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It is demonstrated that the inverse problem technique may be applied to the nonlinear string 
equation (2) and that the equation has an infinite set of commuting integrals of motion. The result is 
used to interpret the numerical experiments of Fermi, Pasta, and Ulam, who observed an 
anomalously slow stochastization of one-dimensional chains of nonlinear oscillators. 

1. Fermi, Pasta, and Ulam performed in 1954 a 
series of numerical experiments aimed at ascertaining 
how randomization and the transition to a uniform en­
ergy distribution take place in dynamic systems with a 
large number of degrees of freedom[1,2]. The experi­
ment were performed on one-dimensional chains of 
nonlinear oscillators representing discrete models of 
a nonlinear string.The nonlinearity level and the num­
ber of oscillators were large enough (the chain con­
sisted of 64 oscillators in some experiments) for the 
experimenters to hope to discern rapid randomization 
of the chains and a transition to a uniform distribution 
of the energy over the degrees of freedom. They ob­
served instead a quasiperiodic energy exchange between 
several initially excited modes and were unable to ob­
serve a tendency to a stochastic transition of the energy 
to higher modes over a sufficiently large time (up to 
several hundred oscillation periods). 

The problem of anomalously slow randomization of 
one-dimensional chains of nonlinear oscillators is 
known as the "Fermi-Pasta- Ulam problem," and has 
recently been the subject of a number of studies, both 
analytic and based on results of numerical experiments 
(see the bibliography in the review[4]). 

The most clearly pronounced "anomalous" behavior 
was demonstrated in the Fermi-Pasta- Ulam problem by 
a chain with a quadratic nonlinearity, the motion of 
which is described by the equations 

.. ~. = 6tH - 2~t + ~t-t + (6'+1- ~i)' - (~i - 6i-,)" (1) 

A regular quasiperiodic behavior of this chain was also 
observed later in detailed experiments by Deem and 
Zabusky[5]. 

The continual analog of chain (1) is a nonlinear 
string, the equation of which is conveniently written in 
the form 

(2) 

We shall show in this paper that Eq. (2) has unique 
properties that can be used to explain the Fermi-Pasta­
Ulam experiments. It must be emphasized from the 
very outset, however, that this explanation can be only 
qualitative, since we consider Eq. (2) with periodic 
boundary conditions, whereas in the numerical experi­
ments the ends of the chains were regarded ~s fixed. 

We shall show that Eq. (2) has an infinite set of inte­
grals of motion that commute with one another. To this 
end, we rewrite Eq. (2) in the form of a system 

(3 ) 

and introduce two linear differential operators 
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- d3 d d d 4 'I, 
L=i-+i(U-+-U)+i--(-) Cll x• 

dx' dx dx dx 3 (4) 

- _ ( 3 ) 'I'd' ( 4 ) 'I, 
A- '4 dx' + 3" u. (5) 

It can be verified by direct substitution that the operator 
relation 

aLji)t = i (L A - AL) 

is identical with the system (3). 

We assume that Eq. (2) is specified on the interval 
[0, l] with periodic boundary conditions at the ends of 
the interval, ~nd consider the eigenvalue problem for 
the operator L on this interval: 

(6) 

(7) 

assuming likewise periodic boundary conditions for the 
function I/!. Differentiating (7) with res pect to time and 
using (6), we obtain 

(L-I.)(",,+iA1jJ)=I.,1jJ. (8) 

Taking the scalar product of (8) and I/! , and bearing (7) 
in mind, we obtain At = O. In other words, all the eigen­
values Ai of the operator L are integrals of motion of 
Eq. (2). From (8) with At = 0 it follows also that 

I/l,+iA1jJ= g(t)1jJ. (9) 

Here g( t) is an arbitrary function of t and takes into 
account the fact that the normalization of the eigenfunc­
tion I/! can be varied arbitrarily with time. 

2. We note that the system (3) can be expressed in 
Hamiltonian form: 

where 

bH 
u'=-W' 

(10) 
H = J ('I,u' + '/,Cllx' + '/3u' - '/.ux')dx 

o 

is the Hamiltonian of the system. This enables us to 
define for the functionals Q: and {3 of u and <i> the fol­
lowing Poisson brackets: 

{ Rl= J' (ba b~ _ ba b~ ) a,~ - -- dx 
o bu 6<D b<D bu . 

