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Abstract

We study strategy-proof rules for choosing between two alternatives. We consider

the full preference domain which allows for indifference. In this framework, for strategy-

proof rules, ontoness does not imply efficiency. We weaken the requirement of efficiency

to ontoness and characterizes the class of strategy-proof rules. We argue that the notion

of efficiency is not desirable always. Our main result provides a simple characterization

of the class of onto, anonymous and strategy-proof rules in this framework. Our analysis

can help policy makers choose among these rules.
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1 Introduction

In this paper, we study social choice problem where a finite set of individuals/agents have

to choose one between two alternatives. Let a and b be two alternatives. We assume that

individuals can report one among the following three preferences over these two alternatives:

(1) a is strictly preferred to b, (2) b is strictly preferred to a and (3) a is indifferent to

b. Based on individuals’ reported preferences, a Social Choice Function (or simply a rule)

selects an alternative. Choosing between two alternatives has many important applications

- such as, two candidate elections, up-down votes on legislation, choosing one out of two

locations for locating a public facility, yes-no decisions about building a new public facility

or any situation with a status-quo alternative and a new alternative.

Throughout this paper we consider non-constant rules i.e. onto rules. Ontoness implies

efficiency (or unanimity) for strategy-proof rules defined over a suitably rich domain of strict

preferences ( see Dogan and Sanver (2007)). However, ontoness does not imply efficiency

if preference domain includes indifference (see Examples in section 4)1. We do not impose

efficiency criteria on rules and characterize the class of strategy-proof rules in this framework.

Our main result provides a simple characterization of the class of anonymous and strategy-

proof rules.

A natural objection could be why one might compromise efficiency. In election, it is

quite often that a significant proportion of voters express their opinion as indifference. For

instance, abstaining from voting can be interpreted as indifference. Moreover, in India voters

are allowed to vote for “none of the above (NOTA)” - which can also be interpreted as

indifference. In this scenario, if we only look at efficient and strategy-proof voting rules,

the outcome is simply based on voters who do not express their opinion as indifference. We

believe that this is not desirable in particular when the number of indifferent voters is very

large. However if we relax the requirement of efficiency, the outcome depends on both the

voters who are indifferent and who are not. Of course, the class of efficient and strategy-

proof rules is contained in the class of onto and strategy-proof rules. Since our main result

provides a simple description of the class of anonymous and strategy-proof rules, we believe

that our analysis can help policy makers choose among these rules.

We obtain following two results:

• Theorem 1: A rule f is onto and strategy-proof if and only if it is generalized voting

by committees.

• Theorem 2: A rule f is onto, anonymous and strategy-proof if and only if it is either

1If we restrict our attention to group strategy-proof rules, then ontoness implies efficiency (see Barberà

et al. (2012), Manjunath (2012) and Harless (2015)).
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a quota rule with indifference default a or a quota rule with indifference default b.

A generalized voting by committees (GVC) rule is described by two sets. The first one is a

nonempty set of subsets of N satisfying monotonicity condition and we say it as a committee

for indifference default d ∈ {a, b}. The second one is a set containing for each M ⊆ N 2, a

committee for the alternative a at M . Moreover, the second set, not only depends on the first

set, but also satisfies further properties (see section 5 for details). For any preference profile,

if the set of agents who are indifferent between two alternatives, belongs to the committee

for indifference default d, then the rule selects d at that profile. Otherwise, consider the

committee for a at the set of agents with strict preferences over a and b - if the set of agents

who prefers a to b, belongs the that committee, then the outcome is a or if it does not belong

the that committee, then the outcome is b .

Larsson and Svensson (2006) characterizes the class of efficient and strategy-proof rules

in this framework. These rules are known as voting by extended committees (see subsection

3.1 for details). These rules are contained in the class of GVC rules - in fact, efficient GVC

rules are voting by extended committees rules. To be precise, if we impose efficiency on GVC

rules, then the first set boils down to a singleton set including N itself. Moreover, the second

set does not depend on the first set anymore.

Further we show that an anonymous GVC rule can be described as either a quota rule

with indifference default a or a quota rule with indifference default b. A quota rule with

indifference default a is described simply by a vector of integers of length k, k ∈ {1, 2, . . . , n},
x = (x1, x2, . . . , xk) ∈ {1} × {1, 2} × . . . × {1, 2, . . . , k}, where xi+1 − 1 ≤ xi ≤ xi+1 for all

i ∈ {1, 2, . . . , k−1}. Note that xi is the ith component of the vector x, where i ∈ {1, 2, . . . , k}.
The rule works as follows. For any preference profile, if the number of agents who are

indifferent between two alternatives, is at least k, then the rule selects the indifference default

a at that profile. Suppose that the number is less than k, i.e. the number of agents with

strict preferences belongs to {n− k+ 1, . . . , n}. In particular, we assume that the number of

agents with strict preferences is n − k + l where l ∈ {1, 2, . . . , k}. Then the outcome is a if

the number of agents who prefers a to b is at least xl and the outcome is b if the number is

less than xl. Here, k is the quota for indifference default a i.e. whenever the the number of

indifferent agents is at least k, the outcome is a. Also, xl is the quota for a when the number

of strict agents is n− k+ l, l ∈ {1, 2, . . . , k} i.e when n− k+ l is the number of strict agents,

the outcome is a if the number of agents who prefers a to b is atleast xl and the outcome

is b if the number is less than xl. Quota rule for a with indifference default b can also be

described in similar fashion (see section 5.2 for details). Theorem 2 characterizes the class

of anonymous and strategy-proof rules in terms of quota rules in this framework.

2N is the set of individuals and |N | = n.
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Further, we study solidarity property in this framework. We consider the following sol-

idarity property: “Welfare dominance under preference replacement (WDPR)”, which says

that when the preferences of one agent change, the other agents all weakly gain or all weakly

lose. We characterize the class of rules satisfying WDPR among the class of quota rules.

Ju (2003) considers the problem of choosing a subset of a finite set of alternatives and

characterizes strategy-proof rules for separable weak orderings. It is important to mention

that our framework appears as a special case of Ju’s framework. However, Ju (2003) pro-

vides an implicit characterization of strategy-proof rules. In this paper we consider the

specific problem of choosing between two alternatives and provide an explicit characteriza-

tion of strategy-proof rules. Marchant and Mishra (2015) studies the same problem and

characterizes efficient and strategy-proof rules using transfers in quasi-linear private values

environments.

This paper is organized as follows. Section 2 describes the basic notation and definitions.

Section 3 discusses the relationship between ontoness and unanimity (or efficiency). Section 4

provides some rules which are strategy-proof but not efficient. The main results are presented

in section 5. Proofs of Theorem 1 and Theorem 2 are relegated to the Appendix. Section 6

discusses rules satisfying WDPR. We conclude the the paper in section 7.

2 Basic Notation and Definitions

Let A = {a, b} denote the set of two alternatives and N = {1, . . . , n}, n ≥ 2, a finite set

of agents/individuals. Each individual in N has a preference relation over A: she either

prefers a, prefers b, or is indifferent between them. Let R be the set of these three preference

relations. For each i ∈ N , let Ri ∈ R denote individual i’s preference relation. If a is at least

as good as b according to individual i, we write aRib. If she prefers a to b, we write aPib and

if she is indifferent between the two, aIib. Let P be the set of two strict preference relations

defined over A.

A preference profile is a list R = (R1, R2, . . . , Rn) ∈ Rn of individuals preferences. For

any coalition S ⊆ N and any profile R ∈ R, RS denotes the restriction of the profile R to

the coalition S i.e. RS = (Ri)i∈S. A profile R′ ∈ Rn is defined to be a i−deviation from

another profile R ∈ Rn if RN\{i} = R′N\{i}.

For each R ∈ Rn , let Na(R) be the set of individuals who prefer a to b at R. Similarly,

let Nb(R) be the set of individuals who prefer b to a, and let NA(R) be the set of individuals

who are indifferent between a and b at R. Finally, let ς be the set of permutations of N . For

each R ∈ Rn and each σ ∈ ς, let σ(R) = (Rσ(i))i∈N .

Definition 1. A SCF f is a mapping from Rn to A i.e. f : Rn −→ A.
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A SCF is sometimes called a voting rule (or simply a rule).

Definition 2. A SCF f is onto if for every alternative x ∈ A there exists a profile R ∈ Rn

such that f(R) = x.

Note that, as |A| = 2, if f is not onto, then it must be a constant rule i.e. a rule that

selects the same alternative at each profile.

We list some well-known properties of SCFs below.

Definition 3. A SCF f satisfies unanimity, if for all profile R ∈ Rn; f(R) = a whenever

Na(R) 6= ∅ and Nb(R) = ∅, and f(R) = b whenever Na(R) = ∅ and Nb(R) 6= ∅.

If x ∈ A is at least as good as A \ x by all individuals and at least one individual prefers

x, then by unanimity, the SCF must select x. Unanimity is also known as efficiency in this

model.

The next property imposes a weaker requirement than unanimity. If all individuals prefer

x ∈ A, then the SCF must select x.

Definition 4. A SCF f satisfies weak unanimity, if for all profile R ∈ Rn; f(R) = a

whenever Na(R) = N , and f(R) = b whenever Nb(R) = N .

Definition 5. A SCF f is strategy-proof if, for any i ∈ N , for any R ∈ Rn and for any

i−deviation R′ ∈ Rn of R, we have f(R)Rif(R′).

A SCF is strategy-proof if no individual can obtain a preferred alternative by misrep-

resenting her preferences for any announcement of the preferences of the other individuals.

