has degree k is

pk := P(D = k). The neighbours of the origin do not have degree distribution

D, because it is k times as likely that a given vertex with k neighbours is

a neighbour of the origin than that a given vertex with one neighbour is a

neighbour of the origin (by the construction of the graph). Therefore the

probability that an arbitrary neighbour of the initially infected individual has

k neighbours is

p̃k := P(D̃ = k) = (E(D))−1kP(D = k), (5.4)

where D̃ is a random variable with its distribution defined by the above equal-

ity. Other individuals that are infected during the epidemic also have the same

degree distribution as D̃.
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From Lemma A.2.2 of [36] we know that for large enough N ∗ and any

0 < η < 1/2 the joint probability that there are loops in the first j generations

(see Section 5.2) of the graph and the number of individuals in the first j

generations does not exceed (N ∗)
1

2
−η, is small. From this we can conclude

that the start of an epidemic on the given random network will with high

probability evolve the same as an epidemic on a random tree, where the tree

itself is constructed by a branching process, with one individual in generation

0, which has k daughters with probability pk. Other individuals than the

ancestor have k daughters with probability p̃k+1, where the “+1” is because

one of the neighbours of such an individual is her mother. SIR-type systems

on such a tree can be described by branching processes, for which many results

are known [39].

5.4.3 Constructing the network with given expected φ

This is the key section of the chapter: The pair approximation techniques

described in the epidemiological literature are mainly used in deterministic

epidemic models, while the random graph methods of the previous subsection

ignore small loops in the network. In this subsection we present a random-

graph method of analysis of an epidemic, in which we also use the proportion

of triples that is also a triangle, φ, of the network.

As before, if N is very large, the network G on which the epidemic spreads

is replaced by a random network, on which we can analyse epidemic spread.

We construct a sequence of random networks, G(N ∗) = G(N ∗, D, D̄), where

N ∗ is an increasing sequence and the random variable D and D̄ are degree

distributions, the meaning of N ∗ and the degree distributions is explained in

the following paragraphs.

In the random network the expected fraction of triples that are triangles

should be φ. To obtain this, we consider the vertices as super-individuals,

which can be households (cliques, i.e. a fully connected group of individuals),

or bachelors (single individuals, that are not part of any household). Each

individual within a household has one neighbour outside its own household

(so the number of individuals in a household is equal to the degree of the

super-individual). We ignore all individuals without neighbours, because those

individuals do not influence the epidemic. For convenience, households may

be of size one, although in the graph they are exactly the same as bachelors
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with one neighbour.

Let N̄ ∗, the number of super-individuals, be large and let N̄ ∗
h be the num-

ber of households and N̄ ∗
b the number of bachelors. Define γ := (N̄ ∗)−1N̄ ∗

h ,

the fraction of households among the super individuals. The households are

of random size, i.i.d. and distributed as D̄. We define p̄k := P(D̄ = k). The

outgoing edges (one from each individual in the household) are represented as

half-edges. The degrees of the bachelors are i.i.d. and distributed as D, which

is also the degree distribution of the original network G. Let pk = P(D = k)

as before. We assume that D has finite variance.

Because we want the degree distribution of the individuals (within or out-

side the households) also to be as the distribution of D, we need a relation

between the distributions of D and D̄. Each individual in a household of size

k has k neighbours (k − 1 within the household and 1 outside the household).

Therefore it follows that

pk =
γkp̄k + (1 − γ)pk

γ
∑∞

l=1 lp̄l + (1 − γ)
. (5.5)

So

pk =
kp̄k

∑∞
l=1 lp̄l

. (5.6)

We want to write
∑∞

l=1 lp̄l in terms of pl. Observe that p̄k = k−1pk
∑∞

l=1 lp̄l.

By taking the sum over k on both sides, we get that
∑∞

l=1 lp̄l = (E(D−1))−1.

If individual v is a member of a household of size k, then φv = 1− 2/k. So

one can compute φ as follows:

φ =

∞
∑

l=2

γl2(l − 1)p̄l(l − 2)/l

γ
∑∞

k=2 k2(k − 1)p̄k + (1 − γ)
∑∞

k=2 k(k − 1)pk

=
γ
∑∞

k=2 k(k − 1)(k − 2)p̄k

γ
∑∞

k=2 k2(k − 1)p̄k + (1 − γ)
∑∞

k=2 k(k − 1)pk

=
γ
∑∞

k=2(k − 1)(k − 2)pk
∑∞

k=2 k(k − 1)pk[γ + (1 − γ)E(D−1)]

=
(

1 − 2
E(D) − 1

V ar(D) + E(D)(E(D) − 1)

) γ

γ + (1 − γ)E(D−1)
.
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In this way we can construct random graphs with any N̄ ∗, any degree distri-

bution with finite variance and any expected φ with

φ ≤ 1 − 2
E(D) − 1

V ar(D) + E(D)(E(D) − 1)
.

If the number of neighbours is fixed at n then

φ = (n − 2)γ/(γn + 1 − γ). (5.7)

Up to now we have only constructed the super-individuals of the network and

not the network itself. The whole network can be constructed by connecting

the super-individuals to each other in the same way as the individuals are

connected in Subsection 5.4.2, where every household of size k has k half-edges

assigned to it (1 from each individual in the household) and every bachelor of

degree k has also k half-edges assigned to it.

Again we uniformly pick one individual as the origin, which can be an

individual within a household or a bachelor. We construct a “tree with short-

cuts” as in Section 5.4.2, the difference is that now we construct a tree of

super-individuals. If the origin is a part of a household, this household is

the root of the tree. If N̄ ∗ → ∞ the probability of shortcuts between the

super-individuals in the first j generations of the tree goes to 0. So if N̄ ∗

is large enough, then with high probability, the start of an epidemic on the

constructed network can be described as the start of an epidemic on a tree of

super-individuals.

The randomly chosen root of this tree of super-individuals is a household

of size k with probability

γkp̄k

(1 − γ) + γ(E(D−1))−1
=

γpk

(1 − γ)E(D−1) + γ
(5.8)

and a bachelor with k neighbours with probability

(1 − γ)pk

(1 − γ) + γ(E(D−1))−1
. (5.9)

The probability that a super-individual connected to the root is a household

is given by:
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γ̄ :=
∑

k

γkp̄k
∑

l γlp̄l +
∑

l(1 − γ)lpl

=
γ(E(D−1))−1

γ(E(D−1))−1 + (1 − γ)E(D)
(5.10)

=
γ

γ + (1 − γ)E(D)E(D−1)
.

If a neighbour of the root is a household, it has size k, with probability

kp̄k
∑

l lp̄l
= pk. (5.11)

If a neighbour of the root is a bachelor it has k neighbours with probability

kpk
∑

l lpl
=

kpk

E(D)
. (5.12)

This completes the construction of an approximating tree of super individuals.

In Figure 5.2, a part of the tree is drawn. (Here the root is a household.)

5.4.4 Analysis of an epidemic on the approximating tree

The tree of super-individuals can also be seen as a tree of ordinary individuals

with some shortcuts between “sisters”. Throughout the rest of this section

we use this paradigm and see the tree as a family-tree. We again speak of

mothers, sisters and daughters. The infection is introduced in a household by

only one individual (because we consider a tree there are no loops of super

individuals), the other individuals in the household are all daughters of this

one individual and are all connected to each other. We consider three types of

ordinary individuals in the tree, bachelors, initial individuals of a household

(the individual in a household that is connected to the lower generations in the

tree of super-individuals, or the root if it is part of a household) and secondary

individuals of a household (the other individuals in a household). These types

of individuals are called respectively, type B, type H1 and type H2. In Figure

5.2 the individuals are marked by their type.

The root can only be of type B or type H1. the daughters of type B

individuals are of type B with probability 1−γ̄ and of type H1 with probability

γ̄, independently of each other. The daughters of type H1 individuals are
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O

Figure 5.2: Random graph, for p6 = 1 and φ = 2/5, with the origin, B (open
circles), H1 (filled squares) and H2 (filled circles) individuals marked.

always of type H2, the only exception being the root. If the root is of type

H1, it will have one daughter of type H1 (with probability γ̄) or of type B

(with probability 1 − γ̄) all other daughters are of type H2. H2 individuals

have exactly one daughter, which has type H1 (with probability γ̄) or type B

(with probability 1− γ̄). If the root is a B-individual it has k daughters with

probability pk. All other B-individuals have k − 1 daughters with probability

(E(D))−1kpk. An H1-individual, that is the root has k− 1 H2-daughters with

probability pk and one daughter that is B (with probability 1− γ̄) or H1 (with

probability γ̄). Other H1 individuals have k−1 H2-daughters with probability

pk.

