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On Stokes’ problem for the flow
of a third-grade fluid induced by a
variable shear stress

S. Asghar, Muhammad R. Mohyuddin, P. Donald Ariel, and
T. Hayat

Abstract: The flow of an incompressible third-grade fluid over an infinite wall is considered.
The flow is due to a variable shear stress. Both the series and the numerical solutions of the
nonlinear partial-differential equation resulting from the momentum equation are obtained.
Effects of non-Newtonian parameters on the flow phenomena are analyzed. It is found that
with an increase in second-grade parameter and third-grade parameter, the velocity decreases
and thus, the boundary-layer thickness increases.

PACS No.: 47.15.cb

Résumé : Nous étudions l’écoulement d’un fluide incompressible de troisième catégorie au
dessus d’une surface semi-infinie. Le flot est causé par un effort de déchirement variable.
Nous obtenons les solutions en série et numériques de l’équation différentielle non linéaire
aux dérivépartielles résultant de l’équation des moments. Nous analysons les effets des
paramètres non newtoniens sur le flot. Nous trouvons qu’une augmentation des paramètres
de seconde et de troisième catégories résulte en une diminution de la vitesse et une
augmentation de l’épaisseur de la couche frontière.

[Traduit par la Rédaction]

1. Introduction

The fluid motion induced because of the motion of a flat plate, also named the Stokes’ problem
[1], occurs in many applied problems [2]. Interesting solutions of this problem for a Newtonian fluid
have been obtained by Zierep [3]. Soundalgekar [4], Puri [5], Bandelli et al. [6], Tigoiu [7], Rajagopal
and Na [8], Fetecau and Zierep [9], Fetecau and Fetecau [10] have studied the problems for various
non-Newtonian fluid models. Recently, Asghar et al. [11] studied the flow of a third-grade fluid on a
porous plate executing oscillations in its own plane with superimposed injection or suction.
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There have been several studies on flows of non-Newtonian fluids due to their technological sig-
nificance and also in view of the interesting mathematical challenges because of the nonlinearities in
the constitutive equations. Owing to the complexity of fluids, many models of non-Newtonian fluids
are proposed. Amongst those there is one subclass, namely, viscoelastic fluids that have been studied
extensively. Related studies are given in refs. 12–22.

Although the second-grade fluid model is able to predict the normal stress differences that are
characteristics of non-Newtonian fluids, it does not take into account the shear thinning and thickening
phenomena that many fluids show. The third-grade model represents a further, although inconclusive,
attempt toward a more comprehensive description of the behaviour of viscoelastic fluids. With this
in view, the model in the present work is a third-grade fluid and its flow over an infinite flat plate is
considered. The governing equation is a nonlinear third-order partial-differential equation. The flow
is induced by a variable shear stress dependent on time, which, incidentally, also makes the boundary
conditions nonlinear.

2. Basic equations

The stress in a third-grade fluid is given by [23]

T = −pi + µA1 + α1A2 + α2A2
1 + β1A3 + β2 (A2A1 + A1A2) + β3 (tr A2) A1 (2.1)

in which T is the stress tensor; p is the scalar pressure; µ is the coefficient of viscosity, and α1, α2, β1,
β2, and β3 are the material moduli. The kinematic tensors A1, A2, and A3 are defined by

A1 = (grad V ) + (grad V )� (2.2)

An = dAn−1

dt
+ An−1 (grad V ) + (grad V )� An−1, n = 2, 3 (2.3)

where V denotes the velocity field and d/dt the material time derivative. A detailed thermodynamic
analysis of the model, represented by (2.1) is given by Fosdick and Rajagopal [23]. They show that if
all the motions of the fluid are to be compatible with thermodynamics in the sense that these motions
meet the Clausius–Duhem inequality and if it is further assumed that the specific Helmholtz free energy
is a minimum when the fluid is locally at rest, then

µ ≥ 0, α1 ≥ 0, |α1 + α2| ≤ √
24µβ3, β1 = β2 = 0, β3 ≥ 0 (2.4)

Therefore, the constitutive relation for a thermodynamically compatible fluid of third-grade becomes

T = −pi + µA1 + α1A2 + α2A2
1 + β3 (trA2) A1 (2.5)

If we put β1 = β2 = β3 = 0 in (2.1), we obtain the model for second grade fluid.