Strategy-proofness ensures that that for every agent truth-telling is a weakly dominant strat-

egy.

Anonymity requires that the names of the agents should not matter. In particular, when

the identities of the agents are shuffled, the rule must select the same alternative.

Definition 6. A SCF f is anonymous if for any R ∈ Rn and for any σ ∈ ς, we have

f(R) = f(σ(R)).

3 Unanimity versus Weak Unanimity

It is important to mention that unanimity implies weak unanimity and weak unanimity

implies ontoness. However, ontoness does not imply weak unanimity and weak unanimity

does not imply unanimity. If we restrict our attention to strategy-proof SCFs, then ontoness

implies weak unanimity. In the following, we show this.
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Proposition 1. Let f : Rn → A be a strategy-proof SCF. If f is onto, then it satisfies weak

unanimity.

Proof. Suppose not. We assume that f(R) = b where aPib for all i ∈ N . Since f is onto,

there exists R′ ∈ Rn such that f(R′) = a. Applying strategy-proofness repeatedly, it follows

that

f(R′) = f(R1, R
′
2, . . . , R

′
n)

= f(R1, R2, R
′
3, . . . , R

′
n)

...

= f(R1, . . . , Rn)

= a

This contradicts the assumption f(R) = b. A similar argument will lead to a contradiction if

we assume that f(R) = a where bPia for all i ∈ N . Therefore f satisfies weak unanimity.

A natural question arises - if a SCF satisfies strategy-proofness and weak unanimity,

does it satisfy unanimity? In Section 4, we provide SCFs which satisfy strategy-proofness

and weak unanimity, but not unanimity. In the following, we first introduce the class of

unanimous and strategy-proof rules known in the literature.

3.1 Unanimous and strategy-proof rules

To introduce the class of unanimous and strategy-proof rules on Rn, we need following

notations and definitions. For each M ⊆ N , a committee for alternative a at M , FM , is a

set of subsets of M , satisfying the following two properties:

1. Non-emptyness: If M 6= ∅, then FM 6= ∅ and ∅ /∈ FM . If M = ∅, then FM = ∅.

2. Monotonicity: For each S ∈ FM and T ⊆M , If S ⊆ T , then T ∈ FM .

A collection of committees for a, F ≡ {FM}M⊆N , is a set containing for each M ⊆ N a

committee for a i.e. FM , satisfying the following properties:

For each M ⊆ N and each i ∈M

1. If S ∈ FM and i /∈ S, then S ∈ FM\{i}.

2. If S ∪ {i} /∈ FM , then S /∈ FM\{i}.
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Definition 7. A SCF is voting by extended committees, denoted by V ECa,t, if there exists

a collection of committees for a (i.e. F) and a tie-breaker t ∈ A such that for all R ∈ Rn;

V ECa,t(R) =


t if NA(R) = N

a if Na(R) ∈ FN\NA(R)

b otherwise

Larsson and Svensson (2006) shows that the only unanimous and strategy-proof rules are

V ECa,t.

4 Rules

In this section, we provide some rules which are strategy-proof and onto but not unanimous.

Example 1. Consider the following SCF f : Rn −→ A:

f(R) =

{
a if aR1b

b if bP1a

Note that f satisfies strategy-proofness and ontoness (see subsection 5.1). However, it

does not satisfy unanimity. To see this, consider a preference profile R′ where aI ′1b and for

all j ∈ N \ {1}, bP ′ja. Unanimity implies that f must select b at R′. However, f(R′) = a.

Therefore f is not unanimous.

Note that the rule in Example 1 is not anonymous. However, there are anonymous, onto

and strategy-proof rules which are not unanimous.

Example 2. Consider the status-quo rule with respect to the status-quo alternative a,

fa : Rn −→ A:

fa(R) =

{
b if b is preferred by all agents

a otherwise

It is straightforward that fa is strategy-proof, anonymous and onto (see subsection 5.2).

However, fa is not unanimous. Consider a preference profile R where aIib for some i ∈ N
and for all j ∈ N \ {i}, bPja. Unanimity implies that fa must select b at R. However,

fa(R) = a. Therefore fa is not unanimous.

The status-quo rule with respect to the status-quo alternative b, is defined as follows:

fa(R) =

{
a if a is preferred by all agents

b otherwise

It can be seen that f b is strategy-proof, anonymous and onto but not unanimous.
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The following class of rules can be found in Chapter 2 of Fishburn (2015).

Example 3. Let s : R 7−→ {1, 0,−1} such that

s(Ri) =


1 if aPib

0 if aIib

−1 if bPia

For each R ∈ Rn, we denote s(R) =
∑n

i=1 s(Ri).

We fix an integer h ∈ (−n, n] ∩ Z and define the SCF fh, as follows: For all R ∈ Rn

fh(R) =

{
a if s(R) ≥ h

b Otherwise

First, we make following remarks on these rules.

1. If h = 1, we get the simple majority rule i.e. a beats b whenever more individuals

prefer a to b than prefer b to a and b beats a whenever the converse holds.

2. The case where a wins if the number of individuals prefer a to b exceeds the number

of individuals prefer b to a by atleast a positive integer r, and b wins otherwise, is

described by h = r.

3. If h = n, then we get the status-quo rule with respect to status quo alternative b.

Similarly, if h = −(n− 1), then we get the status-quo rule with respect to status-quo

alternative a.

In subsection 5.2, we show that fh is strategy-proof, anonymous and onto. Whether fh

is unanimous or not, that depends on the value of h. In particular, it can be seen that fh is

unanimous if h ∈ {0, 1}. However if h > 1 or h ≤ −1, then fh is not unanimous. To see this,

we first assume that h > 1. Let R ∈ Rn be a preference profile where aPib and aIjb for all

j ∈ N \i. By unanimity, we should select a at R. However fh(R) = b, because s(R) = 1 < h.

Similarly, if h ≤ −1, at R ∈ Rn where bPia and aIjb for all j ∈ N \ i, fh(R) = a, because

s(R) = −1 ≥ h - violates unanimity.

We can think of a rule where the number of individuals who are indifferent between

two alternatives, can determine the outcome. For instance, consider a rule which selects

an alternative x ∈ A if the number of indifferent individuals is atleast a positive integer

r ∈ {1, 2, . . . , n}. Otherwise if the number is less than r, then based upon the preferences

of strict individuals, the rule selects x or the other alternative A \ x. Below, we introduce a

class of such rules.
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Example 4. We fix a positive integer r ∈ {1, 2, . . . , n} and define the SCF f r, as follows:

For all R ∈ Rn

f r(R) =


b if |NA(R)| ≥ r

b if |NA(R)| < r and |Nb(R)| 6= ∅
a if |NA(R)| < r and |Nb(R)| = ∅

We make following remarks on these rules.

1. If r = 1, then we get the status-quo rule with respect to status quo alternative b.

2. If r = n, then we get the consensus rule with disagreement-default b and indifference-

default b (Manjunath (2012)).

In subsection 5.2, we show that f r is strategy-proof, anonymous and onto. However,

whether f r is unanimous or not depends on r. In particular, if r = n, then it is straightfor-

ward to show that f r is unanimous. However, if r < n, f r is not unanimous. To see this,

consider R ∈ Rn where aPib and aIjb for all j ∈ N \ i. By unanimity, we should select a at

R. However f r(R) = b, because |NA(R)| = n− 1 ≥ r.

5 Results

5.1 Generalized voting by committees

In this section, we characterize onto and strategy-proof rules. For this, we need to introduce

additional notation and definitions.

A committee for indifference default d ∈ {a, b}, denoted by Id, is a set of subsets

of N , satisfying the following two properties:

1. Non-emptyness: Id 6= ∅ and ∅ /∈ Id.

2. Monotonicity: For each S ∈ Id and T ⊆ N , If S ⊆ T , then T ∈ Id.

Since d ∈ {a, b}, Ia denotes a committee for indifference default a. Similarly, a committee

for indifference default b is denoted by Ib.
Let M ⊆ N and Id be a committee for indifference default d. A committee for a at

M with respect to Id, denoted by FM,Id , is a set of subsets of M , satisfying the following

two properties:

1. Non-emptiness with respect to Id: If N \M /∈ Id, then FM,Id 6= ∅ and ∅ /∈ FM,Id .

If N \M ∈ Id, then FM,Id = ∅.
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2. Monotonicity: For each S ∈ FM,Id and T ⊆M , If S ⊆ T , then T ∈ FM,Id .

A collection of committees for a with respect to Ia, denoted by FIa ≡ {FM,Ia}M⊆N ,

is a set containing for each M ⊆ N a committee for a with respect to Ia i.e. FM,Ia , satisfying

the following properties:

For each M ⊆ N and each i ∈M

1. If N \M /∈ Ia and {N \M}∪{i} ∈ Ia, then for all S ⊆M such that i ∈ S, S ∈ FM,Ia .

2. If S ∈ FM,Ia , i /∈ S and {N \M} ∪ {i} /∈ Ia, then S ∈ FM\{i},Ia .

3. If N \M /∈ Ia, S ∪ {i} /∈ FM,Ia and {N \M} ∪ {i} /∈ Ia, then S /∈ FM\{i},Ia .

Similarly, a collection of committees for a with respect to Ib, FIb ≡ {FM,Ib}M⊆N ,

is a set containing for each M ⊆ N a committee for a with respect to Ib i.e. FM,Ib , satisfying

the following properties:

For each M ⊆ N and each i ∈M

1. If N \M /∈ Ib and {N \M} ∪ {i} ∈ Ib, then for all S ∈ FM,Ib , i ∈ S.

2. If S ∈ FM,Ib , i /∈ S and {N \M} ∪ {i} /∈ Ib, then S ∈ FM\{i},Ib .

3. If N \M /∈ Ib, S ∪ {i} /∈ FM,Ib and {N \M} ∪ {i} /∈ Ib, then S /∈ FM\{i},Ib .

Given a committee for indifference default d, Id and a collection of committees for a with

respect to Id, we define generalized voting by committees (GVC), as follows.