We again consider two situations. First an infection with a fixed infec-

tious period, second the infection for which the infectious period is infinite

with probability p and 0 with probability 1 − p. So with the second type of

infection all neighbours of an infective individual will become infective with

probability p and none of the neighbours will be infected by the considered

infective individual with probability 1 − p. The R∗ for these infections are

Rbond
∗ and Rsite

∗ respectively (see Section 5.3).

It is very hard to compute Rbond
∗ in a correct way, because the dynamics of

the spread within a household are hard to analyse. We change the model in the
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following way: We ascribe the infection of all ultimately infected daughters to

the mother. (Note that relations as “mother” and “daughter” are defined by

the network not by the spread of the infection.) So if v1 infects her daughter

v2 and a sister of v2, v3 is infected by v2 then we say that v3 is infected by

v1. It does not matter for the event that the infection goes extinct, whether

we use the real infection paths or ascribe all infections to the mother. So

neither pc nor the probability of extinction changes by ascribing all infections

to the mother. However the number of individuals that can be infected in n

steps increases if all infections are ascribed to the mother (because in the real

epidemic detours are made through households). This implies that if R∗ > 1

the computed Rbond
∗ is larger than or equal to the real Rbond

∗ . This makes that

Rbond
∗ is still an upper bound for R∗ of infections with a marginal probability

of infection p, but it may be less sharp.

Because of the reasons explained in the previous chapter, we ignore the

root for computing R∗. We are only interested in the expected offspring size

of individuals that are infected by another individual. A B individual infects

an expected number of p(1 − γ̄)(E(D2)/E(D) − 1) other B individuals and

pγ̄(E(D2)/E(D) − 1) H1 individuals. The expected number of B individuals

infected by a given H2 individual is p(1 − γ̄) and the expected number of H1

individuals infected by this individual is pγ̄. There is no easy way to com-

pute the expected number of H2 individuals infected by one H1 individual,

but within a household all individuals are neighbours of each other, and the

infection is introduced at only one individual within the household. So the

epidemic within a household of size n̄ can be viewed as an epidemic within

a closed population starting with 1 infected individual and n̄ − 1 susceptible

individuals. To compute the distribution of the number of susceptible indi-

viduals that will ultimately become infected in this household Theorem 4.6.1

from the previous chapter is used.

If the infectious period is fixed at 1, then

[φ(λ(n̄ − l)/n̄)]k+m = exp[−(k + m)λ(n̄ − l)/n̄] = (1 − p)(k+m)(n̄−l).

Now we can iteratively determine the distribution of the number of infective

individuals ascribed to a H1 individual. The mean of this distribution is

Z(p) :=
∑

n̄

∑

k pn̄+1kP n̄
k . Therefore, the mean offspring matrix mbond is

known,
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mbond =







p(1 − γ̄)(E(D2)/E(D) − 1) pγ̄(E(D2)/E(D) − 1) 0

0 0 Z(p)

p(1 − γ̄) pγ̄ 0






.

(5.13)

Rbond
∗ is the largest positive eigenvalue of mbond [27, 39].

Rsite
∗ is somewhat easier to calculate. Because if one of the daughters of

a mother becomes infective, the infectious period of that mother was infinite,

so all of its daughters are infected, with probability 1. This means that an H1

individual infects no H2 individuals with probability 1 − p and all of its H2

daughters with probability p. So the mean offspring matrix msite is given by

msite =







p(1 − γ̄)(E(D2)/E(D) − 1) pγ̄(E(D2)/E(D) − 1) 0

0 0 p(E(D) − 1)

p(1 − γ̄) pγ̄ 0






,

(5.14)

which gives

Rsite
∗ =

p

2

[

(1 − γ̄)
(

E(D2)

E(D)
− 1
)

+

√

(1 − γ̄)2
(

E(D2)

E(D)
− 1
)2

+ 4γ̄(E(D) − 1)
]

.

(5.15)

If P(D = n) = 1 then

Rsite
∗ =

p

2
[(1 − γ)(n − 1) +

√

(1 − γ)2(n − 1)2 + 4γ(n − 1)]. (5.16)

In order to get the extinction probability for infections with fixed infectious

periods we need to find f bond
i (s1, s2, s3) for 1 ≤ i ≤ 3 where the indices refer

to respectively B, H1 and H2 individuals. After some algebra we get:

f bond
1 (s1, s2, s3) =

d
dsf(s)

E(D)
|s=1−p+s1(1−γ̄)p+s2γ̄p,

f bond
2 (s1, s2, s3) =

∞
∑

n̄=0

n̄
∑

k=0

pn̄+1P
n̄
k sk

3,

f bond
3 (s1, s2, s3) = s1(1 − γ̄)p + s2γ̄p + 1 − p,

where Pn
k is as in Theorem 4.6.1 and f(s) is the generating function of D.
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The generating functions fsite
i (s1, s2, s3) for 1 ≤ i ≤ 3 are given by

fsite
1 (s1, s2, s3) = 1 − p + p

d
dsf(s)

E(D)
|s=s1(1−γ̄)+s2γ̄ ,

fsite
2 (s1, s2, s3) = 1 − p + p

f(s3)

s3
,

fsite
3 (s1, s2, s3) = 1 − p + s1(1 − γ̄)p + s2γ̄p.

Now the general introduction of this thesis and Chapter 4 of [39] can be used

to find q1, q2 and q3. Usually we can only find numerical values for these

extinction probabilities.

5.4.5 An example

We consider the triangular lattice, so p6 = 1 and φ = 2/5. By (5.7) we have

γ = 1/5, so (5.6) and (5.10) give p̄6 = 1 and γ̄ = 1/5. We can compute the

expected offspring of an H1 individual, Z(p) exactly, but it is a complicated

polynomial in p and we will not give it here. The mean offspring matrix (5.13)

can be computed:

mbond =







4p p 0

0 0 Z(p)

4p/5 p/5 0






.

The largest eigenvalue, Rbond
∗ of mbond is given by

Rbond
∗ = 2p +

√

4p2 +
pZ(p)

5
≤ 2p +

√

4p2 + p,

where the inequality is because Z ≤ 5 by definition. Remember that pbond
c is

defined as the value of p for which Rbond
∗ = 1, which gives pbond

c ≈ 0.225. We

use (5.15) to get

Rsite
∗ = p(2 +

√
5)

and psite
c = 1

2+
√

5
≈ 0.236. The dependence of Rbond

∗ and Rsite
∗ on p is given in

Figure 5.3(a).
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The generating functions are given by

f bond
1 (s1, s2, s3) = (1 − p + 4/5s1p + 1/5s2p)5,

f bond
2 (s1, s2, s3) =

∑5
k=0 P 5

k sk
3,

f bond
3 (s1, s2, s3) = 1 − p + 4/5s1p + 1/5s2p

fsite
1 (s1, s2, s3) = 1 − p + p(s14/5 + s21/5)5,

fsite
2 (s1, s2, s3) = 1 − p + p(s3)

5,

fsite
3 (s1, s2, s3) = 1 − p + s14/5p + s21/5p.

(5.17)

From this equation, we can numerically find the extinction probabilities. The

probability that a uniformly chosen initial infective individual causes a major

outbreak, 1 − q, is given in Figure 5.3(b).

5.4.6 Remarks

• A random graph is proposed as an approximating network of the actual

network. If the infection does not go extinct, the number of infected in-

dividuals is predicted to grow exponentially at the start of the epidemic.

However if the infection spreads on a regular two dimensional lattice (e.g.

the triangular lattice) it spreads like a travelling wave, so the number of

infected individuals will grow quadratically [58]. We did not succeed in find-

ing a network (apart from the triangular lattice itself) with the right degree

distribution and φ, on which the spread of an infection is also quadratic

and for which it is possible to get analytic expressions for pc. Note that

pair approximations also predict exponentially growth.