3. Statement of the problem

We consider a third-grade fluid over an infinite plate placed along the x-axis, and choose the y-axis
to be perpendicular to the plate. The plate is under a variable shear stress with magnitude cτ(t) where c

is a constant having the dimension ρU0 (ρ is the density and U0 is some reference velocity). The basic
governing equations are the conservation of mass and linear momentum. These are

∂ρ

∂t
+ div (ρV ) = 0 (3.1)

ρ
dV

dt
= divT + ρb (3.2)
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where b is the body force. For an incompressible flow, (3.1) reduces to

divV = 0 (3.3)

For the problem under consideration the velocity field is assumed to be

V = u (y, t) i (3.4)

where u and i are the velocity and unit vector in the x-coordinate direction, respectively.
The boundary conditions on the flow are[

µ
∂u

∂y
+ α1

∂2u

∂y∂t
+ 2β3

(
∂u

∂y

)3
]

y=0

= cτ (t) , t > 0 (3.5)

u(y, t) → 0 as y → ∞ (3.6)

Using (3.4), (3.3) is identically satisfied and (3.2) in the absence of body forces yields

ρ
∂u

∂t
= µ

∂2u

∂y2 + α1
∂3u

∂y2∂t
+ 6β3

[
∂2u

∂y2

(
∂u

∂y

)2
]

(3.7)

Introducing the nondimensional parameters

α1 = α1U
2
0

ρν2 , ε = 6β3U
4
0

ρν3 , u = u

U0
, t = U2

0 t

ν
, η = U0

ν
y (3.8)

in (3.7) and the boundary conditions (3.5) and (3.6), and omitting the bars for simplicity we get

∂u

∂t
= ∂2u

∂η2 + α1
∂3u

∂η2∂t
+ ε

[
∂2u

∂η2

(
∂u

∂η

)2
]

(3.9)

[
∂u

∂η
+ α1

∂2u

∂η∂t
+ 1

3
ε

(
∂u

∂η

)3
]

η=0

= τ (t) , t > 0 (3.10)

u(η, t) → 0 as η → ∞ (3.11)

In this paper, we consider two cases (i) τ(t) = eλt (λ is real and positive constant) and (ii) τ(t) = eiωt

(ω is the imposed frequency). In the former case, since λ is positive, it is prudent to obtain a numerical
solution besides an analytical solution in the form of a perturbation series in terms of ε. On the other
hand, in the latter case, since the solution is essentially bounded a perturbation solution should, therefore,
give acceptable results.

4. Solution for case 1: τ(t) = eλt , λ is purely real (acceleration)

4.1. Numerical solution
In problems of this type, usually no initial condition is given at t = 0. For example, for a second

grade fluid (ε = 0) Hayat et al. [19] and Rajagopal [24] derived the analytical solutions for a number
of unsteady unidirectional flow problems, without using any initial condition. The initial condition(s),
if needed to be derived, can be obtained from the solution.

Because of the nonlinearity introduced on account of the third-grade-fluid parameter, it is not
feasible, in general, to obtain a closed-form analytical solution and a numerical solution naturally enters
into the consideration. For the latter, it appears that an initial condition must be prescribed at t = 0.
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However, as Ariel [22] recently demonstrated in an analogous situation, the initial condition can be
deduced if appropriate transformations are used.

