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ON STOKES' THEOREM FOR NONCOMPACT MANIFOLDS

LEON KARP1

9

Abstract. Stokes' theorem was first extended to noncompact manifolds by Gaff-

ney. This paper presents a version of this theorem that includes Gaffney's result

(and neither covers nor is covered by Yau's extension of Gaffney's theorem). Some

applications of the main result to the study of subharmonic functions on noncom-

pact manifolds are also given.

0. In [4] Gaffney extended Stokes' theorem to complete Riemannian manifolds

M" and proved that if w G A"_1(Af") and dos are both integrable then /M du = 0.

The same conclusion was established by Yau under the sole condition that

lim inf,^^ r~x /B(r)|w| d vol = 0, where B(r) = geodesic ball of radius r about some

point p G M (cf. the remarks in the appendix to [13]). The purpose of this note is to

give another extension of Gaffney's theorem that covers some cases not included in

Yau's result.

1. Before formulating our main theorem we recall some background material.

Let M" be a Riemannian n-manifold and suppose that, in local coordinates

(x1, . . . , x"), the vector field X is represented as X = 2 X' 3/3x', the metric

tensor is given as (gy), and g = det(gy). The quantities given locally as V^g and

2(3/3x')(VrgA') are then densities (i.e., under a coordinate change they are

multiplied by the absolute value of the Jacobian corresponding to the change of

coordinates), and hence they may be unambiguously integrated via local coordi-

nates even if M " is not orientable ([10], cf. pp. 21-26 of [9] where a different

terminology is used). When / is a scalar (i.e., has a local expression that is invariant

under change of coordinates), we will denote the integral of the density /Vg by

ffdvg.
If M" is an oriented Riemannian manifold, then Vgdxx /\ ■ ■ ■ f\dx" repre-

sents the volume form vg in local coordinates, and for the scalar

(l/Vg_)2(3/3x')('VrgA'')> called the divergence of X and denoted divg X, we have

S m diVg X ■ vg = fM divg X ■ dvg. Here the integrand on the left is an n-form, and

the integrand on the right is actually the density Vg • divg X.

On any oriented manifold with volume form w > 0, one defines the divergence

of X with respect to u, denoted divw X, via d(ixu) = divu X ■ «, where ix denotes

contraction with X (cf. [8]), and it is easily seen that divg X = divu X if co = v  for
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some metric g. Furthermore, if a is an (n — l)-form on an orientable n-manifold,

one can always write a = ixvg where g is an arbitrary metric, and X depends on g

and a. (In fact, X = the vector field dual to the 1-form *g a, where *g is the Hodge

star operator relative to g (cf. [10, Chapter 1]).) Thus when a is an (n — l)-form

with compact support in (the interior of) an orientable manifold, the fact that

j m da = 0 (Stokes' theorem) follows from the more general result that

/,
div X ■ dv. = 0 (*)

M

if X has compact support in (the interior of) a (not necessarily oriented)

Riemannian manifold. A simple proof of (*) may be culled from the argument on

p. 26 of [9].

We formulate our extension of Stokes' theorem in the general framework of

integration of densities, as in (*), and we set (as usual): /+ = max(0,/), /"=

max(0, -/), and (for a fixed metric g) div X = divg X, B(r) = the geodesic ball of

radius r and center at some fixedp G M", and ||A|| = the length of the vector field

X. If u G C2, then Au =def div(grad u) where grad u is the unique vector field that

satisfies g(X, grad u) = du(X) for all vector fields X. Recall that u is subharmonic

(resp. harmonic) if Aw > 0 (resp. Au = 0).

Theorem. Let M" be a complete noncompact Riemannian n-manifold and X a

vector field such that

liminf-f ||A||oü = 0.
r-»oo      r JB(2r)/B(r)

If div X has an integral (i.e., if either (div X)+ or (div X)~ is integrable) then

}M div X dv = 0. 7n particular, if outside some compact set div X is everywhere > 0

(or < 0) then \M div X dv = 0.

