ERRATUM

On strategy-proof social choice correspondences

Shin Sato

Published online: 28 February 2008 © Springer-Verlag 2008

Erratum to: Soc Choice Welfare DOI 10.1007/s00355-007-0285-5

I am grateful to Carmelo Rodríguez-Álvarez for pointing out my error in Sato (2007). In Sect. 3, the definition of \succeq^{\min} and \succeq^{\max} should be changed as follows: For $A = \{a_1, \ldots, a_k\}$ and $B = \{b_1, \ldots, b_h\}$,

• assume $a_k P a_{k-1} P \cdots P a_2 P a_1$ and $b_h P b_{h-1} \cdots P b_2 P b_1$, then

$$A \gtrsim^{\min} B$$

$$\begin{cases} \exists l \leq (\min\{k, h\} + 1)/2 : \begin{bmatrix} a_l P b_l \text{ or } \begin{bmatrix} a_l = b_l \\ a_{k-l+1} P b_{h-l+1} \end{bmatrix} \\ a_m = b_m, a_{k-m+1} = b_{h-m+1} \quad \forall m < l \end{bmatrix}$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} \text{or} \\ \begin{bmatrix} k \geq h \\ \forall m \leq (h+1)/2, \begin{bmatrix} a_m = b_m \\ a_{k-m+1} = b_{h-m+1} \end{bmatrix} \right] \end{cases}$$

S. Sato (🖂)

The online version of the original article can be found under doi:10.1007/s00355-007-0285-5.

Graduate School of Economics, Keio University,

^{2-15-45,} Mita, Minato-ku, Tokyo, Japan

e-mail: sato@gs.econ.keio.ac.jp

• assume $a_1 P a_2 P \cdots P a_{k-1} P a_k$ and $b_1 P b_2 P \cdots P b_{h-1} P b_h$, then

$$A \succeq^{\max} B$$

$$\begin{cases} \exists l \leq (\min\{k, h\} + 1)/2 : \begin{bmatrix} a_l P b_l \text{ or } \begin{bmatrix} a_l = b_l \\ a_{k-l+1} P b_{h-l+1} \end{bmatrix} \\ a_m = b_m, a_{k-m+1} = b_{h-m+1} \quad \forall m < l \end{bmatrix} \end{cases}$$

$$\longleftrightarrow \begin{cases} k \leq h \\ \forall m \leq (k+1)/2, \begin{bmatrix} a_m = b_m \\ a_{k-m+1} = b_{h-m+1} \end{bmatrix} \end{bmatrix}$$

Accordingly, the following changes are needed.

Example 3.1 On \mathcal{A} , \succeq^{\max} does not coincide with \succeq^{top} . \succeq^{\max} is such that $\{x_1, x_5\} \succ^{\max} \{x_1, x_4, x_5\} \succ^{\max} \{x_2, x_3, x_5\} \succ^{\max} \{x_3\}$ whereas \succeq^{top} is such that $\{x_1, x_4, x_5\} \succ^{\text{top}} \{x_1, x_5\} \succ^{\text{top}} \{x_2, x_3, x_5\} \succ^{\text{top}} \{x_3\}$. (This change does not affect the other parts of the example.)

Proof of Theorem 3.2 The proof is similar to the proof of Theorem 3.1. To show that $x_2 \in F(R_N)$, we derive a contradiction to $x_2 \notin F(R_N)$ as follows: if $\{x_1, x_{|X|}\} = F(R_N)$, then $F(R'_2, R_{-2}) \succ_2^{\min} F(R_N)$. Otherwise, $F(R'_2, R_{-2}) \succ_2^{\max} F(R_N)$. These are contradictions to E^{BPX} strategy-proofness.