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Abstract

Mechanochemical simulations of actomyosin networks are traditionally based on one-
dimensional models of actin filaments having zero width. Here, and in the follow up
paper, approaches are presented for more efficient modelling which incorporates stretch-
ing, bending, shearing and twisting of actin filaments. Our modelling of a semi-flexible
filament with a small but finite width is based on the Cosserat theory of elastic rods,
which allows for six degrees of freedom at every point on the filament’s backbone. In
the variational models presented in this paper, a small and discrete set of parame-
ters is used to describe a smooth filament shape having all degrees of freedom allowed
in the Cosserat theory. Two main approaches are introduced: one where polynomial
spline functions describe the filament’s configuration, and one in which geodesic curves
in the space of the configurational degrees of freedom are used. We find that in the
latter representation the strain energy function can be calculated without resorting
to a small-angle expansion, so it can describe arbitrarily large filament deformations
without systematic error. These approaches are validated by a dynamical model of a
Cosserat filament, which can be further extended by using multi-resolution methods to
allow more detailed monomer-based resolution in certain parts of the actin filament, as
introduced in the follow up paper. The presented framework is illustrated by showing
how torsional compliance in a finite-width filament can induce broken chiral symmetry
in the structure of a cross-linked bundle.
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1 Introduction
Simulations of the actin-based cytoskeleton allow for deep insights into its dynamics and
mechanical properties. Composed primarily of cross-linked actin filaments and molecular
motors, this structural protein network exhibits fascinating behaviors on a range of spatial
scales.1,2 From the ångström scale, at which individual actin monomers and molecular motors
hydrolyze chemical fuel to drive conformational changes, up to the millimeter scale, at which
collectives of cells exert self-organized mutual forces on one another, the nonequilibrium
dynamics and mechanics of cytoskeletal networks enable much of the cellular functionality
necessary for life.3–10 Associated with this wide range of spatial scales is a variety of com-
putational techniques that are used for modeling cytoskeletal networks.11 Each technique
accounts to some level of approximation for the mechanical and geometrical properties of
actin filaments. These filaments can be classified as semi-flexible polymers (whose typical
contour lengths are comparable to their persistence length) with very large aspect ratios
(such that the contour length is much greater than the filament’s radius).12,13 In this paper,
we will focus on network-level computational models of cytoskeletal networks, which typically
assign ∼ 10− 100 monomers to a single discrete computational element. Software packages
such as AFiNeS,14 CytoSim,15 the model of Kim and coworkers,16 and MEDYAN17 can ac-
cess time scales of thousands of seconds and length scales of tens of micrometers, allowing
exploration of fascinating emergent phenomena of cytoskeletal systems which comprise many
interacting filaments. In the coarse-grained mechanical models used in these platforms, an
actin filament is represented as a one-dimensional piecewise-linear chain of elastic segments
with stretching and bending energy penalties. An effective radius can be assigned to the
filament so that it experiences excluded volume interactions with its neighbors to prevent
overlap, but the elastic strain energy functions used in these models neglect the filament
width.18

There is strong reason to expect that the finite width of an actin filament, neglected in
current network-level models of cytoskeletal systems, plays an important role in cytoskeletal
dynamics. Experiments in vivo and in vitro have illustrated the emergence of remarkable
rotating dynamical phases of cytoskeletal systems, in which vortex structures spontaneously
emerge as a broken chiral symmetry of the system.19–21 These collective rotating phases
likely involve torques exerted about the axes of the actin filaments, which should have
chirally asymmetric torsional compliances due to the filaments’ helical microstructure.22,23
The resulting “twirling” of actin filaments by myosin motors has been directly observed in
vitro.24,25 Furthermore, these torques have been argued to have developmental consequences
by contributing to left-right symmetry breaking in the cell cortex.26,27 However, the intrinsic
chirality and torque generation in actin filaments is not captured in any existing cellular scale
mechanochemical models of cytoskeletal networks, which currently do not allow for torques
or shearing forces due to their one-dimensional filament representations. Other computa-
tional studies also highlight the importance of filament torsion in cytoskeletal assemblies.28–30
Although these latter studies have implemented models of filament mechanics that include
torsional deformations, either the corresponding strain energy functions are overly simple
and do not systematically account for all allowable modes of deformation (stretching, bend-
ing, shearing, and twisting), or else the models are too computationally expensive to use
in network-level simulations of cytoskeletal networks, where collective phenomena involving
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many filaments are observed.28–30 Further efforts in modeling actomyosin networks described
in Refs. 31,32 do account for the finite width of actin filaments, but they are limited by large
computational expense, an overly simplified set of possible chemical reactions (which ex-
cludes active myosin motor walking and filament polymerization), and no option for binding
of cross-linkers to the filament surface rather than its backbone. As a result, the question
remains open of how one can incorporate all allowable mechanical deformations of a finite-
width filament network in a highly efficient way, so that the model can be used in cellular
scale mechanochemical simulation packages such as MEDYAN.17