• The number of vertices in the random graphs are random variables itself. It

depends on the number of super individuals, N̄ ∗, the degree distributions

of bachelors and the distribution of the household sizes.

• We can construct many networks with φ = 2/5 and n = 6, that have

exponentially growth at the start of an epidemic. Two examples of infinite

networks for which φv = 2/5 and nv = 6 for all vertices v in the network

are

1. The network constructed in the previous chapter (Figure 4.1): The

root has two groups of three daughters and the daughters from the

same group are all connected to each other. Apart from the root all

individuals have three daughters. All siblings are connected to each

other.
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Figure 5.3: The extreme reproduction ratios (Rbond
∗ and Rsite

∗ ) and the extreme
survival probabilities (1 − qbond and 1 − qsite) for different networks that ap-
proximate the triangular lattice, where the initial infective is chosen uniformly
from all individuals in the random network.
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Figure 5.4: Tree where each individual is a member of a household of 5 indi-
viduals and has 2 neighbours outside the household.

2. The tree where the root has two single daughters and one group of

four daughters. Within this group all daughters are connected to each

other. Individuals that are not connected to sisters have one daughter

not connected to sisters and four daughters in one group, where again all

daughters within one group are connected to each other. All individuals

that are a part of a group of siblings have two daughters, which are not

connected to each other. (see Figure 5.4)

Because all individuals in these trees are topologically the same, we may

choose any individual as the starting point of the epidemic.

In the first alternative network Rsite
∗ = 3p and therefore psite

c = 1/3 and

Rbond
∗ = 3p(1 + 2p− 7p3 + 7p4 − 2p5) by Theorem 3.6.1. This gives pbond

c ≈
0.238. Because the two bounds are relatively far apart, in this network the

distribution of the infectious period is important for determining pc(I) on

this random tree.

In the second alternative network

msite =

(

p 4p

2p 0

)

, (5.18)

which gives Rsite
∗ = (1+

√
33)p/2 and therefore psite

c = 2/(1+
√

33) ≈ 0.297.

The matrix mbond is harder to determine. In order to compute it, we first

consider the spread of an infection with fixed infectious period on a network

of five individuals, all connected to each other. Start with one infective

individual and four susceptible ones. Let p and Z̄(p) be as before, but now
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Figure 5.5: Rbond
∗ and Rsite

∗ for the random tree (dashed lines), the tree where
each individual is part of 2 households of size 4 (dotted lines), the tree where
each individual is part of a household of size 5 and has 2 neighbours outside
the household (solid grey lines) and R∗ predicted by pair approximations as
introduced in Chapter 4 (solid black line).

defined in households of size 5. By Theorem 4.6.1

mbond =

(

p Z̄(p)

2p 0

)

, (5.19)

which gives Rbond
∗ = 1/2(p +

√

p2 + 8pZ̄(p)), where Z̄(p) again is a compli-

cated polynomial. The critical probability on this network is approximated

by pbond
c ≈ 0.239. Again the difference between pbond

c and psite
c is consid-

erable. So the actual distribution of the infectious period is important in

order to get better estimates for the critical marginal probability pc(I). For

the alternative networks, Rbond
∗ and Rsite

∗ together with the probability of

a major outbreak, if the infection started with one uniformly chosen infec-

tious individual are given in Figure 5.3(c-f). To compare Rbond
∗ and Rsite

∗ of

different approximating networks and R∗ predicted by pair approximations,

we show them all together in Figure 5.5.

• It is possible to construct a network with n = 6 and φ = 2/5 for which

pc = 1. Consider G = (V,E) where V = Z and E are the edges connecting

all vertices at distances 1, 3 or 4 of each other. Each individual has six
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neighbours and φv = 2/5 for all vertices v in the network. This network is

one dimensional and if p < 1, with probability 1 there will be four vertices

in a row at the right of the origin which have no infectious contacts to the

right. And similarly with probability 1 there will be four vertices in a row at

the left of the origin which have no infectious contacts to the left. Therefore

a large outbreak is impossible on this network if p < 1.

• The message of the previous remark and earlier remarks is that we should

have some a-priori idea of how the infection will spread before we can con-

struct other networks on which we are capable of analysing the spread of

infection. We assume that on most social networks there is exponential

growth of the number of infectives at the start of the epidemic.

• On the triangular lattice the critical probability p∗c ≈ 0.268 found by pair

approximation techniques is nearer to the pc analytically obtained in per-

colation theory, than the critical values determined on random graphs or

alternative graphs approximating the triangular lattice. Because of long

range effects around the critical probability for percolation we could have

expected that our estimates for pc will not be very good: We have ignored

all loops consisting of more than three vertices, by constructing a network

that do not even have long loops. However, on networks that do have

some tree-like structure (which is assumed to hold for social networks) the

random graph method can be used.

5.5 Discussion

We have given a new way of analysing the spread of an infection on a network

by using random graphs. Important factors like the distribution of the number

of neighbours of individuals and the number of triangles in the network are

used. The method presented seems to be as easy to use for computations as

the differential equations obtained by pair-approximations. An advantage is

that the random graphs allow us to deal with randomness in the spread of the

infection, pair approximations only use the mean number of neighbours per

individual. The full distribution of the number of neighbours can be used in

the random graph method. The possibility to use a worst case scenario (the

infection with a fixed infectious period) is a clear advantage of using random

graph methods.
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If we know the distribution of the infectious periods exactly it is still pos-

sible to use Theorem 4.6.1, but dependencies between the infectious period of

individuals in the household and the number of individuals infected in that

household make that it is not straightforward to compute R∗ and the proba-

bility of extinction in this way. Ball pointed out [9] that it is possible to use

[7] to compute R∗ for general infectious periods.

One can use the model for the spread of epidemics between household

proposed by Ball et al.[6], but this model is still a mass action model in which

every household is connected to all other households. It is not clear how to

construct a graph, with small degrees compared to the population size, that

can be seen as an approximation of the network implicitly proposed for the

household epidemics in [6].

In [64] other random graphs are considered, for which the expected φ

(called clustering in [64]) and the mean degree can be computed as well. How-

ever, the construction of a network with a given expected φ and degree distri-

bution is not made explicit there.

In reality it is usually not possible to observe the whole network on which

an infection spreads, but the information from the network used in our net-

work, φ and the degree distribution, can be estimated by observing only a part

of the network.

It may be very hard to estimate parameters of the infection during the

spread of an infectious disease itself (see Chapter 3), it may become even

harder because we look at the epidemic from a “generation of infection” point

of view, while real epidemics evolve in continuous time, where generations are

mixing. Of course there is correlation between the number of infection steps

needed to infect a given individual and the time at which the individual is

infected, but it will be hard to incorporate this correlation in the estimates.

It is worth further research how to estimate the parameters of the infection if

we know the degree distribution and the φ of the network.

Another drawback of using random graphs and a “generation of infection”

point of view is that it is not possible to use this way of analysis to describe the

spread of infections in varying environments (Chapter 2), because in varying

environments we need to keep track on the real time dynamics of the spread.

We did not study the final size of an infection, i.e. the number of individuals

that will be removed at the end of the epidemic. It may be possible to obtain

results for the final size [2], but it is questionable whether these results are
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useful, because if R∗ > 1 and a major outbreak occurs, then the final size

has to be of the order of the population-size (this is proven for mass action

interactions [3]). If such an infection spreads in the human population or in the

population of farm animals, measures will be taken to stop the spread, which

means that the environment is changing, some contacts will disappear and so

on. All these changes are not incorporated in the model and the predicted

final size will have no meaning in reality.

However, if the environment is not changing and if we consider the infec-

tion with fixed infectious period, then we can use the relation between bond

percolation and the spread of the infection. Assume that there is only one

open cluster of the same order as the population size. (This assumption holds

for p > pc with high probability for the intersections of large boxes with Z
d

[33], but not for all networks.) Because all contacts are symmetric the prob-

ability of individual v1 not being affected by a major outbreak is the same as

the probability that if v1 is chosen as the initial infective a major outbreak

will not occur. Because we chose the initial infective uniformly, the proportion

of the population that is ultimately still susceptible will be the same as the

probability of extinction of the infection.