Definition 8. A SCF is GVC, denoted by fI
d

FId
, if there exists a committee for indifference

default d, Id where d ∈ A and a collection of committees for a with respect to Id, FId, such

that for all R ∈ Rn;

fI
d

FId
(R) =


d if NA(R) ∈ Id

a if Na(R) ∈ FN\NA(R),Id and NA(R) /∈ Id

b otherwise

Now we state the main result of this section.

Theorem 1. Let f : Rn −→ A be an onto SCF. f is strategy-proof if and only if f is GVC.

The proof of Theorem 1 is in the Appendix. However, we make several remarks on

Theorem 1 in the following:
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1. Larsson and Svensson (2006) characterizes unanimous (or efficient) and strategy-proof

rules in this framework. In particular, they show that the only unanimous and strategy-

proof rules are V ECa,t (see subsection 3.1). We do not impose unanimity property on

rules. We consider much weaker requirement of ontoness and characterize strategy-

proof rules in this framework. The class of V ECa,t rules belongs to the the class of

GVC rules. In particular, a GVC rule, fI
d

FId
is unanimous if and only if Id = {N}.

2. It can be seen that the rule in Example 1 is a GVC rule where Ia = {S ⊆ N : 1 ∈ S}
and FIa ≡ {FM,Ia}M⊆N is as described below:

FM,Ia =


{
S ⊆M : 1 ∈ S

}
if 1 ∈M

∅ if 1 /∈M

3. We must confess that GVC rules are not simple to describe. However, the rules that

are anonymous, can be described in much simpler way. We talk about this in details

in the next section.

5.2 Anonymous rules

Theorem 1 provides a characterization of onto and strategy-proof rules in our model. In this

section we provide a characterization of onto, strategy-proof and anonymous rules. First we

define the following class of rules.

Definition 9. A SCF is a quota rule with indifference default a, denoted by fk,xa , if

there exists a vector of natural numbers of length k, x = (x1, x2, . . . , xk) ∈ {1}×{1, 2}× . . .×
{1, 2, . . . , k}, where k ∈ {1, 2, . . . , n} and xi+1 − 1 ≤ xi ≤ xi+1 for all i ∈ {1, 2, . . . , k − 1}
such that for all R ∈ Rn

fk,xa (R) =



a if |NA(R)| ≥ k

a if |NA(R)| < k

and |Na(R) ∪Nb(R)| = n− k + l for some l ∈ {1, 2, . . . , k}
and |Na(R)| ≥ xl

b otherwise

Next we define another class of rules as follows.
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Definition 10. A SCF is a quota rule with indifference default b, denoted by fk,yb ,

if there exists a vector of natural numbers of length k, y = (y1, y2, . . . , yk) ∈ {n − k + 1} ×
{n − k + 1, n − k + 2} × . . . × {n − k + 1, n − k + 2, . . . , n}, where k ∈ {1, 2, . . . , n} and

yi+1 − 1 ≤ yi ≤ yi+1 for all i ∈ {1, 2, . . . , k − 1} such that for all R ∈ Rn

fk,yb (R) =



b if |NA(R)| ≥ k

a if |NA(R)| < k

and |Na(R) ∪Nb(R)| = n− k + l for some l ∈ {1, 2, . . . , k}
and |Na(R)| ≥ yl

b otherwise

Next we state the main theorem of this paper.

Theorem 2. Let f : Rn −→ A be a SCF. f is strategy-proof, anonymous and onto if and

only if it is either a quota rule with indifference default a or a quota rule with indifference

default b.

The proof of Theorem 2 is in the Appendix. In the following, we make several remarks

on Theorem 2:

1. An anonymous and strategy-proof rule can be described simply by a vector of nat-

ural numbers of length k, where k ∈ {1, 2, . . . , n}. In particular, a quota rule with

indifference default a, fk,xa , is described by a vector of natural numbers of length k,

x = (x1, x2, . . . , xk) ∈ {1} × {1, 2} × . . . × {1, 2, . . . , k}, where k ∈ {1, 2, . . . , n} and

xi+1−1 ≤ xi ≤ xi+1 for all i ∈ {1, 2, . . . , k−1}. For any R ∈ Rn, fk,xa works as follows.

• If the number of individuals who are indifferent between two alternatives at R,

is atleast k, i.e. |NA(R)| ≥ k, then the rule selects the indifference default a i.e.

fk,xa (R) = a. Here, k is the quota for indifference default a.

• If |NA(R)| < k, then note that |Na(R)∪Nb(R)| = n−k+l for some l ∈ {1, 2, . . . , k}
and we consider xl which represents the quota for alternative a. If the number

of individuals who vote for a is atleast xl, i.e. |Na(R)| ≥ xl, then fk,xa (R) = a;

otherwise fk,xa (R) = b.

A quota rule with indifference default b, can be described in a similar way as well.

2. Note that fk,xa is unanimous if and only if k = n. Similarly, fk,yb is unanimous if and

only if k = n.
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3. Rules in Example 2: The status-quo rule with respect to the status-quo alternative

a, fa is a quota rule with indifference default a, fk,xa where x is a vector of natural

numbers of length 1 i.e. k = 1 and x ≡ (x1) = (1). The status-quo rule with respect to

the status-quo alternative b, f b is a quota rule with indifference default b, fk,yb where y

is a vector of natural numbers of length 1 i.e. k = 1 and y ≡ (y1) = (n).

4. Rules in Example 3: If h > 0, the fh is a quota rule with indifference default b, fk,ya
where y is a vector of natural numbers of length n − h + 1 i.e. k = n − h + 1 and

y ≡ (y1, . . . , yn−h+1) = (h, h+ 1, h+ 1, h+ 2, h+ 2, h+ 3, . . .).

If h ≤ 0, the fh is a quota rule with indifference default a, fk,xa where x is a vector of nat-

ural numbers of length n+h i.e. k = n+h and x ≡ (x1, . . . , xn+h) = (1, 1, 2, 2, 3, 3, . . .).

5. The rule in Example 4: It can be seen that the rule in Example 4 is a quota rule with

indifference default b, fk,yb where y is a vector of natural numbers of length r i.e. k = r

and y ≡ (y1, . . . , yr) = (n− r + 1, n− r + 2, . . . , n).

5.3 Weak strategy-proofness

In this section, we introduce a weaker notion of strategy-proofness as follows.

Definition 11. A SCF f is weakly strategy-proof if, for any i ∈ N , for any R ∈ Rn and

for any i−deviation R′ ∈ Rn of R such that Ri ∈ P and aI ′ib, we have f(R)Rif(R′).

Next we show that in our model, strategy-proofness and weak strategy-proofness are

equivalent3.

Lemma 1. Let f : Rn −→ A be a SCF. f is strategy-proof if and only if f is weakly

strategy-proof.

Proof. Note that if f is strategy-proof then it is weakly strategy-proof. So suppose that f

is weakly strategy-proof, but to the contrary f is not strategy-proof. Then there exist an

agent i ∈ N and a profile R ∈ Rn and an i−deviation R′ ∈ R of R such that Ri, R
′
i ∈ P and

f(R′)Pif(R). So it follows that Ri 6= R′i. Without loss of generality, assume that aPib and

bP ′ia. So it follows that f(R) = b and f(R′) = a. Now consider the profile R? ∈ Rn such

that R?
N\{i} = R′N\{i} = RN\{i}, and aI?i b. Now weak strategy-proofness for the deviation

from R to R? implies that f(R?) = b. On the other hand weak strategy-proofness for the

deviation from R′ to R? implies that f(R?) = a, which contradicts the fact that f(R?) = b

and concludes the proof.

3 Weak strategy-proofness is also known as participation property of an SCF in this framework (see Núñez

and Sanver (2017) for details.)
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We present our main results as the following corollaries.

Corollary 1. Let f : Rn −→ A be an onto SCF. f is weakly strategy-proof if and only if

it is GVC.

Proof. Follows from Theorem 1 and Lemma 1.

Corollary 2. Let f : Rn −→ A be an onto SCF. f is anonymous and weakly strategy-

proof if and only if it is either a quota rule with indifference default a or a quota rule with

indifference default b.

Proof. Follows from Theorem 2 and Lemma 1.

6 Solidarity and quota rules

Among the class of anonymous and strategy-proof rules, the rules satisfy solidarity property,

is studied in this section. We consider the following solidarity property: “welfare dominance

under preference replacement”, which says that when the preferences of one agent change,

the other agents all weakly gain or all weakly lose.

Definition 12. A SCF f satisfies welfare dominance under preference replacement (WDPR)

if for any R ∈ Rn, for any i ∈ N and for any R′i ∈ R, either (i) for each j ∈ N \ {i}, we

have f(R)Rjf(R′i, R−i) or (ii) for each j ∈ N \ {i}, we have f(R′i, R−i)Rjf(R).

Before presenting the main results of this section, we state the following lemma.

Lemma 2. Let f : Rn −→ A satisfies WDPR. Then for all R,R′ ∈ Rn such that Na(R),

Nb(R), Na(R
′), Nb(R

′) 6= ∅, we have f(R) = f(R′).

Proof. The proof can be found in lemma 1 of Harless (2015). Hence, it is omitted.