Proof. Without loss of generality, we may assume that (div X)~ is integrable. It

is known (cf. Andreotti-Vesentini [1] or Yau [13]) that there is a constant C > 0

such that for each r > 0 3 a Lipschitz continuous function <p satisfying: 0 < <p < 1

on M, <p = 1 on B(r), <p = 0 on the complement of B(2r) and ||grad <p(x)|| < C/r

on M. Integrating div(<p2 X) over B(2r) and applying the usual divergence theorem

(*) (which is valid in this situation, as is evident from [9, p. 26]), we find

0 = /s(2/.) div(<p2X) ■ dv and so

f    <p2divx-dv <^ür       11*11*.
JB(2r) r      JB(2r)/B(r)

Thus,

f    (div X)+ dv- f (div X)~dv < ̂ ^- f \\X\\ dv.
JB(r) JM r      JB(2r)/B(r)

We may choose r = r¡ —» oo such that the right-hand side of this inequality tends

to zero. Consequently, (div X)+ is also integrable and jM div X dv < 0. Since

(div X)+ is now known to be integrable, the same argument may be repeated with

-X in place of X. Thus fM div X dv = 0 and the proof is complete.
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The theorem has the following consequences:

Corollary 1. Let M" be a complete noncompact Riemannian manifold of qth-

order volume growth (i.e., 3 c > 0 and q > 1 such that vol(2?(r)) < Crq for r > 1).

If div X > 0 outside of some compact set and either (a) a > 1 and X G LP(M, dv)

where l/p + l/q = 1 or (b) a = 1 and \\X\\ -*0 uniformly at infinity in M, then

fM div X dv = 0.

Proof.   It   suffices   to   apply   Holder's   inequality   and   the   fact   that

fa(2r)/B(r)\\x\\P dv ~*° if 9 > l (ie>P < °°) and am SUP ™l(B(2r)/B(r))/r < oo if

9-1.
Remark. Recall that if M has nonnegative Ricci curvature then M has nth-order

volume growth (cf. Bishop and Crittenden [2]). This fact is used in the proof of

Corollary 2. If M2 is a complete noncompact Riemannian 2-manifold with

nonnegative Gaussian curvature then it admits no nonconstant C2 subharmonic

function with finite Dirichlet integral /M||grad w||2 dv.

Proof. It follows from Corollary 1 and the remark above that if Au > 0 and

grad u G L2 then / Au = 0. Thus, any such function is harmonic and so a classical

computation of Bochner [3] shows that ||grad u\\2 is subharmonic. Since the

manifold has nonnegative curvature, a result of Greene-Wu [5] gives

fM\\grad «||2 dv = +00 unless w = constant.

Remarks. (1) As its proof shows, the result of Corollary 2 is known for harmonic

functions. Moreover, for this case a proof can be given by combining the following

two classical results (as remarked by Greene-Wu [5]): (a) If a Riemann surface

admits a Dirichlet-finite harmonic function then it also admits a bounded Dirich-

let-finite harmonic function (Virtanen [11]). (b) A Riemann surface with nonnega-

tive Gaussian curvature admits no nonconstant bounded harmonic functions

(Blanc-Fiala-Huber, cf. Huber [6] and Yau's generalization [12]).

(2) The result and proof of Corollary 2 are actually valid for n-manifolds in the

following form:

Corollary 2.'. If M" is a complete, noncompact Riemannian n-manifold of

nonnegative sectional curvature then no nonconstant C2 subharmonic function u has

grad« e L "/"-'( A/, <fc).

In fact, weaker curvature conditions suffice but we omit the details.

(3) The assertions of Corollaries 1, 2, and 2' are sharp. In fact, it is easy to

construct C2 functions u that are subharmonic but not harmonic on R" and satisfy

0 ¥= llgrad u\\ < C(l/r)"~x in r > 1. These functions thus have the property that

grad u G Z/"/"- 1)+e for every e > 0. An example of such a function is

ip(x),      |x| < 1
u = on R", n > 3,

[ -r2-",     |*| > 1

where p(x) is a polynomial of degree four whose coefficients are chosen so that

u G C2 and A« > 0 (and it is easy to check that this can be done).

(4) Related results appear in [13] and [7].
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