Here, we introduce a set of options for efficiently modeling a semi-flexible filament having
a small but finite width. The physical background used in these models is the Cosserat theory
of elastic rods, which allows for six degrees of freedom at every point on the filament’s
backbone.33,34 A key feature of these modeling approaches is that they use only a small,
discrete set of model parameters yet describe a smooth filament shape having all allowable
degrees of freedom in the Cosserat theory. We present two main approaches: one in which
polynomial spline functions are used to describe the positional and orientational degrees
of freedom, and one in which we use the geodesic curve in the space of the orientational
degrees of freedom. We find that in the latter model one can calculate the strain energy
function without resorting to a small-angle expansion, so it can describe arbitrarily large
filament deformations without systematic error. In Section 2, we first introduce the relevant
ingredients from the Cosserat theory used in our work, after which we introduce two new
filament models and describe how to calculate the strain energy function in each. In Section 3,
we then validate these models by comparing them with computationally expensive but higher
resolution Cosserat filament.35 Finally, we apply our new method to illustrate how chiral
torsional compliance in a finite-width filament can propagate up a spatial scale to induce
broken chiral symmetry in the structure of a cross-linked bundle.

2 Methods
Thin rods (or filaments) are characterized by large aspect ratios, allowing for an effectively
one-dimensional continuum mechanical description where position in the rod is specified with
a single variable.36,37 Several nonlinear theories of thin rod mechanics have been developed
which differ from each other in the allowed types of deformations. The Cosserat theory33,34

generalizes the Kirchoff theory38,39 by allowing for transverse shearing and axial extension
deformations. Here we build on the Cosserat theory, which has recently been used to develop
expressive mathematical models of thin rod dynamics that capture a wide range of observed
nonlinear filament behaviors.35,40,41 We next give a brief account of aspects of the Cosserat
theory relevant to our model, after which we describe our new variational treatment.

2.1 Background of Cosserat theory

In the Cosserat theory, a filament is mathematically described by a directed curve.33,42 This
consists of backbone curve r(ŝ) ∈ R3, where ŝ ∈ [0, L̂] is the reference arc-length coordinate,
and an orthonormal triad of directors D(ŝ) = (d1(ŝ), d2(ŝ), d3(ŝ)). In our notation the
caret hat symbol denotes a variable of the reference configuration. The column vectors
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Figure 1: The quantities used to specify a thin rod’s configuration in the Cosserat theory
are illustrated. A deformed rod, to whose surface linkers shown in purple are attached, has
a backbone r(ŝ) shown as a black dashed curve, and a local triad of directors dα(ŝ) shown
as red, blue, and green arrows. The matrix D(ŝ) = (d1(ŝ), d2(ŝ), d3(ŝ)) is formed from
these column vectors. The rotation tensor Q(ŝ) rotates the reference director triad d̂α to the
current director triad dα(ŝ). In the Cosserat theory the local tangent of the backbone dr/dŝ,
shown as a black arrow, can differ from the the local d3(ŝ) director to allow for shear. The
rod is discretized into segments which have endpoints defined by the knot-point coordinates
ŝi, shown as orange spheres. In this visualization there are 5 segments and 6 knot points.
The left panel displays a blow-up of the right panel, where the filament’s cross-section is
visualized as a cyan circle. Although the director triads are only visualized here at certain
discrete positions along the filament, they can be found at any position given the continuous
parameterizations used in the variational models.
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dα(ŝ) ∈ R3, where α = 1, 2, 3 indexes the Cartesian components, specify the orientation of
the rod’s cross-section at ŝ such that d3(ŝ) is normal to the cross-section and d1(ŝ) and d2(ŝ)
span the cross-section and define its twist about d3(ŝ). These vectors generally differ from
the Frenet-Serret frame comprising the tangent, normal, and binormal vectors of r(ŝ).43
We distinguish between the current configuration of the rod, described by r(ŝ) and D(ŝ),
and the reference (un-deformed) configuration, described by a reference curve r̂(ŝ) and a
reference triad D̂(ŝ) =

(
d̂1(ŝ), d̂2(ŝ), d̂3(ŝ)

)
. Dilatation of the rod’s backbone length is

captured by the scalar quantity e(ŝ) = ds/dŝ, which can be used to change coordinates from
the reference arc-length coordinate ŝ to the current arc-length coordinate s. In this paper we
primarily use the reference coordinate system, although our formulation is equivalent to one
using the current coordinate system. The proper orthogonal rotation Q(ŝ) ∈ R3×3 rotates
the reference triad into the current one:

D(ŝ) = Q(ŝ) D̂(ŝ). (1)

In what follows, we will assume D̂ is independent of ŝ to simplify notation. The quantities
just introduced are illustrated in Figure 1.