We choose

u (η, t) = eλtf (η, t) (4.1)

so that the differential equation for f takes the form

∂f

∂t
+ λf = ∂2f

∂η2 + α1

(
∂3f

∂t∂η2 + λ
∂2f

∂η2

)
+ ε e2λt

(
∂f

∂η

)2
∂2f

∂η2 (4.2)

and the boundary conditions become

(1 + α1λ)
∂f (0, t)

∂η
+ 1

3
ε e2λt

[
∂f (0, t)

∂η

]3

= 1, f (∞, t) = 0 (4.3)

Next we introduce the transformation

ξ = e2λt (4.4)

which leads us the boundary-value problem

2λξ
∂f

∂ξ
+ λf = (1 + α1λ)

∂2f

∂η2 + 2α1λξ
∂3f

∂ξ∂η2 + εξ

(
∂f

∂η

)2
∂2f

∂η2 (4.5)

(1 + α1λ)
∂f (0, ξ)

∂η
+ 1

3
εξ

[
∂f (0, ξ)

∂η

]3

= 1, f (∞, ξ) = 0 (4.6)

Equation (4.5) only has the boundary conditions at η = 0 and η = ∞, but not the initial condition
at ξ = 0. But if we make the reasonable assumption that f is regular at ξ = 0, we do not need the
initial condition to get the integration started at ξ = 0. Equation (4.5) can thus be integrated in the entire
domain 0 ≤ ξ < ∞ ∩ 0 ≤ η ≤ ∞. When one reaches ξ = 1, the initial condition is recovered for the
problem. Now either the original (3.9) can be integrated in the usual manner, or the integration can be
carried further beyond ξ = 1 by (4.5). We have chosen the latter approach in the present work.

Equation (4.6) can be integrated with respect to ξ from ξi to ξi+1, integrating the terms that can
be readily integrated and replacing the remaining integrals by their numerical equivalent using the
trapezoidal rule. The resulting equation can then be solved for f at ξ = ξi+1 by treating the equation as
a boundary-value problem in the η-domain. The details of the integration scheme have been furnished
in Ariel [22] and are omitted here, except that in the present work, the situation is slightly complicated
on account of the boundary condition at η = 0. Now we have

(1 + α1λ)
∂f (0, ξ)

∂η
+ 1

3
εξ

[
∂f (0, ξ)

∂η

]3

= 1 (4.7)

which is cubic in ∂f (0, ξ) /∂η, that must be solved for each value of ξ . Also at ξ = 0, the solution for
f is

f (η, 0) = − 1√
λ
√

1 + λα1
exp

(
−
√

λ

1 + λα1
η

)
(4.8)

In Table 1, the values of u(0), the velocity of the fluid at the plate, are presented for λ = 0.5,
α = 0.2, 0.5, 1, and 2, and for various values of t . Also in Table 1, the corresponding values of u(0)

obtained by the perturbation technique are given. The latter is described in the next section.
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Table 1. Illustrating the variation of u(0), the velocity at the plate with α1, the viscoelastic fluid parameter and ε, the second-grade fluid parameter for λ = 0.5
using (i) the exact numerical solution and (ii) the perturbation solution.

u(0)

λ = 0.5

t = 0 t = 1 t = 2 t = 3 t = 5

α1 ε Exact Perturbation Exact Perturbation Exact Perturbation Exact Perturbation Exact Perturbation

0.2 0.1 −1.339476 −1.342384 −2.186549 −2.197751 −3.529042 −3.570781 −5.598185 −5.853466 −13.222440 −60.142478
0.2 −1.3314858 −1.3367778 −2.1579308 −2.1773578 −3.4432068 −3.5370308 −5.3843428 −6.4045018 −12.355852 −213.784337
0.5 −1.311407 −1.322416 −2.095671 −2.146119 −3.282987 −3.800568 −5.033027 −12.501669 −11.154726 −1334.267421
1 −1.285830 −1.306674 −2.027334 −2.193869 −3.128698 −5.455769 −4.727634 −37.477161 −10.240992 −5400.264261

0.5 0.1 −1.257607 −1.261516 −2.055104 −2.070731 −3.322842 −3.377852 −5.285384 −5.465808 −12.620225 −25.166529
0.2 −1.250940 −1.258241 −2.030566 −2.057429 −3.247671 −3.335021 −5.097938 −5.478324 −11.854309 −66.928162
0.5 −1.233809 −1.249130 −1.976187 −2.026241 −3.107124 −3.312736 −4.790754 −6.809757 −10.776368 −384.2423041
1 −1.211545 −1.236331 −1.916194 −2.003322 −2.972230 −3.629622 −4.522355 −13.341755 −9.942527 −1553.196693