According to Lemma 2, if a rule satisfies WDPR, then it selects the same alternative in

each disagreement profile4.

Now we are ready to state our results. The following proposition characterizes the class

of rules satisfying WDPR among the class of quota rules with indifference default a.

Proposition 2. Let n ≥ 3 and fk,xa : Rn −→ A be a quota rule with indifference default

a. fk,xa satisfies WDPR if and only if either (i) x is a vector of natural numbers of length n

and x = (x1, . . . , xn) ∈ {(1, 1, . . . , 1), (1, 2, . . . , n)} or (ii) x is a vector of natural numbers of

length k, k ∈ {1, 2, . . . , n− 1} and x = (x1, . . . , xk) = (1, 1, . . . , 1).

4A profile R ∈ Rn is called disagreement profile if at R, Na(R) 6= ∅ and Nb(R) 6= ∅.
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Proof. Only if part. Let fk,xa be a quota rule with indifference default a and it satisfies

WDPR. Therefore, the length of x is either (i) k = n or (ii) k ∈ {1, 2, . . . , n− 1}.
First we assume that k = n. If xn = 1 or n then we are done. We assume for contradiction

that xn ∈ {2, 3, . . . , n−1}. Let R be a preference profile such that Nab(R) = ∅ and Na(R) =

xn. Since fk,xa be a quota rule with indifference default a, fk,xa (R) = a. Let R′ be a preference

profile such that Nab(R
′) = ∅ and Na(R

′) = xn−1. Note that Na(R), Nb(R), Na(R
′), Nb(R

′)

6= ∅. Therefore, by lemma 2 fk,xa (R) = fk,xa (R′). However, since fk,xa be a quota rule with

indifference default a, fk,xa (R′) = b - a contradiction. Therefore xn = 1 or n, which in turn

imply that x = (x1, . . . , xn) ∈ {(1, 1, . . . , 1), (1, 2, . . . , n)}.
Finally we assume that k ∈ {1, 2, . . . , n − 1}. Note that if we can show xi = xi+1 for

all i ∈ {1, 2, . . . , k − 1}, then we are done. If k = 1, we are done trivially. Therefore we

assume that k > 1. We assume for contradiction that there exists i ∈ {1, 2, . . . , k − 1}
such that xi 6= xi+1. Let i′ be he minimum among all i ∈ {1, 2, . . . , k − 1} such that

xi 6= xi+1. Note that xi′ = 1 and xi′+1 = 2. Let R and R′ be preference profiles such that

|Na(R)∪Nb(R)| = |Na(R
′)∪Nb(R

′)| = n−k+ i′+ 1. Moreover we assume that |Na(R)| = 2

and |Na(R
′)| = 1. Since Na(R), Nb(R), Na(R

′), Nb(R
′) 6= ∅; by lemma 2 fk,xa (R) = fk,xa (R′).

However, since fk,xa be a quota rule with indifference default a, fk,xa (R) = a 6= b = fk,xa (R′) -

a contradiction. Therefore, xi = xi+1 for all i ∈ {1, 2, . . . , k − 1}, which in turn imply that

x = (x1, . . . , xn) = (1, 1, . . . , 1).

If part. We first prove the following claim.

Claim 1. Let f : Rn −→ A selects the same alternative in each disagreement profile. Then

f satisfies WDPR.

Proof. Let R ∈ Rn, i ∈ N and R′i ∈ R. If both R and (R′i, R−i) are disagreement profile

then f(R) = f(R′i, R−i). Suppose this is not the case. Then either (i) for each j ∈ N \ {i},
we have f(R)Rjf(R′i, R−i) or (ii) for each j ∈ N \ {i}, we have f(R′i, R−i)Rjf(R). In either

case WDPR is satisfied.

Let fk,xa : Rn −→ A be a quota rule with indifference default a. If x is a vector of

natural numbers of length n and x = (x1, . . . , xn) = (1, 1, . . . , 1), then fk,xa selects a in each

disagreement profile. If x is a vector of natural numbers of length n and x = (x1, . . . , xn) =

(1, 2, . . . , n), then fk,xa selects b in each disagreement profile. If x is a vector of natural

numbers of length k, k ∈ {1, 2, . . . , n − 1} and x = (x1, . . . , xk) = (1, 1, . . . , 1), then fk,xa
selects a in each disagreement profile. Therefore, by claim 1, all these rules satisfy WDPR.

Next we characterize the class of rules satisfying WDPR among the class of quota rules

with indifference default b.
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Proposition 3. Let n ≥ 3 and fk,yb : Rn −→ A be a quota rule with indifference default

b. fk,yb satisfies WDPR if and only if either (i) y is a vector of natural numbers of length n

and y = (y1, . . . , yn) ∈ {(1, 1, . . . , 1), (1, 2, . . . , n)} or (ii) y is a vector of natural numbers of

length k, k ∈ {1, 2, . . . , n− 1} and y = (y1, . . . , yk) = (n− k + 1, n− k + 2, . . . , n).

Proof. Only if part. Let fk,yb be a quota rule with indifference default b and it satisfies

WDPR. Therefore, the length of y is either (i) k = n or (ii) k ∈ {1, 2, . . . , n− 1}.
First we assume that k = n. If Yn = 1 or n then we are done. We assume for contradiction

that yn ∈ {2, 3, . . . , n− 1}. Let R be a preference profile such that Nab(R) = ∅ and Na(R) =

yn. Since fk,yb be a quota rule with indifference default b, fk,yb (R) = a. Let R′ be a preference

profile such that Nab(R
′) = ∅ and Na(R

′) = yn−1. Note that Na(R), Nb(R), Na(R
′), Nb(R

′)

6= ∅. Therefore, by lemma 2 fk,yb (R) = fk,yb (R′). However, since fk,yb be a quota rule with

indifference default b, fk,yb (R′) = b - a contradiction. Therefore yn = 1 or n, which in turn

imply that y = (y1, . . . , yn) ∈ {(1, 1, . . . , 1), (1, 2, . . . , n)}.
Finally we assume that k ∈ {1, 2, . . . , n − 1}. Note that if we can show yi 6= yi+1 for

all i ∈ {1, 2, . . . , k − 1}, then we are done. If k = 1, we are done trivially. Therefore we

assume that k > 1. We assume for contradiction that there exists i ∈ {1, 2, . . . , k − 1}
such that yi = yi+1. Let i′ be he minimum among all i ∈ {1, 2, . . . , k − 1} such that

yi = yi+1. Therefore yi′ = yi′+1 = n − k + i′. Let R and R′ be preference profiles such

that |Na(R) ∪ Nb(R)| = |Na(R
′) ∪ Nb(R

′)| = n − k + i′ + 1. Moreover we assume that

|Na(R)| = n− k+ i′ and |Na(R
′)| = n− k+ i′− 1. Since Na(R), Nb(R), Na(R

′), Nb(R
′) 6= ∅;

by lemma 2 fk,yb (R) = fk,yb (R′). However, since fk,yb be a quota rule with indifference default b,

fk,yb (R) = a 6= b = fk,yb (R′) - a contradiction. Therefore, yi 6= yi+1 for all i ∈ {1, 2, . . . , k−1},
which in turn imply that y = (y1, . . . , yk) = (n− k + 1, n− k + 2, . . . , n).

If part. Let fk,yb : Rn −→ A be a quota rule with indifference default b. If y is a vector

of natural numbers of length n and y = (y1, . . . , yn) = (1, 1, . . . , 1), then fk,yb selects a in each

disagreement profile. If y is a vector of natural numbers of length n and y = (y1, . . . , yn) =

(1, 2, . . . , n), then fk,yb selects b in each disagreement profile. If y is a vector of natural

numbers of length k, k ∈ {1, 2, . . . , n−1} and y = (y1, . . . , yk) = (n−k+1, n−k+2, . . . , n),

then fk,yb selects b in each disagreement profile. Therefore, by claim 1, all these rules satisfy

WDPR.

We conclude this section by making following remarks on Proposition 2 and 3.

1. If n = 2, then quota rules with indifference default a and quota rules with indifference

default b, satisfy WDPR. For n > 2, this is not true.

2. For unanimous rules, WDPR implies strategy-proofness and anonymity. However,

for onto rules, WDPR does not imply strategy-proofness and anonymity (see Harless
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(2015) for details). By proposition 2 and 3, the combination of strategy-proofness

and anonymity does not imply WDPR for n > 2. In particular, proposition 2 and 3

characterize the class of rules satisfying WDPR among the class of anonymous and

strategy-proof rules.

7 Conclusion

We study social choice problem where a finite set individuals have to choose one between

two alternatives. We consider the full preference domain which allows for indifference. We

weaken the requirement of efficiency to ontoness and analyze strategy-proof rules in this

framework. Our main result provides a simple description of the class of anonymous and

strategy-proof rules in this framework. These rules can be described simply by a vector of

integers. We believe that our analysis can help policy makers choose among these rules.

References
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Appendix

1. The Proof of Theorem 1

Proof. If part. Let fI
d

FId
be a GV C rule. Let Id be the committee for indifference default

d ∈ {a, b} and FId , the collection of committees for a with respect to Id. We show that fI
d

FId

is onto and strategy-proof.

To prove that fI
d

FId
is onto, we show that there exist R′, R′′ ∈ Rn such that fI

d

FId
(R′) = a

and fI
d

FId
(R′′) = b. Let R′ and R′′ be such that Na(R

′) = N and Nb(R
′′) = N respectively.