From these quantities, six independent components of strain are defined.36,37 Three of
these components are encoded in the pseudovector

κ = ax
(
QT d

dŝ
Q

)
, (2)

where the ax operation returns the pseudovector associated1 with the skew-symmetric matrix
QT dQ/ dŝ. The components of κ along the reference triad vectors, κα = κ · d̂α, measure the
two bending strains, κ1 and κ2, and single twisting strain, κ3, at each arc-length coordinate ŝ.
Similarly, the components along d̂α of the vector

σ = QT dr
dŝ
− dr̂

dŝ
(3)

measure the two transverse shearing strains, σ1 and σ2, and the single stretching (extensional)
strain, σ3, completing the collection of six strain measures.

These strain components are used to define the elastic strain energy density ε(ŝ) of
the rod’s configuration in the Cosserat theory.36,37 The filament’s total strain energy E is
obtained by integrating the density ε(ŝ) along the filament’s reference arc-length L̂:

E =

∫ L̂

0

ε(ŝ) dŝ . (4)

The most general quadratic expansion of the local energy density ε(ŝ) would include all 27

1The ax operation acts on a skew symmetric matrix S =

 0 −c b
c 0 −a
−b a 0

 such that ax(S) = v =

(a, b, c)T . Its inverse operation, skew, acts on v such that skew(v) = S. These have the property that for
any vector x, Sx = v × x.
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terms of the form κακβ, κασβ, and σασβ, for α, β = 1, 2, 3, capturing mechanical couplings
between all components of the strain.29,30 However, the material symmetries of the rod can
significantly reduce the number of terms needed to describe the energy. An actin filament
can be approximately classified as a transversely hemitropic (i.e. spatially-averaged screw-
symmetric) rod.44 It can be shown that such a rod has an energy density with the form36

ε =
S1,1

2

(
σ2
1 + σ2

2

)
+
B1,1

2

(
κ21 + κ22

)
+
S3,3

2
σ2
3 +

B3,3

2
κ23

+ C1,1 (σ1κ1 + κ2σ2) + C3,3σ3κ3 + C1,2 (σ1κ2 − σ2κ1) . (5)

The coefficients Sα,β, Bα,β, and Cα,β can be viewed as elements of the parameter matrices
S, B, and C appearing in the general quadratic expression of ε.37 They are geometric and
material constants (rigidities) that parameterize the energy penalty of the rod in response to
various deformations. The top row of terms in equation (5) captures the energy due to each
mode of deformation individually. The bottom row, which would be zero for an isotropic
material, captures couplings between these deformations. The twist-stretch coupling term
proportional to C3,3 is of particular interest in the case of actin, because it allows for chiral
asymmetry in the filament’s torsional compliance.44,45 We note that other mechanical cou-
pling terms not included in equation (5), such as a twist-bend coupling term proportional to
(κ1 + κ2)κ3, can also play a role in the mechanics of short actin filaments for which spatial
averaging is a poor approximation.29 Any such coupling terms, as well as higher order terms
in the expansion of ε, could be easily accommodated by the methodology subsequently pre-
sented in this paper, but in our present applications we use equation (5) to describe chiral
actin filaments.

To parameterize the model we need to specify the elements of S, B, and C which
appear in equation (5). The diagonal elements of S and B can be expressed in terms of the
material properties Emod and Gmod, representing the Young’s and shear moduli respectively,
and the geometric properties A, I, and αc, representing the cross-sectional area, second
(polar) moment of inertia tensor, and a constant equal to 4/3 for circular cross-sections. We
give the details of the parameterization in the Supplementary material, Section B.1. The
elements of C will be treated here as tunable parameters to study the effect of anisotropic
mechanical compliance. We note that the elements of C are bounded by the requirement of
energy positivity; for instance |C3,3| <