1 0.1 −1.149875 −1.153137 −1.883191 −1.896866 −3.056709 −3.108968 −4.885331 −5.055345 −11.798322 −14.513506
0.2 −1.145326 −1.151598 −1.865411 −1.890251 −2.997434 −3.082781 −4.727786 −4.980096 −11.147837 −21.551781
0.5 −1.133065 −1.147127 −1.823182 −1.872203 −2.880334 −3.026095 −4.466168 −5.020847 −10.224618 −82.218010
1 −1.116092 −1.140168 −1.773710 −1.848109 −2.765489 −3.004536 −4.238184 −5.977082 −9.498322 −315.166407

2 0.1 −0.997836 −0.999508 −1.639238 −1.646527 −2.678170 −2.708566 −4.324706 −4.439598 −10.638175 −11.632051
0.2 −0.9957281 −0.9990191 −1.6303941 −1.6443631 −2.6443891 −2.6992271 −4.2169871 −4.4021041 −10.107024 −11.763908
0.5 −0.9897228 −0.9975668 −1.6069828 −1.6380588 −2.5669318 −2.6734758 −4.0154818 −4.3172068 −9.3598608 −16.253280
1 −0.980624 −0.995196 −1.575504 −1.628170 −2.480478 −2.638103 −3.830112 −4.267656 −8.773695 −37.381574
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4.2. Perturbation solution
We perturb the velocity u in ε as follows [8]:

u (η, t; ε) = u0 (η, t) + εu1 (η, t) + ε2u2 (η, t) + · · · (4.9)

For ε = 0, (4.9) gives an exact solution for the reduced problem corresponding to a second-grade fluid.
Using (4.9) in (3.9) and conditions (3.10) and (3.11), we obtain the following systems:

Zeroth-order system

∂u0

∂t
= ∂2u0

∂η2 + α1
∂3u0

∂η2∂t
(4.10)

[
∂u0

∂η
+ α1

∂2u0

∂η∂t

]
η=0

= eλt , t > 0 (4.11)

u0 (η, t) → 0 as η → ∞ (4.12)

First-order system

∂u1

∂t
= ∂2u1

∂η2 + α1
∂3u1

∂η2∂t
+ ∂2u0

∂η2

(
∂u0

∂η

)2

(4.13)

[
∂u1

∂η
+ α1

∂2u1

∂η∂t
+ 1

3

(
∂u0

∂η

)3
]

η=0

= 0 (4.14)

u1 (η, t) → 0 as η → ∞ (4.15)

Second-order system

∂u2

∂t
= ∂2u2

∂η2 + α1
∂3u2

∂η2∂t
+ ∂2u1

∂η2

(
∂u0

∂η

)2

+ 2
∂u0

∂η

∂u1

∂η

∂2u0

∂η2 (4.16)

[
∂u2

∂η
+ α1

∂2u2

∂η∂t
+
(

∂u0

∂η

)2
∂u1

∂η

]
η=0

= 0 (4.17)

u2 (η, t) → 0 as η → ∞ (4.18)

On defining the transformations

u0 (η, t) = f0 (η) eλt , u1 (η, t) = f1 (η) e3λt , u2 (η, t) = f2 (η) e5λt (4.19)

the zeroth-, first-, and second-order systems become

(1 + λα1) f ′′
0 (η) − λf0 = 0 (4.20)

(1 + λα1) f ′
0 (0) = 1 (4.21)

f0 (η) → 0 as η → ∞ (4.22)

(1 + 3λα1) f ′′
1 (η) − 3λf1 = − (f ′

0

)2
f ′′

0 (4.23)

(1 + 3λα1) f ′
1(0) + 1

3

[
f ′

0(0)
]3 = 0 (4.24)

© 2006 NRC Canada



Asghar et al. 951

f1 (η) → 0 as η → ∞ (4.25)