Note that NA(R′) = Nb(R
′) = ∅, Na(R

′) ∈ FN\Nab(R′),Id and NA(R′) /∈ Id. Therefore,

fI
d

FId
(R′) = a. Again, sinceNA(R′′) = Na(R

′′) = ∅, Na(R
′′) /∈ FN\Nab(R′′),Id andNA(R′′) /∈ Id,

we have fI
d

FId
(R′′) = b.

Next we show that fI
d

FId
satisfies strategy-proofness. We consider R ∈ Rn and R′i ∈ R.

First we assume that fI
d

FId
(R) = a. If aRib, then i can not manipulate at R via R′i. If

bPia then we show that fI
d

FId
(R′i, RN\{i}) = a. The following two cases arise : (i) aI ′ib and

(ii) aP ′i b.

(i) Suppose aI ′ib. Let d = a. If NA(R) ∈ Ia, then NA(R′i, RN\{i}) ∈ Ia. Therefore,

fI
a

FIa (R′i, RN\{i}) = a. If NA(R) /∈ Ia, then fI
a

FIa (R) = a implies that Na(R) ∈ FN\NA(R),Ia .

Now we consider the set NA(R′i, RN\{i}). If NA(R′i, RN\{i}) ∈ Ia, then fI
a

FIa (R′i, RN\{i}) = a.

If NA(R′i, RN\{i}) /∈ Ia, then the property 2 of FIa would imply that Na(R
′
i, RN\{i}) ∈

FN\NA(R′
i,RN\{i}),Ia . Therefore, fI

a

FIa (R′i, RN\{i}) = a.

Let d = b. Since fI
b

FIb
(R) = a, NA(R) /∈ Ib andNa(R) ∈ FN\NA(R),Ib . Now we consider the

set NA(R′i, RN\{i}). If NA(R′i, RN\{i}) ∈ Ib, then by property 1 of FIb , i ∈ Na(R) which is not

possible. Therefore, NA(R′i, RN\{i}) /∈ Ib. Since Na(R) ∈ FN\NA(R),Ib and Na(R
′
i, RN\{i}) =

Na(R), by the property 2 of FIb we have Na(R
′
i, RN\{i}) ∈ FN\NA(R′

i,RN\{i}),Ib . Therefore,

fI
b

FIb
(R′i, RN\{i}) = a.

(ii) Suppose aP ′i b. Let d = a. Note that NA(R′i, RN\{i}) = NA(R). If NA(R) ∈ Ia,
then fI

a

FIa (R′i, RN\{i}) = a. If NA(R) /∈ Ia, then fI
a

FIa (R) = a implies that Na(R) ∈
FN\NA(R),Ia . By monotonicity property of FN\NA(R),Ia , Na(R

′
i, RN\{i}) ∈ FN\NA(R),Ia . Since

NA(R′i, RN\{i}) = NA(R), fI
a

FIa (R′i, RN\{i}) = a.
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Let d = b. Since fI
b

FIb
(R) = a, NA(R) /∈ Ib and Na(R) ∈ FN\NA(R),Ib . Also, since

NA(R′i, RN\{i}) = NA(R), NA(R′i, RN\{i}) /∈ Ib. By monotonicity property of FN\NA(R),Ib ,

Na(R
′
i, RN\{i}) ∈ FN\NA(R),Ib . Therefore, fI

b

FIb
(R′i, RN\{i}) = a.

Now we assume that fI
d

FId
(R) = b. If bRia, then i can not manipulate. If aPib then we

show that fI
d

FId
(R′i, RN\{i}) = b. The following two cases arise : (i) aI ′ib and (ii) bP ′ia.

(i) Suppose aI ′ib. Let d = a. Since fI
a

FIa (R) = b, NA(R) /∈ Ia and Na(R) /∈ FN\NA(R),Ia .

Now we consider the set NA(R′i, RN\{i}). If NA(R′i, RN\{i}) ∈ Ia, then by property 1 of FIa ,

Na(R) ∈ FN\NA(R),Ia which is not possible. Therefore, NA(R′i, RN\{i}) /∈ Ia. Since Na(R) /∈
FN\NA(R),Ia and NA(R′i, RN\{i}) /∈ Ia, property 3 of FIa would imply that Na(R

′
i, RN\{i}) /∈

FN\NA(R′
i,RN\{i}),Ia . Therefore, fI

a

FIa (R′i, RN\{i}) = b.

Let d = b. If NA(R) ∈ Ib, then (by monotonicity property of Ib) NA(R′i, RN\{i}) ∈
Ib. Therefore, fI

b

FIb
(R′i, RN\{i}) = b. If NA(R) /∈ Ib, then fI

b

FIb
(R) = b implies that

Na(R) /∈ FN\NA(R),Ib . Now we consider the set NA(R′i, RN\{i}). If NA(R′i, RN\{i}) ∈ Ib,
then fI

b

FIb
(R′i, RN\{i}) = b. If NA(R′i, RN\{i}) /∈ Ib, then property 3 of FIb would imply that

Na(R
′
i, RN\{i}) /∈ FN\NA(R′

i,RN\{i}),Ia . Therefore, fI
b

FIb
(R′i, RN\{i}) = b.

(ii) Suppose bP ′ia. Note that NA(R′i, RN\{i}) = NA(R). Let d = a. Since fI
a

FIa (R) = b,

NA(R) /∈ Ia andNa(R) /∈ FN\NA(R),Ia . SinceNA(R′i, RN\{i}) = NA(R), we haveNA(R′i, RN\{i}) /∈
Ia and Na(R) /∈ FN\NA(R′

i,RN\{i}),Ia . Note that Na(R
′
i, RN\{i}) /∈ FN\NA(R′

i,RN\{i}),Ia , other-

wise by monotonicity property of FN\NA(R′
i,RN\{i}),Ia , Na(R) ∈ FN\NA(R′

i,RN\{i}),Ia which is

not possible. Therefore, fI
a

FIa (R′i, RN\{i}) = b.

Let d = b. If NA(R) ∈ Ib, then NA(R′i, RN\{i}) ∈ Ib. Therefore, fI
b

FIb
(R′i, RN\{i}) =

b. So, we consider that NA(R) /∈ Ib. since fI
b

FIb
(R) = b, Na(R) /∈ FN\NA(R),Ib . Note

that since NA(R′i, RN\{i}) = NA(R), we have Na(R
′
i, RN\{i}) /∈ FN\NA(R′

i,RN\{i}),Ia , otherwise

by monotonicity property of FN\NA(R′
i,RN\{i}),Ia , Na(R) ∈ FN\NA(R′

i,RN\{i}),Ia which is not

possible. Therefore, fI
b

FIb
(R′i, RN\{i}) = b.

Only if part. Let f be an onto and strategy-proof SCF. Let R̄ ∈ Rn denotes the

preference profile where all agents are indifferent between a and b. We show that if f(R̄) = a,

then there exists a committee for indifference default a, Ia and a collection of committees

for a with respect to Ia, FIa , such that for all R ∈ Rn;

f(R) = fI
a

FIa (R).

Similarly, if f(R̄) = b, then there exists a committee for indifference default b, Ib and a

collection of committees for a with respect to Ib, FIb , such that for all R ∈ Rn;

f(R) = fI
b

FIb
(R).

In the following, we consider these two cases.
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Case 1: f(R̄) = a. For each M ⊆ N , let gMf be the restriction of f to {R ∈ Rn :

aIib iff i /∈ M}. In other words, let gMf : {R ∈ Rn : aIib iff i /∈ M} −→ A be a function

defined as gMf (R) = f(R) for all R ∈ {R ∈ Rn : aIib iff i /∈M}. First we show the following

claim.

Claim 2. For each M ⊆ N , either gMf is a constant rule that picks a or gMf is onto.

Proof. If M = ∅, then it is trivial that gMf is a constant rule that picks a. Therefore, for

contradiction, we assume that there exists ∅ 6= M ′ ⊆ N such that gM
′

f is a constant rule that

picks b. W.o.l.g. let M ′ = {1, 2, . . . , k}, k ≤ n. Let R′ be such that aI ′ib if i ∈ {k+ 1, . . . , n}
and aP ′i b if i ∈ {1, . . . , k}. Since gM

′

f is a constant rule that picks b, f(R′) = b. Applying

strategy-proofness, we have

f(R′1, R
′
2, . . . , R

′
n) = f(R1, . . . , Rk−1, R̄k, R

′
k+1, . . . , R

′
n)

= f(R1, . . . , Rk−2, R̄k−1, R̄k, R
′
k+1, . . . , R

′
n)

...

= f(R̄1, . . . , R̄k, R
′
k+1, . . . , R

′
n)

= f(R̄)

= b

This contradicts f(R̄) = a.

Let Ia(f) = {S ⊆ N : g
N\S
f is constant rule that picks a }. Next we show the following

fact.

Fact 1. Ia(f) is a committee for indifference default a.

Proof. We show that Ia(f) satisfies following two properties.

1. Non-emptiness: Since N ∈ Ia(f), Ia(f) 6= ∅. Since f is onto and strategy-proof, gNf
is onto. Therefore, ∅ /∈ Ia(f).

2. Monotonicity: Let S ∈ Ia(f) , T ⊆ N and S ⊆ T . We show that T ∈ Ia(f). Since

g
N\S
f is a constant rule that picks a, g

N\T
f is a constant rule that picks a. Therefore,

T ∈ Ia(f).

The following claim is a direct implication of Theorem 1 of Barberà et al. (1991). Hence,

we omit the proof.