√
S3,3B3,3.44

2.2 Variational approach to rod mechanics

In one standard modeling approach, the energy E is used to derive equations of motion
which when numerically integrated propagate the rod’s configuration forward in time.35,40,46
Rather than numerically integrating a differential equation, which requires significant com-
putational effort for large systems, the approach pursued in this paper is to efficiently find
approximately equilibrated rod configurations under some external loads. In addition to
the computational acceleration afforded by directly seeking minimized configurations, we
are also motivated to pursue this approach because we aim to incorporate a filament model
using the Cosserat theory into the simulation platform MEDYAN.17 In MEDYAN, the sys-
tem’s dynamics are propagated forward via short bursts of stochastic chemical activity over
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a reaction-diffusion compartment grid followed by periodic relaxation of the system’s me-
chanical energy; this allows for efficient simulations that include chemical reactions with
spatially varying propensities.47,48 We note that this energy-minimization based approach
to dynamics neglects the thermal diffusive motion of the filaments. The rationale behind
this approach is that the ATP-consuming contributions to the system dynamics, coming
from myosin motor steps and actin polymerization, significantly outweighs the contributions
coming from diffusive motion of the filaments in these far-from-equilibrium systems.6,17,49
As a result, neglecting thermal motion in MEDYAN simulations is not expected to signifi-
cantly compromise the realism of the behaviors we are interested in, and this claim has been
corroborated through several validations of MEDYAN predictions against experimental mea-
surements.50–55 Under some external loads, such as cross-linkers bound to the filament, the
energy E is variationally minimized for some continuous functions r?(ŝ) and Q?(ŝ), where
the star denotes the energy-minimized configuration. This infinite-dimensional functional
minimization problem is computationally burdensome, necessitating a more efficient scheme
for scalable simulations.

The crucial approximation underlying our variational approach is similar in spirit to the
Rayleigh-Ritz (or Ritz-Galerkin) method, in which an infinite-dimensional eigenvalue prob-
lem is converted to a finite-dimensional one via restriction to a finite-dimensional subspace
of expansion coefficients for some chosen basis functions.56,57 In our method, we assume that
both r(ŝ) and Q(ŝ) are of a specified functional form having a discrete set of free parameters
K. We present two options for this: one in which r(ŝ) and the Euler angles parameterizing
Q(ŝ) are spline functions of ŝ, and one in which Q(ŝ) is the geodesic curve in SO(3) (the
three-dimensional rotation group) on a segment of the filament while dr/dŝ is parameter-
ized using its components in the local dα(ŝ) basis. The details of these functional forms
are elaborated below. The strain energy density ε(ŝ;K) becomes a function of ŝ and the
parameters K through its definition in terms of the strain components, Equation 5. The
key challenge in this variational approach is evaluating the integral in Equation 4 to express
the total energy of the filament E(K) as a function of the model parameters. Once this is
done, equilibrated configurations of the the rod under some external loads, whose energy
Eext(K) is also expressed in terms of the model parameters, are found by minimizing the
total energy Etot(K) = E(K) + Eext(K) with respect to the elements in K. This yields the
optimized parameters K? = argminKEtot(K), which determine the optimized configuration
r?(ŝ) = r(ŝ;K?) and Q?(ŝ) = Q(ŝ;K?). We find that, using the spline representation for
r(s;K) and the Euler angles of Q(ŝ;K), it is necessary to expand ε(ŝ;K) around small val-
ues of the Euler angles for the integral in Equation 4 to be analytically solvable. Using the
geodesic form for Q, this approximation does not need to be made. We next give the details
of these two variational methods.

2.3 Spline-based models

Here we describe how to assign a functional form for the rod’s configuration, r(ŝ) and Q(ŝ),
using spline functions. We refer to this approach as the “spline-based” model. Commonly
used in the field of computer graphics, several spline functions are available such as B-
splines, exponential splines, and Hermite splines, which may each have particular advantages
depending on the application.58–61 For the purpose of demonstrating this approach, we use
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here composite Bézier curves which are are fairly intuitive and easy to work with, but this
method could be straightforwardly extended to use other splines. The reference arc-length L̂
is discretized into Nk−1 segments whose ends are Nk knot coordinates. The knot coordinates
are particular values ŝi of the reference arc-length, and the ith segment has a reference arc-
length L̂i = ŝi+1 − ŝi. This discretization is illustrated in Figure 1.