The number of triangles in a network may be very important. On many

regular lattices, small loops will occur for sure. The same holds for interaction

networks of non-mobile individuals, where the probability of contacts is based

on the distance between the two individuals. In some social networks the

triangles seem to be present. In [1] and [73] the fraction of triangles are given

of a network of film actors (where connections correspond to featuring in the

same movie) and of networks of scientists (where connections correspond to

being co-authors of at least one paper). These networks may not be the most

probable networks on which infections spread, but they give some hints about

the structure of other social networks.

Sexual and romantic networks are also investigated [11, 54]. These net-

works are important for the spread of sexually transmitted diseases. Because

in a mainly heterosexual population the number of triangles is small, one would

like to take the number of loops of length four or six into account. It turns

out that even those small loops can be very rare, see for example the study

done on romantic networks on an American high school [11], so there is some

evidence that the spread of those disease may be described by random trees

as presented in Subsection 5.4.2.
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In this chapter we did not explicitly deal with power-law degree distribu-

tions, but at least some social networks have this property [1, 54, 73]. We say

that the degree distribution has a power law if

pk = c(k)k−α for k ∈ Z>0 and α > 1, (5.20)

where
∑

k≥0 pk = 1 and limk→∞ c(k) = c > 0. If we analyse the epidemic by

approximating the network by the random networks constructed in Subsection

5.4.2, and if the degree distribution has a power law with α < 3 then we predict

R∗ = ∞ if λ 6= 0. This is because the expected degree of an individual in the

first generation is infinite.

If we construct a random network as in Subsection 5.4.3, we may get totally

different results. Let the degree distribution have a power law with 2 < α < 3

and if all super-individuals are households (γ = 1), then the degree of the

super-individuals is distributed with a power law with parameter α + 1. The

expected number of neighbours of a super-individual in generation 1 is finite,

so if the infectivity is positive but small enough, R∗ will be less than 1. So

if we only use the degree distribution, we predict that a major outbreak has

positive probability, while if we use the network of households the probability

that many households are infected may be 0. In this example φ = 1. It is an

interesting open question whether it is possible to construct a network with a

degree distribution following a power law with 2 < α < 3 and φ < 1 such that

the infection has non-zero infectivity, but R∗ < 1.



Chapter 6

Infection spread in a

population of individuals with

random infectivity and

susceptibility

6.1 Introduction

Most of the models for the spread of an infection are based on the assumption

that all individuals have the same susceptibility and infectivity and, moreover,

those models do not differentiate between susceptibility and infectivity and

combine them in a single transmission rate parameter. This means that if

a susceptible individual has a contact with an infectious individual it has a

given probability that it becomes infective itself, where this probability is the

same for every individual and for every contact with an infectious individual.

On the other hand if an individual is infected, it contacts other individuals

with a fixed rate, which is the same for every individual (See e.g. the other

chapters of this thesis and [3, 27]). This assumption can be relaxed by allowing

for several types of individuals (e.g. individuals may be differing in age, sex,

species), where different types of individuals may have different infectivities

and susceptibilities (these models are also discussed in [3, 27]), but still all

individuals of a given type have the same infectivity and susceptibility.

137
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In “reality” infectivity and susceptibility will show individual variation be-

yond the variation of characteristics, notably because of immunological poly-

morphism, or due to polymorphic reactions to vaccination [13, 14]. Here we

explore a way to take this variation into account in a stochastic way in a

network setting. Instead of only the type or population mean infectivity and

susceptibility, we also regard the distribution of these quantities. We explore

effects of variation in infectivity and susceptibility on the probability of a

major outbreak occurring.

In this chapter we consider an SIR description of infection spread (see

Chapter 1). For notation and terminology we refer to Sections 4.2 and 5.2.

We construct a model for the spread of an infection on a (undirected) net-

work/graph G = (V,E), where the individuals/vertices have random infec-

tivity and susceptibility. Individuals that are connected by an edge are neigh-

bours. If G is a complete graph (a graph with edges between every pair of

vertices), the model gives a description of the spread of an infection in a ran-

domly mixing population.

The random graphs are constructed as follows: With some abuse of no-

tation we see G as the network with the undirected edges replaced by two

directed edges. We assign independently to each vertex/individual, v a pair

of random weights (wv, w̄v), denoting functions of the infectivity and suscep-

tibility respectively. The weights wv and w̄v need not be independent. We

denote the (directed) edge from v1 to v2 by v1v2. The edge v1v2 is open with

probability κG(wv1
, wv2

), otherwise it is said to be closed. Conditioned on the

weights assigned to the individuals, the states (open or closed) of the edges

are independent. An open edge v1v2 in the random graph corresponds with

the event that if v1 becomes infected, v1 will have at least one contact with

individual v2, that will make v2 infectious, if v2 had not already been infected

before. A closed edge v1v2 in the random graph implies that v1 did not have

such a contact with v2. The individuals that are ultimately removed (i.e. the

individuals that were infected during the epidemic), are the individuals that

can be reached by an open path from the initial infective individuals in the

graph representation.

Assume that a susceptible individual v has probability w̄v of becoming

infected every time it has a contact with an infective individual. Furthermore,

if v becomes infective it has contacts with every given neighbour at rate w∗
v

during a random infectious period of w′
v time units. Then κG(wv1

, w̄v2
) should
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be chosen to be 1 − exp[−wv1
w̄v2

], where wv = w∗
vw

′
v.

We can also consider an alternative description for infection spread. As-

sume that there is at most one contact from an infectious individual to a given

neighbour during its infectious period, or that only at the first contact of an

infective individual with a given neighbour the infection may be transmitted.

This last assumption is proposed in some models for the spread of HIV [50, 72],

where the number of sexual contacts per couple can be ignored and only the

number of partners of individuals is of importance. In those models the proba-

bility of an infectious contact from v1 to v2 is given by κG(wv1
, w̄v2

) = wv1
w̄v2

,

with wv = 1 − exp[w∗
v], where w∗ is defined as in the previous paragraph. In

large randomly mixing populations it is usually assumed that the contact rate

of a pair of individuals scales with N−1, where N is the number of individuals

in the population. With this assumption multiple contacts of a pair of indi-

viduals are rare, and the difference of the proposals for κG made in this and

the previous paragraph is of order N−2.

If the probability that w(v) = w̄(v) is 1 for all vertices v, and if κG(w1, w2)

is symmetric in w1 and w̄2, then the probability that there is an open edge

from v1 to v2 is equal to the probability that there is an open edge from v2

to v1. By [25] and Chapter 1 we know that the cluster consisting of vertices

that can be reached by an open path from v, is distributed as the vertices in

the open cluster containing v of the undirected graph, where the probability

of an edge to be open in the undirected graph is equal to the probability

that a corresponding edge in the directed graph is open. Furthermore, if G is

the complete graph, then the models described above are special cases of the

inhomogeneous random graphs, described in [21].

In the next section we construct random graphs of which the random

graphs that we use for describing the spread of infections in inhomogeneous

populations are special cases. This construction is the main subject of this

chapter. It opens doors for further analysis of the spread of infections in inho-

mogeneous populations and for applying the existing theory on inhomogeneous

random graphs [21, 22, 23] to epidemics.

In the third section we give a way to compare probabilities that at least

one path in a set of paths is open, under the condition that the probability

that edge v1v2 is open is factorisable, i.e. κG(w1, w̄2) can be factorised as

κG(w1, w̄2) = κ
(1)
G (w1)κ

(2)
G (w̄2), where κ

(1)
G and κ

(2)
G are two arbitrary functions.

This can be applied to epidemics, in the sense that infections with a given
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expected infectivity and susceptibility can be compared. If the infectivity,

w(v) and the susceptibility, w̄(v) are independent of each other, then we prove

that the random graphs with fixed w and w̄, have the largest expected size of

the cluster of vertices that can be reached by open paths from v, and the largest

probability that the size of this cluster is of the same order as the number of

individuals, i.e. the probability of a major outbreak is maximal. This result is

an extension of a result presented in [51], where a similar comparison result is

given for infection models, where all individuals have the same susceptibility

by assumption.

6.2 Inhomogeneous random graphs: The model

In this section we construct the random graphs that we use to describe the

spread of an infection. We also give the notation and terminology needed in

the rest of the chapter.