(1 + 5λα1) f ′′
2 (η) − 5λf2 = − (f ′

0

)2
f ′′

1 − 2f ′
0f

′′
0 f ′

1 (4.26)

(1 + 5λα1) f ′
2(0) + [

f ′
0(0)

]2
f ′

1(0) = 0 (4.27)

f2 (η) → 0 as η → ∞ (4.28)

where a prime indicates the derivative with respect to η.
The solutions of the zeroth-, first-, and second-order systems are given, respectively, by

f0 (η) = −A0c0 e−c0η (4.29)

f1 (η) = A1

(
c1 e−c1η − 3c0 e−3c0η

)
(4.30)

f2 (η) = A2

(
c2 e−c2η − 5c0 e−5c0η

)
+ B2

[
c2 e−c2η − (2c0 + c1) e−(2c0+c1)η

]
(4.31)

where

A0 = 1

λ
, c0 =

√
λ

1 + λα1
, A1 = − A3

0c
4
0

18 (1 + 4λα1)
, c1 =

√
3λ

1 + 3λα1

A2 = −9A2
0A1c

4
0

20 (1 + 6λα1)
, B2 = A2

0A1c
4
0c

2
1

(2c0 + c1)
2 (1 + 5λα1) − 5λ

, c2 =
√

5λ

1 + 5λα1

The expression for skin friction is given as

τ1 = τ 1

ρU2
0

=
[
eλtf ′

0(0) + ε e3λtf ′
1(0) + ε2 e5λtf ′

2(0) · ··
]

(4.32)

From (4.29)–(4.31) we easily obtain

f ′
0 (η) = A0c

2
0 e−c0η (4.33)

f ′
1 (η) = A1

(
−c2

1 e−c1η + 9c2
0 e−3c0η

)
(4.34)

f ′
2 (η) = A2

(
−c2

2 e−c2η + 25c2
0 e−5c0η

)
+ B2

[
−c2

2 e−c2η + (2c0 + c1)
2 e−(2c0+c1)η

]
(4.35)

4.3. Results and discussion
From Table 1, we observe that there is very good agreement between the numerical solution and the

perturbation solution for t = 0 and small values of t (t < 1). For the values of t greater than 3, there is
sufficient discrepancy in the results so that the perturbation solution can no longer be accepted — the
results from the numerical solution only should be used.

Figure 1 is plotted for the velocity field u against η for (α1 = 0, 1, 2; t = 1; λ = 0.5, and ε = 0.1;
0.5). It can be seen that with an increase in the viscoelastic parameter α1 the velocity increases near
the boundary but then decreases away from the boundary thus causing the boundary-layer thickness to
increase. Also it is found that when α1 is fixed i.e., (α1 = 0) and the third-grade parameter is increased
from ε = 0.1 to ε = 0.5 the velocity is again increased near the plate and then decreased away from
the boundary, though the effect of the third-grade fluid parameter is not as pronounced as that of the
viscoelastic fluid parameter. The same behaviour is observed when α1 = 1 and α1 = 2. In Fig. 2 the
velocity field u is plotted against η for (α1 = 0, 1, 2; t = 2; λ = 0.5; and ε = 0.1 and 0.5) and in Fig. 3
for (α1 = 0, 1, 2; t = 5; λ = 0.5, and ε = 0.1 and 0.5). Similar observations for the velocity field and
the boundary-layer thickness are seen in these figures as in Fig. 1 except that the difference between
the velocity profiles for ε = 0.1 and ε = 0.5 become prominent as we increase t from 2 to 5.
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Fig. 1. Variation of velocity profile u with η for t = 1.
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Fig. 2. Variation of velocity profile u with η for t = 2.
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0
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η

u

α1 = 0
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α1 = 2

= 0.5λ , t = 2

____ ε = 0.1

-------- = 0.5ε

5. Solution for case 2: τ(t) = eλt , λ is purely imaginary (oscillations)

5.1. Perturbation solution
We now discuss the case when the shear stress at the plate has an oscillating nature. For that we put

λ = iω in τ(t) and get, after some lengthy calculations, the following velocity field up to order ε2:

u (η, t; ε) = [f0R (η) cos ωt − f0I (η) sin ωt] + ε [f1R (η) cos 3ωt − f1I (η) sin 3ωt]

+ ε2 [f2R (η) cos 5ωt − f2I (η) sin 5ωt] . . . (5.1)

where the expressions for the functions f0R , f0I , f1R , f1I , f2R , and f2I are given in Appendix A.