Claim 3. For each M ⊆ N , if gMf is onto, then it is a voting by committee for a at M .
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For each M ⊆ N such that gMf is onto, Claim 3 implies that gMf is a voting by committee

for a at M . Let Fg
M
f

M be the committee for a at M associated with gMf . Now, for each

M ⊆ N , we define the set FM,Ia(f) as follows. If gMf is onto, then FM,Ia(f) = Fg
M
f

M . If gMf is

not onto i.e. gMf is a constant rule that picks a, then FM,Ia(f) = ∅.
First we show the following fact.

Fact 2. For each M ⊆ N , FM,Ia(f) is a committee for a at M with respect to Ia(f).

Proof. We show that for each M ⊆ N , FM,Ia(f) satisfies following two properties.

1. Non-emptiness with respect to Ia(f): If N \M /∈ Ia(f), then gMf is onto. There-

fore, FM,Ia(f) = Fg
M
f

M . Since Fg
M
f

M 6= ∅ and ∅ /∈ Fg
M
f

M , we have FM,Ia(f) 6= ∅ and

∅ /∈ FM,Ia(f). This follows from Claim 3 and Barberà et al. (1991). If N \M ∈ Ia(f),

then gMf is a constant rule that picks a. Therefore, FM,Ia(f) = ∅ by definition.

2. Monotonicity: W.o.l.o.g. we assume that FM,Ia(f) 6= ∅. Therefore FM,Ia(f) = Fg
M
f

M .

Since Fg
M
f

M satisfies monotonicity (from Claim 3 and Barberà et al. (1991)), we have

that for each S ∈ FM,Ia(f) and T ⊆M , if S ⊆ T , then T ∈ FM,Ia(f).

Next we show that FIa(f) ≡ {FM,Ia(f)}M⊆N satisfies the properties of a collection of

committees for a with respect to Ia(f).

Fact 3. FIa(f) ≡ {FM,Ia(f)}M⊆N satisfies the properties of a collection of committees for a

with respect to Ia(f).

Proof. We show that for each M ⊆ N and each i ∈M :

1. If N \M /∈ Ia(f) and {N \M} ∪ {i} ∈ Ia(f), then for all S ⊆ M such that i ∈ S,

S ∈ FM,Ia(f). Suppose not. There exist M ⊆ N and S ⊆M such that N \M /∈ Ia(f),

{N \M} ∪ {i} ∈ Ia(f) and i ∈ S /∈ FM,Ia(f). Let R ∈ Rn be a preference profile such

that aIkb for all k ∈ {N \M}, aPkb for all k ∈ S and bPka for all k ∈M \S. Note that

gMf (R) = b. Therefore f(R) = b. Since f is strategy-proof, f(R′i, RN\{i}) = b where

R′i = aI ′ib. This contradicts with the fact that {N \M} ∪ {i} ∈ Ia(f).

2. If S ∈ FM,Ia(f), i /∈ S and {N \ M} ∪ {i} /∈ Ia(f), then S ∈ FM\{i},Ia(f). Let

R ∈ Rn be a preference profile such that aIkb for all k ∈ {N \M} ∪ {i}, aPkb for

all k ∈ S and bPka for all k ∈ M \ {S ∪ i}. Let R′ = (R′i, RN\{i}) where R′i = bP ′ia.

Since S ∈ FM,Ia(f), g
M
f (R′) = a. Therefore f(R′) = a. Then by strategy-proofness,

f(R) = a, i.e g
M\i
f (R) = a. Since {N \M} ∪ i /∈ Ia(f), S ∈ FM\i,Ia(f).
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3. If N \M /∈ Ia(f), S∪{i} /∈ FM,Ia(f) and {N \M}∪{i} /∈ Ia(f), then S /∈ FM\{i},Ia(f).
Let R ∈ Rn be be a preference profile such that aIkb for all k ∈ N \M , aPkb for all

k ∈ S ∪ i and bPka for all k ∈ M \ {S ∪ i}. Let R′ = (R′i, RN\{i}) where R′i = bI ′ia.

Since S ∪ i /∈ FM,Ia(f), g
M
f (R) = b. Therefore f(R) = b. Then by strategy-proofness,

f(R′) = b, i.e g
M\i
f (R′) = b. Since {N \M} ∪ i /∈ Ia(f), S /∈ FM\i,Ia(f).

We complete this case by showing that for all R ∈ Rn;

f(R) = h
Ia(f)
FIa(f)

(R).

Consider any profile R. By Claim 2, g
N\NA(R)
f is either a constant rule that picks a or it

is an onto rule. Let g
N\NA(R)
f be a constant rule that picks a. Therefore, g

N\NA(R)
f (R) = a

implies that f(R) = a. Which, in turn, implies that NA(R) ∈ Ia(f); i.e.; h
Ia(f)
FIa(f)

(R) = a.

Now we assume that g
N\NA(R)
f is an onto rule. Therefore, NA(R) /∈ Ia(f). By Claim 3,

g
N\NA(R)
f is a voting by committee for a at N \NA(R). Let Fg

N\NA(R)

f

N\NA(R) be the committee for

a at N \NA(R) associated with g
N\NA(R)
f . Therefore, g

N\NA(R)
f (R) = a if Na(R) ∈ Fg

N\NA(R)

f

N\NA(R)

and g
N\NA(R)
f (R) = b if Na(R) /∈ Fg

N\NA(R)

f

N\NA(R) . Since g
N\NA(R)
f (R) = f(R) and

FN\NA(R),Ia(f) = Fg
N\NA(R)

f

N\NA(R) , we are done.

Case 2: f(R̄) = b. A similar argument (as in case 1) shows that there exists a committee

for indifference default b, Ib and a collection of committees for a with respect to Ib, FIb ,
such that for all R ∈ Rn;

f(R) = fI
b

FIb
(R).

2. The Proof of Theorem 2

We prove this theorem with the help of the following propositions. The first proposition is

a direct implication of adding anonymity on Theorem 1. For this purpose, we introduce the

following definitions. A committee for indifference default d ∈ {a, b}, Id, is anonymous, if

S ∈ Id implies S ′ ∈ Id for any S ′ ⊆ N such that |S| = |S ′|. If a committee for indifference

default d is anonymous, then we refer it as anonymous committee for indifference

default d.

Let M ⊆ N and Id be a committee for indifference default d. A committee for a at M

with respect to Id, FM,Id , is anonymous, if S ∈ FM,Id implies S ′ ∈ FM,Id for any S ′ ⊆ M
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such that |S| = |S ′|. If a committee for a at M with respect to Id is anonymous, we refer it

as anonymous committee for a at M with respect to Id.
A collection of anonymous committees for a with respect to Id, is a collection

of committees for a with respect to Id, satisfying following properties

1. For any M ⊆ N , FM,Id is a anonymous committees for a at M with respect to Id.

2. For any M,M ′ ⊆ N , S ⊆ M and S ′ ⊆ M ′ where |M | = |M ′| and |S| = |S ′|, if

S ∈ FM,Id then S ′ ∈ FM ′,Id .

We define generalized voting by anonymous committees (GVAC), as follows.

Definition 13. A SCF is GVAC, denoted by fI
d

FId
, if there exists a anonymous committee

for indifference default d, Id where d ∈ A and a collection of anonymous committees for a

with respect to Id, FId, such that for all R ∈ Rn;

fI
d

FId
(R) =


d if NA(R) ∈ Id

a if Na(R) ∈ FN\NA(R),Id and NA(R) /∈ Id

b otherwise

This brings us to the following proposition.

Proposition 4. Let f : Rn −→ A be an onto SCF. If f is anonymous and strategy-proof,

then f is GVAC.

Proof. Let f be an onto, anonymous and strategy-proof SCF. Let R̄ ∈ Rn denotes the

preference profile where all agents are indifferent between a and b. We show that if f(R̄) = a,

then there exists a anonymous committee for indifference default a, Ia and a collection of

anonymous committees for a with respect to Ia, FIa , such that for all R ∈ Rn;

f(R) = fI
a

FIa (R).

Similarly, if f(R̄) = b, then there exists a anonymous committee for indifference default

b, Ib and a collection of anonymous committees for a with respect to Ib, FIb , such that for

all R ∈ Rn;

f(R) = fI
b

FIb
(R).

In the following, we consider these two cases.

Case 1: f(R̄) = a : As f is strategy-proof and onto, we have the following.

For any M ⊆ N , let gMf : {R ∈ Rn : aIib iff i /∈ M} −→ A be a function defined as

gMf (R) = f(R) for all R ∈ {R ∈ Rn : aIib iff i /∈ M}. Then either gMf is a constant

rule that picks a or gMf is onto. This follows from Claim 2 in the proof of Theorem 1.

23



Ia(f) = {S ⊆ N : g
N\S
f is constant rule that picks a} is a committee for indifference default

a. This follows from Fact 1 in the proof of Theorem 1.

FIa(f) ≡ {FM,Ia(f)}M⊆N , where

FM,Ia(f) =



{
S ⊆M :

∃ R ∈ {R ∈ Rn : aIib iff i /∈M}
with S = Na(R) ⊆M and gMf (R) = a

}
if

gMf is an

onto function

∅ if

gMf is a

constant rule

that picks a

is a collection of committees for a with respect to Ia(f). This follows from Claim 3

and Facts 2 and 3 in the proof of Theorem 1.

Next we are going to show that Ia(f) is an anonymous committee for indifference default

a.

Claim 4. Ia(f) is an anonymous committee for indifference default a.