Let G = (V,E) be a non-random directed graph with countable vertex

set V and (directed) edge set E. In most applications |V | = N is large but

finite. The vertices are ordered and denoted by v1, v2, · · ·. Edges are denoted

by their start and end-vertex as vivj . If the edge vivj exists, then the edge

vjvi exists as well (i.e. vivj ∈ E ⇔ vjvi ∈ E). A path of length n in G is a

sequence of edges in E of the form (vi1vi2 , vi2vi3 , vi3vi4 , · · · , vinvin+1
). A path

is self-avoiding if vik 6= vil for k 6= l. A path of length n is a loop, if the

truncation of length n − 1 is a self-avoiding path and vi1 = vin+1
.

Let (W, W̄ ) be a positive real random vector with joint distribution func-

tion F . The random variables W and W̄ need not be independent. Fur-

thermore, let W := (Wi)i≥1 := ((Wi, W̄i))i≥1 be an infinite sequence of ran-

dom vectors, where (Wi)i≥1 are independently and identically distributed as

(W, W̄ ). Let w = ((wi, w̄i))i≥1 be a realisation of W. If the number of vertices

is larger than i, the realisations wi and w̄i are called the weights of vertex vi

and they represent the infectivity and susceptibility of the vertex. If i exceeds

the number of vertices, wi and w̄i do not have a biological meaning, but it is

useful to define w as an infinite series in order to analyse growing sequences

of graphs.

Note that in our terminology every individual has an infectivity assigned

to it. It is interpreted as the rate at which other individuals are contacted

during its infectious period if the individual ever becomes infected.
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We define the kernel κG as a function on R+ × R+, taking values in [0, 1].

Unless explicitly stated otherwise the function κG is continuous. Conditioned

on w, the probability that the edge vivj is open is given by pij = κG(wi, w̄j). If

an edge is not open it is closed. Conditioned on w, the states (open or closed)

of edges are independent of each other. For finite graphs, G = (V,E), the

probability measure P := P(G,κG,F ) is the joint measure on the space of states

of the edges and weights of the vertices, {open,closed}E × (R+ ×R+)V , where

the conditional probability that the edge vivj is open is pij = κG(Wi, W̄j). We

use the notation E for the expectation under the probability measure P.

In general it is not possible to define P on an infinite complete graph, while

keeping it useful for biological applications: Because the marginal probability

of an edge to be open is the same for all edges and the degree of every vertex

is the same, the number of outgoing open edges of each vertex is either 0

or infinite, which implies that the corresponding infection cannot spread at

all or infinitely many individuals will be directly infected by only one initial

infective individual. However, it is possible to define P on countable regular

graphs with only finite degrees (see Chapter 5), because this graph does not

suffer from the disadvantages of the complete graph.

The expectation pG := E[κG(W1, W̄2)], is the marginal probability that a

given edge is open. Furthermore, SG := (pG)−1
E[κG(W1, W̄2)κG(W2, W̄3)] is

the marginal probability that a given self-avoiding path of length 2 is open

(i.e. all edges in the path are open), conditioned on the event that the first

edge in the path is open.

Remarks

1. Let |V | be finite. If W can only take values in [0, 1]2 and κG(w, w̄) = ww̄,

then SG = E(WW̄ ). Let AG be the number of self avoiding paths of length

2 divided by the number of edges. The product AGSG is the reproduction

ratio RV of [13], where RV is defined similar to R∗ as defined in Chapter

4. If G is a regular infinite graph where every individual has k outgoing

edges (and k ingoing edges because of symmetry), then we can extend the

definition to AG = k − 1. (The arguments are similar to the arguments for

the definition of φ for infinite networks in Section 4.2).

2. If the graph G is a finite complete graph, N = |V | and κG(w1, w̄2) =

1 − exp[−N−1w1w̄2], then we obtain a special case of the epidemic models
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discussed in the introduction (with w1 and w̄1 replaced by N−1/2w1 and

N−1/2w̄1 respectively). This model is comparable to the model of [13].

The cluster of vertices in G that can be reached by open paths from v, is

distributed as the cluster of ultimately removed individuals in the model of

[13].

3. As stated in the introduction, if W = W̄ , then the cluster of vertices that

can be reached from v by open paths has the same distribution for directed

and undirected graphs. If furthermore the graph is complete, we obtain the

model of [21]. If |V | = N and

κN (w1, w2) := κG(w1, w2) = w1w2(N + w1w2)
−1,

we get the generalised random graph model of [22]. In [23],

pij = wiwj(
∑

v∈V wv)
−1, so pij depends on the weights of all of the ver-

tices. However, if N is large and E(W ) = 1, then by the law of large

numbers, pij ≈ κN (wi, wj) = N−1wiwj , is a function of the weights of the

end vertices only. Note that this κ can be used as a model for the alternative

description of infection spread, given in the introduction.

The pairwise differences of the three proposals for κN (w1, w2) := κG(w1, w2);

κN (w1, w2) = w1w2(N + w1w2)
−1, κN (w1, w2) = 1 − exp[−N−1w1w2] and

κN (w1, w2) = N−1w1w2 are of the order N−2 for N → ∞.

6.3 A comparison theorem for the random graphs

with factorisable κG(w, w̄)

In [51] the spread of an infection on a network is studied, where the suscepti-

bility of all individuals is 1 and where the total infectivity is random. Variance

in total infectivity may arise by variance in the length of the infectious period.

The probability that edge v1v2 is open, only depends on a function of the

infectious period of v1. The marginal probability that an edge, with v1 as its

first index is open is said to be p1. It is proved that for epidemic processes

with fixed pi, the process with no variance in total infectivity is a worst case

scenario, in the sense that the probability of a major outbreak as well as the

probability that a given individual will become infected in the course of the

epidemic is maximal.



6.3 A comparison theorem for factorisable κ 143

In this section we generalise this result from [51] to models on inhomoge-

neous random graphs with factorisable kernel κG(w1, w̄2) = κ
(1)
G (w1)κ

(2)
G (w̄2),

where κ
(1)
G (w1) and κ

(2)
G (w̄2) are functions depending on G. The arguments

used in this section cannot immediately be generalised to models with arbi-

trary κG. In the rest of this section we set κG(w1, w̄2) = w1w̄2. We do not lose

generality by choosing this kernel, because we can replace the random vector

(W, W̄ ) by (κ
(1)
G (W ), κ

(2)
G (W̄ )).

The strategy is as follows: We replace the graph G by another graph Ĝ.

The states of the edges in Ĝ only depend on the weight of the first vertex of

the edge. We show that the probability of a configuration of states of edges

in G is the same as the probability of a corresponding configuration in Ĝ. We

can obtain results on Ĝ by using arguments similar to the ones used in [51].

Let G̃ = (Ṽ , Ẽ) and Ḡ = (V̄ , Ē) be copies of G, where vertices ṽi and

v̄i correspond to vertex vi. We consider a new directed graph Ĝ = (V̂ , Ê),

where V̂ = Ṽ ∪ V̄ and Ê = Ẽ ∪ Ē ∪ {ṽv̄; v ∈ V }. The edges from Ṽ to V̄

are open with probability 1. The edge ṽiṽj in G̃ is open with probability wi.

The edge v̄iv̄j in Ḡ is open with probability w̄i. Conditioned on the weights

of the vertices, the states of the edges in Ê are independent of each other.

The sequence of pairs w is defined as in the previous section, where W and

W̄ both take values in [0, 1] with probability 1. Let P̂ be the corresponding

joint probability measure on the space of states of the edges and weights of

the vertices in Ĝ, {open,closed}Ê × (R+ × R+)V̂ .

The epidemiological interpretation of the graph Ĝ is as follows. An open

edge from ṽ1 to ṽ2 means that if individual v1 (in G) becomes infected in the

course of the infection (or is an initial infective individual), it will have at least

one contact with v2 during its infectious period. An open edge from v̄2 to v̄1

means that, if there is at least one contact from individual v1 to individual

v2 (in G) during the infectious period of v1, the contact is successful and v2

becomes infective if it has not been infected before.