(11) 

We shall show that the Poisson brackets between the 
eigenvalues Ai of the operator L are equal to zero, and 
in this sense the Ai are commuting integrals of motion 
of the system (3). The variation liA of the eigenv~lue A 
following an infinitesimally small perturbation liL of 
the operator L is given by 

bl.=(",loLI",)· (12) 

Here I/! is an eigenfunction of the operator Land satis­
fies the equation 
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i1jJ, .. + i(2u+ 1)1jJ.+ iU,1jJ- ('I,)'h«J,1jJ=A1jJ. 

From (4) we have 

(ji=i({jU~+~6U)- (~)'/' (6<D) •. 
dx dx 3 

Substituting (14) in (12) we find 

{jA {jA ( 4 )'t, d 
6u =i(1jJ'1jJ,-1jJ1jJx'), 6<il= 3 dx!1jJ!'· 

We introduce a symbol for the arbitrary functions 
Xl and X2: 

(13 ) 

(14) 

(15) 

Here ljil and Iji~ are the corresponding eigenfunctions. 
It is easy to obtain from (13) the relations 

i d' 
1jJ,Ijl,= 1.,-1., Lx' [1jJ"1jJ.]-[Ijl,x,Ijl,x]+ (2u + l)[1jJ,,1jJd}, (17) 

d ( 4 )'t, dx [IjJ,x, 1jJ,x] = ux [ 1jJ" 1jJ.] + i"3 <Dx[ 1jJ" 1jJ.] + i(A,1jJ,1jJ,x - A,1jJ,Ijl,x). (18) 

Substituting (17) in (16) and using (18), we obtain after 
simple transformations 

(
4 )1/2 i I 

{I." A,}= - 3 I., _ I., I {[ 1jJ;, 1jJ,'] (t.,1jJ,1jJ,x - A,1jJ,IjJ,x) 
o 

- [Ijl" 1jJ,] (A,1jJ;1jJ,x' - A,Ijl,'1jJ,x') ldx. 

Putting Al = a + band A2 = a - b, we get 

( 4 ) 'I, b '{ d 
{A"A,l= 3 A'-A,! [1jJ;,Ijl,']dx 1jJ,1jJ, 

d } 1 -[1jJ"Ijl,] dx 1jJ,'1jJ,' dx= -2{A"A,l, 

from which it follows that {Al, AZ} = o. 
3. In addition to the integrals Ai we can obtain an 

infinite set of "polynomial" integrals of the motion, 
which are expressed explicitly in terms of the "field" 
variables u and <P. To this end we assume that a cer­
tain solution Iji of Eq. (13) satisfies the condition 
Iji( l ) = eikl and consequently admits of a representation 
in the form . 

(19 ) 

where k is a real root of the equation k' - k = A. Sub­
stituting (19) in (9) and (13) we obtain 

~~ = - a: { ( ~ ) 'I, (ixx + x' - 2kx) - ( ~ ) 'I, u} , 

x = + ( x' + ixx - : u) + 

1 ( ( 4 ) ,t, ) +- x=-3iXX.-X' +(2u+ 1)x + iu.- - v. 
3k' 3 

Here v = <Px. It follows directly from (20) that the 
quantity 

X(k)= I x(x,k)dx 
o 

is conserved in time. 

(20) 

(21 ) 

We consider the asymptotic form of X(x, k) at large 
values of k: 
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(x k) "'" ~ x" (x) . 
X, ~ k" 

Accordingly 
00 In 

X(k)""'~- I"~IXn(x)dX. 
~ k'" 

All the In are integrals of motion of the system (3). 
Substituting (22) in (21) and (20) we obtain the recur­
rence formulas 

n n-2 

Xn+' = iXnx + ~ X,Xn-' + '/'(Xn-')xx - ~ X'(X"-H), 
k=1 11=1 

-'I, ~ X,XjX, + '/,(2u+ lJx"_, (n>2), 

x' = -'I,u, x' = -'/3(iux+ ('I,),l,v). 

Here 
n-l 

axnlfJt=fJfI"lf)x, fI"=('I,)," (iX"x+ ~X'X"_,-2X"+')' 
R=1 

fI' = ("I,) 'h (ix" - 2X2 - 'I,u). 