5.2. Results and discussion
In Fig. 4, u the velocity is plotted against η for a second-grade fluid (α1 = 0, 1, 2; t = π/2;

ω = 0.5; and ε = 0). It can be seen that with an increase in the viscoelastic fluid parameter α1 the
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Fig. 3. Variation of velocity profile u with η for t = 5.
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Fig. 4. Variation of velocity profile u with η for t = π/2; ε = 0; ω = 0.1; and α1 = 0, 1, and 2.
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0

t =
π
2

, ω = 0.1, ε = 0

α1= 0
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0.25

velocity decreases and thus the boundary-layer thickness increases. Similar effects are seen in Fig. 5
in which t = 2π and ω = 0.5 are taken instead of t = π/2 and ω = 0.1. In Fig. 6, the velocity u is
plotted against η for a third-grade fluid (α1 = 0, 1, 2; t = 2π ; ω = 0.5; and ε = 0.1). Figure 6 shows
that with an increase in the third-grade parameter the velocity decreases and thus, the boundary-layer
thickness further increases. In Fig. 7, the velocity u is plotted against η for α1 = 0.5, t = 2π , ε = 0.5,
and for various values of the oscillating frequency (ω = 0.1, 0.3, 0.7). It is clear from Fig. 7 that the
amplitude of the velocity decreases with an increase in the frequencies. Figure 8 is plotted for the stress
τxy at any point in the fluid against η for various values of α1.

The skin friction at the plate η = 0 can be obtained by finding the real part in the following equation:

τ2 = τ 2

ρU2
0

=

eiωt {f ′

0R(0) + if ′
0I (0)} + εe3iωt {f ′

1R(0) + if ′
1I (0)}

+ε2 e5iωt {f ′
2R(0) + if ′

2I (0)} + · · ·


 (5.2)

where f ′
0R(0), f ′

1R(0), f ′
2R(0), f ′

0I (0), f ′
1I (0), f ′

2I (0) are given in Appendix B.
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Fig. 5. Variation of velocity profile u with η for t = 2π ; ε = 0; ω = 0.5; and α1 = 0, 1, and 2.
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Fig. 6. Variation of velocity profile u with η for t = 2π ; ε = 0.1; ω = 0.5; and α1 = 0, 1, and 2.
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Fig. 7. Variation of velocity profile u with η for t = 2π ; ε = 0.5; α1 = 0.5; and ω = 0.1, 0.3, and 0.7.
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6. Concluding remarks

In this work, the flow of a third-grade fluid on a plate is studied. The flow induced here is due to the
variable shear stress of the plate. The analytical solution of the governing nonlinear partial-differential
equation is given using a perturbation series. The numerical solution is also obtained. It should be noted
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Fig. 8. Variation of shear stress τxy with η for t = 2π ; ε = 0.1; ω = 0.5; and α1 = 0, 1, and 2.
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τ

that the results of several unattempted problems can be obtained as the limiting cases of our solution.
Specifically, the results for viscous and second-grade fluid flows due to a variable shear stress (which are
not yet in the literature to the best of our knowledge) can be recovered by taking α1 = ε = 0 and ε = 0,
respectively. Our investigation shows that the perturbation technique is adequate for the case when the
variable shear stress has as oscillatory character, however, if the shear stress grows exponentially with
time then the perturbation solution can be accepted only for small values of time. For moderate to large
values of time, the numerical solution must be used.
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Appendix A. Expressions for the functions of the perturbation
solution (5.1)

f0R = −e−R1η

R2
2 + I 2

2

(R2 cos I1η − I2 sin I1η) , f0I = e−R1η

R2
2 + I 2

2

(R2 sin I1η + I2 cos I1η)

f1R = e−3R1η

R2
4 + I 2

4

[R4 (R1 cos 3I1η + I1 sin 3I1η) − I4 (I1 cos 3I1η − R1 sin 3I1η)]