Let E1 be a subset of E and Ẽ1 (respectively Ē1) be the corresponding

subsets of Ẽ (respectively Ē). Let Ē∗
1 = {v̄iv̄j ∈ Ē; v̄j v̄i ∈ Ē1} be the subset

of Ē consisting of all edges of Ē1 in the opposite direction. The probability

that all of the edges in E1 are open is equal to the probability that all of the

edges in Ẽ1 and all of the edges in Ē∗
1 are open. A direct consequence of this

is that the probability that a given path in G, ξ from vi to vj is open is equal

to the probability that the path ξ̂ in Ĝ is open, where ξ̂ exists of successively
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the path in G̃ corresponding with ξ, the edge ṽj v̄j and the path in Ḡ from v̄j

to v̄i corresponding to “ξ in the opposite direction”.

Let Ω := {open,closed}E and Ω̂ := {open,closed}Ê . Furthermore, let Ξ

be a set of paths in G and define Ξ̂ = {ξ̂; ξ ∈ Ξ}. The set Ξn is the set of

truncations at length n of paths in Ξ, and Ξ̂n = {ξ̂; ξ ∈ Ξn}, so paths in Ξ̂n

have at most length 2n + 1. Let

CΞ = lim
n→∞

⋃

ξ∈Ξn

{ω ∈ Ω; ξ is open} (6.1)

and

ĈΞ̂ = lim
n→∞

⋃

ξ̂∈Ξ̂n

{ω̂ ∈ Ω̂; ξ̂ is open}. (6.2)

The set CΞ is the set where for every n at least one of the paths in Ξn is open.

If W and W̄ are independent random variables taking values in [0, 1], then

we can directly apply the results of [51], because the graph Ĝ together with

the realisations of the states of Ê is a locally dependent random graph. This

is interesting in its own right: Let W and W̄ be random variables taking

values in [0, 1] and κG(w, w̄) = ww̄. Let P be the set of probability measures

with the property that W and W̄ are independent and E(WW̄ ) = T , where

T is some constant. Let the probability measure P
∗ ∈ P be the probability

measure having the property that V ar(W ) = V ar(W̄ ) = 0. Observe that for

every constant c > 0 replacing (W, W̄ ) by (cW, c−1W̄ ) does not change the P

measure on the states of the edges. Putting the observations of this paragraph

together, brings us at the following theorem (compare this with Theorem 4.1

of [51]):

Theorem 6.3.1 For every P ∈ P holds that

P(CΞ) ≤ P
∗(CΞ)

for any set of paths Ξ in G.

In an epidemiological setting this theorem means that we can compare

infections with random infectivity and susceptibility: We compare infections

with a given marginal probability for the event that if individual v1 is infected

in the course of the infection, it has at least one contact with individual v2

during its infectious period that infects v2 if v2 was still susceptible at the



6.3 A comparison theorem for factorisable κ 145

moment of the contact. If we consider a set of possible infection routes in

the graph G, then the probability that the infection actually spreads following

one of those routes is maximal if there is zero variance in susceptibility and

infectivity. If v1 is the single initial infective, then by considering the set of

all self-avoiding paths in G with v1 as the first vertex of the first edge in the

path, and v2 as the second vertex of the last edge in the path, we obtain that

the probability that v2 will become infective during the outbreak is maximal if

there is no variance in susceptibility and infectivity of individuals. This implies

that R∗ (see Chapter 4) is maximal for fixed susceptibility and infectivity. If

we consider the set of all self-avoiding paths of length n, with v1 as the first

vertex of the first edge in the paths, then we obtain that the probability that

the infection is still spreading after n infection steps is minimal if there is zero

variance in susceptibility and infectivity. This implies that the probability of

a major outbreak is maximal if the susceptibility and infectivity are fixed.

Define Ev as the edges in G with first end-vertex v. The sets Êv̂ with

v̂ ∈ V̂ are defined similarly. If W and W̄ are dependent, then we cannot

use Theorem 6.3.1 and the results of [51] immediately, because the states of

edges in Êṽ and edges in Êv̄ are not independent, which is required in the

construction of locally dependent random graphs. However we can still obtain

a result similar to Theorem 2.1 of [51]. Again we need some notation. The

zero-function ẑv(A,B) = ẑv(A,B; P̂) is a function from all pairs of disjoint,

finite, possibly empty subsets of Ev to [0, 1] and is defined by

ẑv(A,B) = P̂

({

⋂

e∈Ã

{e is closed}
}

∪
{

⋂

e′∈B̄

{e′ is closed}
})

,

where Ã ⊆ Ẽ and B̄ ⊆ Ē are sets of edges that correspond with A ⊆ Ev and

B ⊆ Ev. The notation ẑ
(1)
v ≤ ẑ

(2)
v means that ẑ

(1)
v (A,B) ≤ ẑ

(2)
v (A,B) for all

disjoint A,B ⊆ Ev. Using this notation we can prove the following theorem:

Theorem 6.3.2 Let (ẑ
(i)
v )v∈V be the zero functions under the probability mea-

sure P̂
(i) defined on the graph G. Let Ξ̂ be defined as just above equation (6.1).

If ẑ
(1)
v ≤ ẑ

(2)
v for all v, then for every set of paths Ξ in G it holds that

P̂
(2)(ĈΞ̂) ≤ P̂

(1)(ĈΞ̂),

and

P
(2)(CΞ) ≤ P

(1)(CΞ).
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The epidemiological interpretation of this theorem is that the probabilities

that at least one of the paths in a set of possible infection paths can be

compared and partly ordered for different probability measures, only using

the distribution of the infectivities and susceptibilities of the individuals.

Proof. The second inequality in the theorem is a direct consequence of the

first inequality and the relation between paths in G and in Ĝ discussed in this

section. The proof of the first part of the theorem is essentially the same as

the proof of Theorem 2.1 of [51] and is divided into 4 steps.

(i) The first step is to assume that Ξ is a finite set of finite paths in G and

that ẑ
(1)
v1

≤ ẑ
(2)
v1

and ẑ
(1)
v = ẑ

(2)
v for all v ∈ V \ v1.

We assume that |Ê| < ∞. This is not a restriction, because the state of

only a finite number of edges in Ê is relevant for the event ĈΞ. For Â ⊆ Ê let ωÂ

be an element in the space ΩÂ := {open,closed}Â. Let Êc
v1

:= Ê \ {Êṽ1
, Êv̄1

}.
In order to keep the formulas readable, we use Γ := Êc

v1
. For i = 1, 2 it holds

that

P̂
(i)(ĈΞ̂) =

∑

ωΓ∈ΩΓ

P̂
(i)(ĈΞ̂|ωΓ)P̂(i)(ωΓ).

Note that P̂
(i)(ωΓ) is the same for i = 1 and i = 2. The term P̂

(i)(ĈΞ̂|ωΓ) only

depends on the states of the edges in Êṽ1
and Êv̄1

. It is straightforward to see

that if ẑ
(1)
v1

≤ ẑ
(2)
v1

, then

P̂
(1)(ĈΞ̂) − P̂

(2)(ĈΞ̂) =
∑

ωΓ∈ΩΓ

[

P̂
(1)(ĈΞ̂|ωΓ) − P̂

(2)(ĈΞ̂|ωΓ)
]

P̂
(1)(ωΓ) ≥ 0,

which proves the theorem for the special case considered.

(ii) In the second step, we still assume that Ξ is a finite set of finite paths

in G, but now ẑ
(1)
v and ẑ

(2)
v may differ at more than one vertex. It is straight-

forward to construct an ordered series of probability measures, (P̂(∗;i))1<i<n,

such that P̂
(∗;1) = P̂

(1), P̂
(∗;n) = P̂

(2) and two subsequent measures (P̂(∗;i)) have

a different zero-function at only one vertex. We can apply the (i) part of this

proof to two subsequent probability measures, which proves the theorem for

the special case considered in this step.

(iii) If Ξ̂ = {ξ̂1, ξ̂2, · · ·} is an infinite countable set of finite paths in Ê,

then we define for k ∈ N the truncated sets Ξ̂k = {ξ̂1, ξ̂2, · · · ξ̂k}. For k → ∞,

ĈΞ̂k → ĈΞ̂, therefore P̂
(2)(ĈΞ̂) ≤ P̂

(1)(ĈΞ̂).
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(iv) For general Ξ we use the definition

ĈΞ̂ = lim
n→∞

⋃

ξ̂∈Ξ̂n

{ω̂ ∈ Ω̂; ξ̂ is open}. (6.3)

the paths in Ξ̂n are all finite. Using the previous steps in the proof, we obtain

that

P̂
(2)(ĈΞ̂) ≤ P̂

(1)(ĈΞ̂).