(22) 

(23 ) 

(24) 

(25) 

Formulas (23)-(25) enable us to find all the In. We 
present the first seven: 

I 

I,=-'I,I udx, 
o 

I 

1,=-'/,('I,)'h Ivdx, 
o 

I 

I, = '/,1" II = 'I, ('1,),1, I uv dx + '1,1" 
o 

, 
I, = '1" I ('/,u' + '/,v' + 'I,u' - '/,u}) dx + '/91" 

o 

I. = '1,1, - '/sI" 
, 

(26) 

1, = - 'I" I (Un' - 4vx' + 16uv' -12u,'u + "IoU' - 2u/ - 8u: - 8v')dx. 
o 

It follows from (26) that not all the In are independent; 
thus, 13 and 16 are expressed in terms of the lower in­
tegrals. The first three independent integrals 11,1 2, 
and 14 follow directly from the system (3), and the inte­
gralls is expressed in terms of the Hamiltonian: 

The first nontrivial integral is h. 

4. For a Hamiltonian system with a finite number N, 
of degrees of freedom, the existence of N commuting 
integrals of motion means, by virtue of the Liouville 
theorem (see, e.g.,[61), that the system is fully inte­
grable, i.e., that it is possible to separate the variables 
and to introduce action and angle variables. The inte­
grable systems are not completely randomized, since 
there is no exchange of energy between the degrees of 
freedom. 

For a Hamiltonian system with a denumerable num­
ber of degrees of freedom, such as Eq. (2) with periodic 
boundary conditions, the existence of a denumerable set 
of commuting integrals is only the necessary condition 
of integrability, and it is still necessary to prove the 
"completeness" of this set. If, however, we take the 
position that Eq. (2) is a fully integrable system, then 
the results of the Fermi-Pasta- Ulam experiments be­
come naturally explicable. 

The possible cause of randomization of the chain (1) 
in this case is not the level of its nonlinearity, but the 
degree of its deviation from a fully integrable continual 
limit. 
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For the smooth initial conditions considered in the 
Fermi - Pasta- Ulam experiments, this deviation is of the 
order of ~ "/~ ~ 1/N2, where N is the number of oscil­
lators in tire chain. At N = 64 this leads to a decrease 
of the "effective nonlinearity" by a factor 10" __ 104 and 
to a corresponding increase of the randomization time 
to values by far not attained in the numerical experi­
ments. When the number of oscillators in the chain is 
increased, the randomization time becomes correspond­
ingly more remote. 

5. The fact that the system (3) is identical with the 
operator re lation (6) means that the method of the in­
verse problem can be applied to the system (3 )[7-10J. 
This method was applied earlier to the Korteveg-deYries 
equation[7,BJ 

tor (4) is a difficult and as yet unsolved mathematical 
problem. 

In conclusion, we make one more remark with re­
spect to randomization of the one-dimensional Hamil­
tonian systems of general type. Among the one-dimen­
sional Hamiltonian systems there exist apparently many 
fully-integrable ones, many of which remain unclassi­
fied and unlisted to this day. When a given Hamiltonian 
system is studied, it must be borne in mind that the 
rate of its randomization is determined by the degree 
to which the system is close to the nearest fully inte­
grable system. Accidental causes can make this "dis­
tance" small (as was apparently the case with chain 
(1)), and this increases the randomization time. 

The author thanks E. N. Kuz'min for a number of 
U, + uUx + U m = 0 (27) useful remarks. 

and to the nonlinear "parabolic" equation[9,lOJ 

i¢, + ¢ .. ± 1 ¢ I' = o. (28) 

The role of the operator L is assumed in these equa­
tions by the one-dimensional Schrodinger operator and 
the one-dimensional Dirac operator, respectively. It is 
of interest to compare the results obtained for Eqs. (27) 
and (28) with our present results. 

In the case of periodic boundary conditions, there is 
a complete analogy'between the results. For Eqs. (27) 
and (28) it is possible to establish the existence of sets 
of commuting integrals of the eigenvalues of the corre­
sponding operators and to calculate the polynomial con­
servation laws. No proof of the existence of these sets 
for Eqs. (27) and (28) has been obtained as yet. 

In the case of these equations, however, it is possi­
ble to make considerable progress by assuming zero 
conditions as I x I - 00. In this case, complete integra­
bility was proved in [11 J, and the interaction of particular 
solutions of the equations, corresponding to discrete 
levels of the spectra (solitons) was investigated [B-1O,12J . 
These results are based on the formalism of the in­
verse~scattering problem for the corresponding opera­
tors L. They can probably be extended also to include 
Eq. (2), although the construction of the theory of the 
inverse scattering problem for the third-order opera-
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