− e−R3η

3
(
R2

4 + I 2
4

) [R4 (R3 cos I3η + I3 sin 3I3η) − I4 (I3 cos I3η − R3 sin I3η)]

f1I = e−3R1η

R2
4 + I 2

4

[R4 (I1 cos 3I1η − R1 sin 3I1η) + I4 (R1 cos 3I1η + I1 sin 3I1η)]

− e−R3η

3
(
R2

4 + I 2
4

) [R4 (I3 cos I3η − R3 sin I3η) + I4 (R3 cos I3η + I3 sin 3I3η)]

f2R = R9 + R13 + R14, f2I = I9 + I13 + I14

R1 = 1√
2
(
1 + ω2α2

1

)
√√(

ω2α1
)2 + ω2 + ω2α1

I1 = 1√
2
(
1 + ω2α2

1

)
√√(

ω2α1
)2 + ω2 − ω2α1

R2 = 1√
2

√√(
ω2α1

)2 + ω2 + ω2, I2 = ± 1√
2

√√(
ω2α1

)2 + ω2 − ω2

R3 = 1√
2
(
1 + 9ω2α2

1

)
√√(

9ω2α1
)2 + 9ω2 + 9ω2α1

I3 = 1√
2
(
1 + 9ω2α2

1

)
√√(

9ω2α1
)2 + 9ω2 − 9ω2α1

R4 = 2ω2α1

(
2ω2α2

1 − 3
)

, I4 = ω
(

1 − 9ω2α2
1

)
R14 = (a7 cos I5η − b7 sin I5η) e−R5η, I14 = (b7 cos I5η + a7 sin I5η) e−R5η

R13 = R10 − (a18R12 − b18I12) , I13 = I10 − (b18R12 + a18I12)
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R12 = R11 cos I5η + I11 sin I5η, I12 = I11 cos I5η − R11 sin I5η

R11 = e−R5η

R2
5 + I 2

5

[(R3 + 2R1) R5 + I5 (I3 + 2I1)]

I11 = e−R5η

R2
5 + I 2

5

[(I3 + 2I1) R5 − I5 (R3 + 2R1)]

R10 = e−(2R1+R3)η [a18 cos (2I1 + I3) η + b18 sin (2I1 + I3) η]

I10 = e−(2R1+R3)η [b18 cos (2I1 + I3) η − a18 sin (2I1 + I3) η]

a18 = a15a17 + b15b17

a2
17 + b2

17

, b18 = b15b17 − a15a17

a2
17 + b2

17

, a17 = 3 (a16 − 5ωα1b16)

a16 = (2R1 + R3)
2 − (2I1 + I3)

2 −
(
R2

5 + I 2
5

)2

b16 = (2R1 + R3) (2I1 + I3) − 2R5I5, b17 = 3 (b16 + 5ωα1a16)

a15 = (2R1 + R3) (a13a14 − b13b14) − (2I1 + I3) (b13a14 + a13a14)

b15 = (2I1 + I3) (a13a14 − b13b14) + (2R1 + R3) (b13a14 + a13a14)

a14 =
(
R2

6 − I 2
6

) (
R2

1 − I 2
1

)
− 4R1I1R6I6

b14 = 2R1I1

(
R2

6 − I 2
6

)
+ 2R6I6

(
R2

1 − I 2
1

)
a13 = a2

(
R2

3 − I 2
3

)
− 2b2R3I3, b13 = b2

(
R2

3 − I 2
3

)
+ 2a2R3I3,

R9 = R7 − (R8 cos I5η + I8 sin I5η) , I9 = I7 − (I8 cos I5η − R8 sin I5η)

R8 = 5e−R5η

R2
5 + I 2

5

[(R1R5 + I1I5) a12 − b12 (I1R5 − R1I5)]