This completes the proof of the theorem.

Remark: If for some finite n, Ξ̂n is an infinite set of disjoint paths, then the

statement in the theorem is not very informative, because if ẑ
(i)
v is the constant

function 1 for no v ∈ V , then P̂
(i)(ĈΞ̂n) = 1 for i = 1, 2. However for many

applications Ξ̂n is finite for all n.

One important observation is that we cannot use this theorem directly as

is done in [51] to proof that for all probability measures on {open,closed}E ×
(R+ ×R+)V , with E(W ) = T1 and E(W̄ ) = T2, where T1 and T2 are fixed, the

case where W = T1 and W̄ = T2 gives a worst case scenario. That is, if P is

the relevant set of probability measures and P
∗ ∈ P is the probability measure

having the property that V ar(W ) = V ar(W̄ ) = 0, then the result of Theorem

6.3.1 does not necessarily hold.

A basic counterexample is given by considering one path of length 2, ξ

and two measures P
(1)(W = W̄ = T ) = 1 and P

(2)(W = W̄ = 1) = T ,

P
(2)(W = W̄ = 0) = 1 − T , where 0 < T < 1. We have

P
(1)(ξ is open) = T 4,

P
(2)(ξ is open) = T 3.

However, if E(W̄ |W = w) is decreasing in w, then the result of Theorem 6.3.1

holds. To prove this we use that if Z is a random variable and g1 and g2 are

positive and decreasing functions then

E[g1(Z)g2(Z)] ≥ E[g1(Z)]E[g2(Z)]

(see e.g. Lemma 4.2 of [51] or page 184 of [47]). By repeated use of this

inequality we obtain
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ẑv(A,B) := P̂

({

⋂

e∈Ã

{e is closed}
}

∪
{

⋂

e′∈B̄

{e′ is closed}
})

= Ê

(

1 − [1 − (1 − W )|A|][1 − (1 − W̄ )|B|]
)

= Ê

(

1 − [1 − (1 − W )|A|][1 − Ê((1 − W̄ )|B||W )]
)

≥ Ê

(

1 − [1 − (1 − W )|A|][1 − (1 − Ê(W̄ |W ))|B|]
)

= Ê

(

(1 − Ê(W̄ |W ))|B|
)

+ Ê

(

(1 − W )|A|[1 − (1 − Ê(W̄ |W ))|B|]
)

≥ Ê

(

(1 − Ê(W̄ |W ))|B|
)

+ [1 − Ê(W )]|A|
Ê

(

1 − (1 − Ê(W̄ |W ))|B|
)

= [1 − Ê(W )]|A| + (1 − [1 − Ê(W )]|A|)Ê
(

(1 − Ê(W̄ |W ))|B|
)

≥ [1 − Ê(W )]|A| + (1 − [1 − Ê(W )]|A|)[1 − Ê(W̄ )]|B|

= 1 −
(

1 − [1 − Ê(W )]|A|
)(

1 − [1 − Ê(W̄ )]|B|
)

= P̂
∗
({

⋂

e∈Ã

{e is closed}
}

∪
{

⋂

e′∈B̄

{e′ is closed}
})

.

By applying Theorem 6.3.2 we obtain the desired result.

On complete graphs the expectation SG = E(WW̄ ) is determining the

reproduction ratio RV of [13]. We therefore expect that SG is the relevant

quantity and that we can generalise Theorem 6.3.1 if we compare graphs with

SG = T for some fixed T . This brings us to the following conjecture.

Conjecture 6.3.3 Let P be the set of probability measures with the property

that E(WW̄ ) = T . Let P
† ∈ P be the probability measure having the property

that V ar(W ) = V ar(W̄ ) = 0. Let Ξ be a set of finite self-avoiding paths with

first vertex of the first edge vi and the second vertex of the last edge is vj.

Individual v has weights (wv, w̄v) assigned to it. Then for all P ∈ P and for

any graph G, it holds that

P(CΞ|wi, w̄j) ≤ P
†(CΞ|wi, w̄j).

If Ξ is a set of infinite self-avoiding paths with first vertex of the first edge vi.

Then for all P ∈ P and for any infinite graph G, it holds that

P(CΞ|wi) ≤ P
†(CΞ|wi).



6.4 Discussion 149

This conditioning on the weights of the first and the last vertex is because

E(WW̄ ) is the probability that a given contact of an individual with an in-

fectious neighbour causes the individual to become infective, and that after

that the individual has contacts with another given individual. However, the

initial infective in a path need not be infected by a neighbour, and it is not

important whether the last individual in a path spreads the infection to other

individuals or not. Note that this conditioning is of no importance for the

results on R∗ (Chapters 4 and 5), because only the number of secondary cases

infected by a secondary infective individual is important. If the presence of

infinite paths has positive probability taking the conditioning into account,

then the presence of infinite paths also has positive probability if one does not

use the conditioning. It is possible to replace the conditioning on the actual

weights of the “end-vertices of the path” by keeping the expected values of

the separate weights (infectivity and susceptibility) of those vertices fixed for

the models that we compare.

6.4 A short discussion on the model for general

κG(w1, w̄2) and possible further research

In the previous section we constructed a graph Ĝ = (V̂ , Ê), where the states

of the edges in Êv̂ depend only on the weight of v̂. We cannot construct

such a graph if there does not exist two functions κ
(1)
G and κ

(2)
G , such that

κG(w, w̄) = κ
(1)
G (w)κ

(2)
G (w̄).

An interesting question is, whether a variant of Theorem 6.3.1 can be

formulated in this general context? E.g. with the following definitions from

the introduction,

pG := E(κG(W1, W̄2))

SG := (pG)−1
E(κG(W1, W̄2)κG(W2, W̄3)),

let P be defined as the set of probability measures with SG = s, where s is a

given constant. Let P
† ∈ P be the probability measure having the property

that V ar(W ) = V ar(W̄ ) = 0. Let Ξ be a set of finite self-avoiding paths with

first vertex of the first edge vi and the second vertex of the last edge is vj . Is
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it still true that for all P ∈ P and for any graph G, it holds that

P(CΞ|wi, w̄j) ≤ P
†(CΞ|wi, w̄j)?

Furthermore, if Ξ is a set of infinite self-avoiding paths with first vertex of the

first edge vi. Is it still true that for all P ∈ P and for any infinite graph G, it

holds that

P(CΞ|wi) ≤ P
†(CΞ|wi)?

In this chapter the existing theory on inhomogeneous random graphs has

not yet been used. This is mainly because this existing theory is only about

complete graphs G, while the results of this chapter are interesting on general

graphs G. However, it is interesting whether and how the methods to obtain

results in inhomogeneous random graphs discussed in [21, 22, 23] can be gen-

eralised to the inhomogeneous random graphs discussed in this chapter. One

might expect that interesting results, like the extinction probability and the

basic reproduction ratio, R0 and even branching process approximations can

be obtained for infection spread in inhomogeneous, randomly mixing popula-

tions. Further research on this subject may give new insights in mathematical

epidemiology and is therefore desirable.
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Samenvatting

Over stochastische modellen voor de verspreiding van

infecties

De werkelijke dynamiek van de verspreiding van een besmettelijke ziekte is

meestal te complex om te beschrijven in een wiskundig analyseerbaar model.

Om die reden zijn vereenvoudigingen nodig die een kwalitatief beeld geven van

de verspreiding en die als gereedschap kunnen dienen voor het analyseren van

computerintensieve simulaties van deze verspreiding.

Het meest gebruikte stochastische (kanstheoretische) model voor de ver-

spreiding van besmettelijke ziekten is het stochastische SIR (Vatbaar (S) →
Infectieus (I) → Immuun (R))-model. In dit model veronderstellen we dat

ieder individu zich in één van deze drie “toestanden” (S, I of R) bevindt. Als

een vatbaar individu een contact heeft met een infectieus individu, wordt het

zelf ook infectieus met een bepaalde kans. Een infectieus individu herstelt na

een exponentieel verdeelde infectieuze periode. Contacten tussen ieder twee-

tal individuen vinden met een zelfde intensiteit plaats (de aanname van een

willekeurig mengende populatie). Een hersteld individu is immuun en blijft

dat voor altijd.