Proof. Consider S, S ′ ⊆ N such that |S| = |S ′|. Suppose S ∈ Ia(f), but to the contrary

S ′ /∈ Ia(f). This implies that g
N\S
f is a constant rule that selects a, but g

N\S′

f is onto. So

there exists a R ∈ {R ∈ Rn : aIib iff i /∈ N \ S ′} such that g
N\S′

f (R) = b. As |S| = |S ′|, we

have |N \S| = |N \S ′|. As Na(R) ⊆ N \S ′, there exists T ⊆ N \S such that |Na(R)| = |T |
and |(N \S ′)\Na(R)| = |(N \S)\T |. So we can define the following functions; σ1 : S ′ −→ S,

σ2 : Na(R) −→ T and σ3 : (N \ S ′) \ Na(R) −→ (N \ S) \ T ; which are all one-to-one and

onto. Next, we define a permutation σ : N −→ N as follows.

σ(i) =


σ1(i) if i ∈ S ′

σ2(i) if i ∈ Na(R)

σ3(i) if i ∈ (N \ S ′) \Na(R)

Note that σ is a well-defined permutation and σ(R) ∈ {R ∈ Rn : aIib iff i /∈ N \ S}.
This implies that g

N\S
f (σ(R)) = a; i.e.; f(σ(R)) = a. But this contradicts anonymity of f as

g
N\S′

f (R) = b implies f(R) = b. This concludes the proof of Claim 4.

Next we show that FIa(f) is a collection of anonymous committees for a with respect to

Ia(f).

Claim 5. FIa(f) is a collection of anonymous committees for a with respect to Ia(f).
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Proof. First we show that for every M ⊆ N , FM,Ia(f) is a anonymous committees for a at

M with respect to Ia(f). First note that as f is anonymous, so for any M ⊆ N , it follows

that gMf is also anonymous. Now for any M ⊆ N , consider S, S ′ ⊆ M such that |S| = |S ′|.
Suppose for contradiction that S ∈ FM,Ia(f), but S ′ /∈ FM,Ia(f). This implies that there

exists a profile R ∈ {R ∈ Rn : aIib iff i /∈ M} such that Na(R) = S and gMf (R) = a. As

|S| = |S ′|, we have |M \S| = |M \S ′|. So we can define the following functions; σ1 : S −→ S ′

and σ2 : M \S −→M \S ′; which are all one-to-one and onto. Next, we define a permutation

σ : N −→ N as follows.

σ(i) =


i if i ∈ N \M

σ1(i) if i ∈ S
σ2(i) if i ∈M \ S

Note that σ is a well-defined permutation and σ(R) ∈ {R ∈ Rn : aIib iff i /∈ M} and

Na(R) = S ′. Now S ′ /∈ FM,Ia(f) implies that gMf (σ(R)) = b because gMf is onto. But this

contradicts anonymity of gMf , as gMf (R) = a. This shows that for every M ⊆ N , FM,Ia(f) is

a anonymous committee for a at M with respect to Ia(f). Next, consider any M,M ′ ⊆ N

and S ⊆ M and S ′ ⊆ M ′ such that |M | = |M ′| and |S| = |S ′|. We are going to show

that if S ∈ FM,Ia(f), then S ′ ∈ FM ′,Ia(f). So suppose for contradiction that S ∈ FM,Ia(f),

but S ′ /∈ FM ′,Ia(f). As S ∈ FM,Ia(f), there exists a profile R ∈ {R ∈ Rn : aIib iff i /∈ M}
such that Na(R) = S and gMf (R) = a. As |M | = |M ′| and |S| = |S ′|, so it follows that

|M \ S| = |M ′ \ S ′| and |N \ M | = |N \ M ′|. So we can define the following functions;

σ4 : N \M −→ N \M ′, σ5 : S −→ S ′ and σ6 : M \ S −→ M ′ \ S ′; which are all one-to-one

and onto. Next, we define a permutation σ? : N −→ N as follows.

σ?(i) =


σ4(i) if i ∈ N \M
σ5(i) if i ∈ S
σ6(i) if i ∈M \ S

Note that σ? is a well-defined permutation and σ?(R) ∈ {R ∈ Rn : aIib iff i /∈ M ′} and

Na(R) = S ′. As gMf is onto, so it follows that gM
′

f is also onto. Otherwise there would be a

violation of Claim 4 as |N \M | = |N \M ′|. Then S ′ /∈ FM ′,Ia(f) implies that gM
′

f (σ?(R)) = b;

i.e.; f(σ?(R)) = b. This contradicts anonymity of f as gMf (R) = a implies that f(R) = a.

This concludes the proof of Claim 5.

We complete this case by showing that for all R ∈ Rn;

f(R) = f
Ia(f)
FIa(f)

(R).

This follows from the definition of Ia(f) and FIa(f) as shown at the end of case 1 in the

proof of the only if part of Theorem 1.
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Case 2: f(R̄) = b : A similar argument (as in case 1) shows that there exists a anonymous

committee for indifference default b, Ib and a collection of anonymous committees for a with

respect to Ib, FIb , such that for all R ∈ Rn; f(R) = fI
b

FIb
(R).

In the following proposition, we show that any GVAC rule can be described as either a

quota rule with indifference default a or a quota rule with indifference default b.

Proposition 5. Let fI
d

FId
be a GVAC rule. Then either there exists a quota rule with

indifference default a (fk,xa ) such that fI
d

FId
≡ fk,xa or a quota rule with indifference default b

(fk,yb ) such that fI
d

FId
≡ fk,yb .

Proof. Let W be any collection of subsets of N . We denote Q(W) as the cardinality of

S ∈ W such that S contains the least number of agents among all sets in W ; i.e;

Q(W) = min
S∈W
|S|, where W ⊆ 2N .

We prove Proposition 5 with the help of the following lemmas.

Lemma 3. For the GVAC rule fI
a

FIa , we have the following.

1. 1 ≤ Q(Ia) = k ≤ n.

2. FM,Ia satisfies following conditions:

2.1 For all M ⊆ N , if |M | ≤ n− k then FM,Ia = ∅.

2.2 For all M,M ′ ⊆ N such that |M | = |M ′| > n − k, Q(FM,Ia) = Q(FM ′,Ia) and

FM,Ia 6= ∅ and FM ′,Ia 6= ∅.

2.3 For all M ⊆ N such that |M | = n−k+l where l ∈ {1, . . . , k}, we have Q(FM,Ia) ∈
{1, . . . , l}.

2.4 For all M,M ′ ⊆ N such that |M ′| = |M | − 1 > n− k,

Q(FM,Ia) ≥ Q(FM ′,Ia) ≥ Q(FM,Ia)− 1.

Proof. As Ia is an anonymous committee for indifference default a, it follows that N ∈ Ia

and ∅ /∈ Ia (Non-emptyness condition of Ia). This implies that 1 ≤ Q(Ia) = k ≤ n.

Next we prove statement 2.1. So consider a M ⊆ N such that |M | ≤ n − k. This implies

that |N \M | ≥ k. As Q(Ia) = k, monotonicity and anonymity property of Ia implies that

N \M ∈ Ia. Then non-emptyness with respect to Ia property of FIa implies that FM,Ia = ∅.
Next we prove statement 2.2. So consider M,M ′ ⊆ N such that |M | = |M ′| > n− k. This

implies that |N \ M | = |N \ M ′| < k. As Q(Ia) = k, it follows that N \ M /∈ Ia and

N \M ′ /∈ Ia. So from the non-emptyness with respect to Ia property of FIa , it follows that
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FM,Ia 6= ∅ and FM ′,Ia 6= ∅. Also as FIa is anonymous, it follows that Q(FM,Ia) = Q(FM ′,Ia)

from the definition of Q.

Next we prove statement 2.3. So consider M ⊆ N such that |M | = n − k + l where

l ∈ {1, . . . , k}. Suppose for contradiction that Q(FM,Ia) > l. So it follows that for all

S ∈ FM,Ia , |S| > l. Now we consider the situation when l = 1. Then |M | = n−k+1 implies

that |N \M | = k − 1. As Q(Ia) = k, it follows, from the definition of Q, that N \M /∈ Ia.
Now consider an i ∈M and the coalition (N \M)∪ {i}. Note that |(N \M)∪ {i}| = k. As

Ia is an anonymous committee for indifference default a, it follows that (N \M)∪{i} ∈ Ia.
Then as FIa is a collection of committees for a with respect to Ia, it follows by using property

1 that {i} ∈ FM,Ia . This contradicts our assumption that for all S ∈ FM,Ia , |S| > 1. Now

suppose that for all M ⊆ N such that |M | = n − k + l where l ∈ {1, . . . , k − 1}, we have

Q(FM,Ia) ∈ {1, . . . , l}, but there exists a M ′ ⊆ N such that |M ′| = n − k + l + 1 and

Q(FM ′,Ia) > l + 1. So consider the case where M ′ = M ∪ {i}. Now consider a coalition

S ⊆ M , such that |S| = Q(FM,Ia). As Q(FM ′,Ia) > l + 1, it follows that S ∪ {i} /∈ FM ′,Ia .

Note that |N \M ′| = k − l − 1 and |(N \M ′) ∪ {i}| = k − l. As Q(Ia) = k, it follows that

N \M ′ /∈ Q(Ia) and (N \M ′) ∪ {i} /∈ Q(Ia). Then as FIa is a collection of committees

for a with respect to Ia, it follows by using property 3 that S /∈ FM ′\{i},Ia = FM,Ia . This

however contradicts anonymity of FIa as |S| = Q(FM,Ia). Hence the proof of statement 2.3

is concluded by induction.

Next, we prove statement 2.4. So consider M,M ′ ⊆ N such that |M ′| = |M | − 1 > n − k.