I8 = 5e−R5η

R2
5 + I 2

5

[(I1R5 − R1I5) a12 + b12 (R1R5 + I1I5)]

R7 = e−5R1η (a12 cos 5I1η + b12 sin 5I1η) , a12 = 15 (a9a11 + b9b11)

a2
11 + b2

11

I7 = e−5R1η (b12 cos 5I1η − a12 sin 5I1η) , b12 = 15 (b9a11 − a9b11)

a2
11 + b2

11

a11 = a10 − 5ωα1b10, b11 = b10 + 5ωα1a10

a10 = 25
(
R2

1 − I 2
1

)
−
(
R2

5 − I 2
5

)
, b10 = 50R1I1 − 2R5I5

a9 =
(
R2

6 − I 2
6

)
(a2a8 − b2b8) − 2R6I6 (b2a8 + a2b8)

b9 = 2R6I6 (a2a8 − b2b8) +
(
R2

6 − I 2
6

)
(b2a8 + a2b8)

a8 = R1

{(
R2

1 − I 2
1

)2 − 4R2
1I 2

1

}
− 4

(
R2

1 − I 2
1

)
R1I

2
1 , d = a2 + ib2

b8 = I1

{(
R2

1 − I 2
1

)2 − 4R2
1I 2

1

}
+ 4

(
R2

1 − I 2
1

)
R2

1I1, c = R6 + iI6
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a3 =
(
R2

3 − I 2
3

)
− 9

(
R2

1 − I 2
1

)
, b3 = 2R3I3 + 2R1I1,

√
θ = R5 + iI5

a4 =
(
R2

6 − I 2
6

) (
R2

1 − I 2
1

)
− 4R1I1R6I6, b = R3 + iI3

b4 = 2R1I1

(
R2

6 − I 2
6

)
+ 2R6I6

(
R2

1 − I 2
1

)
, a = R1 + iI1

a5 = R5 − 5ωα1I5, b5 = I5 + 5ωα1R5, a7 = a5a6 + b5b6

3
(
a2

5 + b2
5

) , b7 = a5b6 − a6b5

3
(
a2

5 + b2
5

)
a6 = a4 (a2a3 − b2b3) − b4 (b3a2 + a3b2) , a2 = −30ω2α1(

30ω2α1
)2 + (

6ω − 24ω3α2
1

)2
b6 = b4 (a2a3 − b2b3) + a4 (b3a2 + a3b2) , b2 = 24ω3α2

1 − 6ω(
30ω2α1

)2 + (
6ω − 24ω3α2

1

)2
R6 = 1√

2

√√
a2

1 + b2
1 + a1, I6 = 1√

2

√√
a2

1 + b2
1 − a1

R5 = 1√
2
(
1 + 25ω2α2

1

)
√√(

25ω2α1
)2 + 25ω2 + 25ω2α1

I5 = 1√
2
(
1 + 25ω2α2

1

)
√√(

25ω2α1
)2 + 25ω2 − 25ω2α1

where f0R , f0I , f1R , f1I , and f2R , f2I are the real and imaginary parts of f0, f1, and f2, respectively.

Appendix B. Expressions for the functions of the skin friction
equation (5.2)

f ′
0R (0) = R1R2 + I1I1

R2
2 + I 2

2

, f ′
0I (0) = I1R2 − R1I2

R2
2 + I 2

2

f ′
1R (0) = 1

R2
4 + I 2

4

[
6R1I1I4 + 3R4

(
I 2

1 − R2
1

)
+ 1

3
R4

(
R2

3 − I 2
3

)
− 2

3
R3I1I4

]

f ′
1I (0) = 1

R2
4 + I 2

4

[
−6R1I1I4 + 3I4

(
I 2

1 − R2
1

)
+ 1

3
I4

(
R2

3 − I 2
3

)
+ 2

3
R3I3R4

]

f ′
2R (0) = R′

9 (0) + R′
13 (0) + R′

14 (0) , f ′
2I (0) = I ′

9 (0) + I ′
13 (0) + I ′

14 (0)
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