Dit proefschrift handelt over uitbreidingen van dit standaardmodel. Voor

deze uitbreidingen wordt veelvuldig gebruik gemaakt van bekende kanspro-

cessen, zoals vertakkingsprocessen.

Vertakkingsprocessen zijn ontwikkeld om stambomen te modelleren. Men

wilde weten hoe groot de kans is dat een gegeven achternaam uitsterft en hoe

lang dit gemiddeld duurt. Er wordt aangenomen dat de aantallen zonen van

alle mannen onafhankelijk en identiek verdeeld zijn. Ook de leeftijden waarop

mannen hun zonen krijgen zijn onafhankelijk en identiek verdeeld.

Een beginnende epidemie in een grote willekeurig mengende populatie kan

159
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ook met een vertakkingsproces beschreven worden. In een grote populatie is de

kans dat er in een beginnende epidemie al contacten worden gemaakt tussen

infectieuze en niet-vatbare individuen erg klein. Als we deze kans helemaal

negeren dan wordt het verloop van het aantal infectieuze individuen in een

epidemie exact beschreven met een vertakkingsproces, waarbij de individuen

die door een infectieus individu besmet zijn, gezien worden als zijn kinderen.

In Hoofdstuk 2 beschouwen we de verspreiding van klassieke varkenspest

(KVP) tussen bedrijven. We beschouwen hier de bedrijven als de individuen.

De verspreiding van de infectie tussen bedrijven hangt af van de verspreiding

binnen de bedrijven. Als er meer dieren op een bedrijf besmet zijn, neemt de

kans dat de besmetting wordt overgebracht naar een ander bedrijf toe. Ook

neemt de kans toe dat de besmetting ontdekt wordt en het bedrijf gëısoleerd

en geruimd wordt. Daarom modelleren we de verspreiding van KVP op twee

niveaus: binnen de bedrijven en tussen de bedrijven.

We zijn gëınteresseerd in de verspreiding tussen de bedrijven. Echter, door

de spreiding binnen de bedrijven is de lengte van de infectieuze periode niet

meer exponentieel verdeeld. Verder is de intensiteit waarmee contacten die tot

een besmetting van andere bedrijven leiden niet meer constant, maar hangt

af van de tijd sinds de eerste besmetting op het bedrijf. Daarom is voor de

verspreiding tussen bedrijven een uitbreiding van het standaard SIR-model

gebruikt.

Omdat klassieke varkenspest grote gevolgen heeft voor het dierenwelzijn

en de economie, worden er maatregelen genomen die de verspreiding van de

infectie moeten afremmen. Deze maatregelen zorgen voor extra uitdagingen

in het modelleren, want de intensiteit waarmee contacten plaatsvinden veran-

dert door deze maatregelen tijdens de epidemie. Dit zorgt ervoor dat we het

model nog verder moeten aanpassen om tot een realistische beschrijving van

de verspreiding te komen. In Hoofdstuk 2 ontwerpen we het model dat de

uitbreidingen uit de vorige en deze alinea bevat. Met dit model kunnen we

kwalitatieve voorspellingen doen over het effect van maatregelen die genomen

worden om de verspreiding te remmen.

In het model van Hoofdstuk 2 gebruiken we verschillende parameters. In

werkelijkheid weten we de waarden van deze parameters vaak niet op het

moment dat een epidemie uitbreekt en moeten we deze schatten tijdens de

epidemie zelf. In Hoofdstuk 3 gaan we in op de vraag of en hoe we deze para-

meters kunnen schatten met behulp van de beperkte informatie die doorgaans
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beschikbaar is als een epidemie nog aan het spreiden is. Uit de bestaande

literatuur over vertakkingsprocessen is bekend dat we, als we alleen maar

weten hoeveel individuen op ieder moment infectieus zijn, maximaal twee para-

meters kunnen schatten. Maar zelfs dit aantal infectieuze individuen is meestal

niet bekend. We weten wel het aantal individuen waarvan we waargenomen

hebben dat ze besmet zijn en die op het moment van deze observatie stoppen

met infectieus zijn, door isolatie of ruiming. In dit hoofdstuk tonen we aan

dat we, verrassend genoeg, met deze observaties uiteindelijk drie parameters

kunnen schatten.

In de hoofstukken 4, 5 en 6 laten we de aanname van willekeurige menging

los. In plaats daarvan beschouwen we de verspreiding van een besmettelijke

ziekte over een sociaal netwerk. Voor deze netwerken nemen we aan dat er

alleen contacten mogelijk zijn tussen individuen die ook in het sociale netwerk

met elkaar verbonden zijn.

In Hoofdstuk 4 wordt de in de wiskundige epidemiologie veel gebruikte

methode van “paarbenaderingen” geanalyseerd. Deze methode negeert kans-

processen en is erg grof, maar het geeft wel een beeld van het verloop van

de verspreiding in de tijd. We tonen aan dat andere methoden welkom en

misschien zelfs noodzakelijk zijn voor verdere analyse van de epidemie.

Eén van de andere manieren om de verspreiding over een netwerk te mo-

delleren is de volgende. We vervangen het netwerk, waarover de infectie zich

verspreidt, in het model door een nieuw netwerk. Dit nieuwe netwerk heeft

bepaalde eigenschappen gemeen met het oorspronkelijke netwerk, zoals de

verdeling van het aantal verbindingen per individu, maar is verder willekeurig.

Het nieuwe netwerk biedt de gelegenheid om de verspreiding van de infectie

te analyseren. We kunnen met deze methode rekening houden met de kans-

processen die een rol spelen bij de verspreiding. Het is zodoende mogelijk

om te bepalen hoe groot de kans op een kleine uitbraak (een epidemie waarbij

niet meer dan enkele individuen worden besmet) is en hoe groot het verwachte

aantal besmette individuen is tijdens de gehele epidemie.

In de bestaande netwerk-modellen is de enige eigenschap van het sociale

netwerk, die wordt overgenomen in het nieuwe netwerk, de verdeling van

het aantal verbindingen per individu. Door de individuen te vervangen door

huishoudens van willekeurige omvang, wordt in Hoofdstuk 5 ook de mogelijk-

heid gegeven om het aantal driehoeken in het sociale netwerk over te nemen

in het nieuwe netwerk. Driehoeken zijn belangrijk want die geven in feite weer
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dat de vrienden van mijn vrienden vaak ook mijn vrienden zijn. Modellen

voor de verspreiding van een besmettelijke ziekte op dit nieuwe netwerk zijn

goed te analyseren en ook op dit netwerk is het mogelijk om de kans op een

kleine uitbraak te bepalen.

In het laatste hoofdstuk van dit proefschrift worden contacten tussen in-

fectieuze en vatbare individuen verder geanalyseerd. Totnogtoe is in deze

inleiding aangenomen dat elk contact met een vaste kans leidt tot een besmet-

ting. Echter, in de praktijk zijn sommige individuen meer vatbaar voor een

infectie dan anderen. Ook scheiden sommige individuen meer infectieus mate-

riaal uit dan anderen en hebben dus een hogere infectiviteit. We modelleren

dit als volgt: ieder individu krijgt twee getallen toegekend. De eerste geeft

de vatbaarheid weer, de tweede de infectiviteit. De kans dat bij een contact

tussen een vatbaar en een infectieus individu daadwerkelijk een besmetting

plaatsvindt wordt gegeven door een functie die afhangt van twee variabelen,

namelijk de infectiviteit van het infectieuze individu en de vatbaarheid van

het vatbare individu. De vectoren (vatbaarheid, infectiviteit) voor de verschil-

lende individuen zijn identiek en onafhankelijk verdeeld, maar de vatbaarheid

en infectiviteit van één individu kunnen wel gecorreleerd zijn.

Een variant van het bovenstaande epidemiologische model is in de wiskundige

literatuur al bestudeerd in de context van willekeurige netwerken. Het is echter

nooit eerder in verband gebracht met epidemieën. Nu dit verband wel is aange-

toond, kunnen resultaten voor de willekeurige netwerken toegepast worden op

modellen voor de verspreiding van besmettelijke ziekten.
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