In view of statement 2.2, without loss of generality, it can be assumed that M = M ′ ∪ {i}.
Now suppose for contradiction that

Case 1 : either Q(FM,Ia) < Q(FM ′,Ia),

Case 2 : or Q(FM,Ia)− 1 > Q(FM ′,Ia).

In case 1, there exists S ⊆ M such that S ∈ FM,Ia and |S| = Q(FM,Ia). Now if S = M ,

then we have a contradiction to Q(FM,Ia) < Q(FM ′,Ia) as |M | ≥ |S ′| for any S ′ ⊆M ′. So we

have S ( M . Then it follows that there exists S? ( M such that |S?| = |S| and S? ⊆ M ′.

As FIa is a collection of anonymous committees for a with respect to Ia, it follows that

S? ∈ FM,Ia . Note that as S? ⊆ M ′, it follows that i /∈ S?. Also as |M | − 1 > n − k, it

follows that |(N \M) ∪ {i}| < k. As Q(Ia) = k, it follows that (N \M) ∪ {i} /∈ Ia. Then

as FIa is a collection of committees for a with respect to Ia, it follows by using property 2

that S? ∈ FM\{i},Ia = FM ′,Ia . This constitutes a contradiction with the definition of Q as

|S?| < Q(FM ′,Ia).

In case 2, there exists S ⊆ M ′ such that |S| = Q(FM ′,Ia). Note that if S = M ′, it follows

from case 2 that Q(FM,Ia) > |M ′| + 1. This is a contradiction as for all S ⊆ M , we have
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|S| ≤ |M | = |M ′|+1. Now consider the set S∪{i} (M . Note that |S∪{i}| = Q(FM ′,Ia)+1.

As Q(FM,Ia) > Q(FM ′,Ia) + 1, from the definition of Q, it follows that S ∪ {i} /∈ FM,Ia .

Also as |M | − 1 > n − k, it follows that |(N \M) ∪ {i}| < k and |(N \M)| < k − 1 < k.

As Q(Ia) = k, it follows that (N \ M) ∪ {i} /∈ Ia and (N \ M) /∈ Ia. Then as FIa
is a collection of committees for a with respect to Ia, it follows by using property 3 that

S /∈ FM\{i},Ia = FM ′,Ia . This constitutes a contradiction with the anonymity property of

FM ′,Ia as |S| = Q(FM ′,Ia). This completes the proof of statement 2.4 and concludes the

proof of Lemma 3.

Observation 1. Given a GVAC rule fI
a

FIa , let k = Q(Ia) and xl = Q(FM,Ia), where

|M | = n−k+l for any l ∈ {1, 2, . . . , k}. Then it follows from Lemma 3 that fI
a

FIa (R) = fk,xa (R)

for all R ∈ RN .

Lemma 4. For the GVAC rule fI
b

FIb
, we have the following.

1. 1 ≤ Q(Ib) = k ≤ n.

2. FM,Ib satisfies following conditions:

2.1 For all M ⊆ N , |M | ≤ n− k if and only if FM,Ib = ∅

2.2 For all M,M ′ ⊆ N such that |M | = |M ′| > n − k, Q(FM,Ib) = Q(FM ′,Ib) and

Q(FM,Ib) 6= ∅ and Q(FM ′,Ib) 6= ∅.

2.3 For all M ⊆ N such that |M | = n−k+l where l ∈ {1, . . . , k}, we have Q(FM,Ib) ∈
{n− k + 1, . . . , n− k + l}

2.4 For all M,M ′ ⊆ N such that |M ′| = |M − 1| > n− k,

Q(FM,Id) ≥ Q(FM ′,Id) ≥ Q(FM,Id)− 1.

Proof. In view of Lemma 3, we will only show the proof of statement 2.3. So consider M ⊆ N

such that |M | = n− k + l where l ∈ {1, . . . , k}. First consider the case, where l = 1. In this

case, we have to show that FM,Ib = {M}. As |M | = n−k+1, it follows that |N \M | = k−1.

As Q(Ib) = k, it follows, from the definition of Q, that N \M /∈ Ia. Now for every i ∈ M ,

consider the coalitions (N \M)∪{i}. Note that |(N \M)∪{i}| = k. As Ib is an anonymous

committee for indifference default b, it follows that (N \M) ∪ {i} ∈ Ib. Then as FIa is

a collection of committees for a with respect to Ib, it follows by using property 1 that if

S ∈ FM,Ia then i ∈ S. As this is true for all i ∈ M , it follows that FM,Ib = {M}. Now

suppose that for all M ⊆ N such that |M | = n − k + l where l ∈ {1, . . . , k − 1}, we have

Q(FM,Ib) ∈ {n−k+1, . . . , n−k+l}, but there exists a M ′ ⊆ N such that |M ′| = n−k+l+1

and either Q(FM ′,Ib) > n − k + l + 1, or Q(FM ′,Ib) < n − k + 1. Note that Q(FM ′,Ib) >

n−k+ l+1 implies for all S ∈ FM ′,Ia , we have |S| > n−k+ l+1. This is a contradiction as
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S ⊆M ′ and |M ′| = n− k + l + 1. So assume that Q(FM ′,Ib) < n− k + 1. Now consider an

M ⊆ N such that M ′ = M ∪ {i} for some i ∈ N \M . Then it follows that |M | = n− k + l.

So Q(FM,Ib) ∈ {n − k + 1, . . . , n − k + l}. Now consider a S ( M such that |S| = n − k.

As Q(FM ′,Ib) < n− k + 1; i.e.; Q(FM ′,Ib) ≤ n− k, monotonicity and anonymity property of

FM ′,Ib implies that S ∈ FM ′,Ib . Note that i /∈ S. Also |(N \M ′)∪{i}| = k−l < k. Then from

the definition of Q, it follows that (N \M ′)∪ {i} /∈ Ib. As FIa is a collection of committees

for a with respect to Ib, it follows by using property 2 that S ∈ FM ′\{i},Ib = FM,Ib . This

contradicts the fact that Q(FM,Ib) ∈ {n − k + 1, . . . , n − k + l} as |S| = n − k. Hence the

proof of statement 2.3 is concluded by induction.

Observation 2. Given a GVAC rule fI
b

FIb
, let k = Q(Ib) and yl = Q(FM,Ia), where |M | =

n− k+ l for any l ∈ {1, 2, . . . , k}. Then it follows from Lemma 4 that fI
b

FIb
(R) = fk,yb (R) for

all R ∈ RN .

The proof of Proposition concludes by Observations 1 and 2.

Proof of Theorem 2. In view of Propositions 4 and 5, to prove Theorem 2, it is sufficient

to show that the quota rule with indifference default a and the quota rule with indifference

default b are strategy-proof, onto and anonymous. First we show that the quota rule with

indifference default a (fk,xa ) is strategy-proof, anonymous and onto. The fact that fk,xa is

onto and anonymous follows directly from the definition of fk,xa . Next, in view of Lemma 1,

as fk,xa is onto, it is sufficient to show that fk,xa satisfies weak strategy-proofness. So consider

a profile R ∈ RN and an i−deviation R′ ∈ RN of R. We need to show fk,xa (R)Rif
k,x
a (R′) in

the following cases.

aPib and aI ′ib : In this case, suppose fk,xa (R) = a. then it follows that fk,xa (R)Rif
k,x
a (R′).

So suppose that fk,xa (R) = b. This implies that |NA(R)| < k. Also in this case we have

|Na(R)∪Nb(R)| = n− k+ l, for some l ∈ {2, 3, . . . , k}. Otherwise, |Na(R)∪Nb(R)| =
n−k+1 and |Na(R)| ≥ 1 = x1 (due to the fact that aPib) would imply that fk,xa (R) = a,

which contradict our assumption that fk,xa (R) = b. Also we have |Na(R)| < xl. Now

|Na(R) ∪Nb(R)| = n− k + l, for some l ∈ {2, 3, . . . , k} implies that |NA(R)| ≤ k − 2.

So it follows that |NA(R′)| ≤ k − 1 < k. Also |Na(R
′) ∪ Nb(R

′)| = n − k + l − 1.

Note that xl − 1 ≤ xl−1 ≤ xl. Also |Na(R
′)| = |Na(R)| − 1. Now |Na(R)| < xl implies

|Na(R
′)| < xl − 1 ≤ xl−1. This shows that fk,xa (R′) = b and we can conclude that

fk,xa (R)Rif
k,x
a (R′).

bPia and aI ′ib : In this case, suppose fk,xa (R) = b. then it follows that fk,xa (R)Rif
k,x
a (R′). So

suppose that fk,xa (R) = a. Now if |NA(R)| ≥ k − 1, then it follows that |NA(R′)| ≥ k.

This implies that fk,xa (R′) = a. So suppose that |NA(R)| < k− 1 and |NA(R′)| < k. In
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this case we have |Na(R)∪Nb(R)| = n− k+ l, for some l ∈ {2, 3, . . . , k} Also we have

|Na(R)| ≥ xl. Also |Na(R
′) ∪ Nb(R

′)| = n − k + l − 1. Note that xl − 1 ≤ xl−1 ≤ xl.

Also |Na(R
′)| = |Na(R)|. Now |Na(R)| ≥ xl and xl−1 ≤ xl implies |Na(R

′)| ≥ xl−1.

This shows that fk,xa (R′) = a and we can conclude that fk,xa (R)Rif
k,x
a (R′).

Combining these cases, it follows that fk,xa satisfies weak strategy-proofness. Hence as fk,xa is

onto and Lemma 1 implies that fk,xa is strategy-proof. In a similar way, it can be shown that

fk,yb is anonymous, onto and strategy-proof. This concludes the proof of Theorem 2.
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