A composite Bézier curve x(ŝ) is a piecewise function which passes through Nk knot
points xi, where i = 0, . . . , Nk − 1. On the each segment i, x(ŝ) is polynomial of order
d whose shape is controlled by the control points xi,j, where j = 0, . . . , d − 2 and the
double index indicates that xi,j is a control point. Like Nk, the polynomial order d is a
hyperparameter controlling the complexity of the model. We will formulate the model for
general values of these hyperparameters, but in our implementations we choose d as 1 or 2
and Nk such that an actin filament segment is ∼ 20−100 nm long. In Figure 1, for instance,
we have Nk = 6 which is a typical value used. The full curve x(ŝ) consists of Nk−1 segments
xi(ŝ), i = 0, . . . , Nk − 2, such that x(ŝ) = xi(ŝ) if ŝi ≤ ŝ < ŝi+1. Here the argument of
xi(ŝ) indicates that it is a function rather than a knot point. The segment curves xi(ŝ) are
reparameterized using the segment variable q(ŝ; ŝi, ŝi+1) = (ŝ − ŝi)/L̂i which ranges from 0
to 1 as ŝ increases from ŝi to ŝi+1. In terms of q, the segment curves are given by the formula

xi(q) = (1− q)dxi + qdxi+1 +
d−2∑
i=0

Bd
j+1(q)xi,j, (6)

where the Bernstein polynomials are

Bd
j (q) =

(
d

j

)
qj(1− q)d−j. (7)

If all knot and control points are free, then un-physical cusps can result in the composite
curve at the knot points. To address this, smoothness up to degree p can be enforced through
derivative matching conditions

lim
ŝ→ŝ−i+1

x
(k)
i (ŝ) = lim

ŝ→ŝ+i+1

x
(k)
i+1(ŝ) (8)

where i = 0, . . . Nk − 3, k = 1, . . . , p and x(k)
i (ŝ) denotes the kth derivative with respect to ŝ

of xi(ŝ). Choosing p = d − 1 gives 3(d − 1)(Nk − 2) equations in 3(Nk + (Nk − 1)(d − 1))
parameters, leaving 3(Nk + d − 1) free. These free parameters can be taken to be the Nk

knot points xi and the control points on the first segments, x0,j, j = 0, . . . , d − 2. This
choice of p provides the greatest amount of smoothness while also allowing the number of
free parameters to grow with Nk. One deficit of this parameterization is that specifying a
position on the ith segments requires using parameters from segments 0 to i − 1, since the
control points on the ith segment are determined from the smoothness constraints involving
these previous parameters. However, for reasonably small values of Nk, up to ∼ 10, this issue
does not significantly impair model performance (we discuss the computational efficiency of
these models in the Supplementary material, Section A.3).

A composite Bézier curve is used to represent both the backbone curve r(ŝ) as
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well as the curve αEu(ŝ), containing the Euler angles parameterizing Q(ŝ), as func-
tion of ŝ. The vector αEu(ŝ) = (φEu(ŝ), θEu(ŝ), ψEu(ŝ))T encodes here the 3-2-1
(yaw-pitch-roll) Euler angles of Q, although other Euler angle conventions could also
be used.62 For this representation of r(ŝ) and Q(ŝ), the model parameters are K =
{r0,0, . . . , r0,dr−2, r0, . . . , rNk−1,α

Eu
0,0, . . . ,α

Eu
0,dα−2,α

Eu
0 , . . . ,αEu

Nk−1} where dr and dα are the
orders of the composite Bézier curves for the backbone and Euler angles respectively. Using
the above definitions of the strain components which enter into Equation 5, it is straight-
forward to write the strain energy density ε(ŝ;K) using these spline parameters. However,
to find the integrated energy E(K), it is necessary due to the intractability of analytically
integrating ε(ŝ;K) to make a small-angle approximation to Q(αEu) ≈ Qapprox.(α

Eu;m). The
order m of the small-angle expansion is an additional hyperparameter of the model. Using
Qapprox. in place of Q in the definition of the strain components, the approximate strain
energy density εapprox.(ŝ;K) becomes a polynomial in ŝ, that is

εapprox.(ŝ;K) =
∑
k

εk(K)ŝk, (9)

which may therefore be easily integrated to give the approximate energy of the filament
Eapprox.(K). We implemented a routine to calculate Eapprox.(K) using the computer algebra
system Mathematica.63 The details of this calculation are tedious (though straightforward)
and do not provide additional insight, so we do not present them here. They can be found
in the accompanying Mathematica notebooks.

2.4 Geodesic models

As discussed in Section 3, the small-angle approximation used to obtain an analytical ex-
pression for the integral of the energy density in the spline-based model can lead to biased
filament configurations that are highly inaccurate when the deformations are large. To
address this issue, we next present a so-called “geodesic” model which avoids making the
small-angle approximation and produces approximately correct filament configurations even
for large deformations.

In the geodesic model, we adopt the axis-angle parameterization for the rotation tensorQ,
rather than the Euler angle parameterization used above. In the axis-angle parameterization
Q(u, θ) represents a rotation about the unit vector u by the angle θ. The Rodrigues formula
expresses the tensor in terms of u and θ as

Q(u, θ) = cos(θ) (E − u⊗ u) + sin(θ)skew(u) + u⊗ u, (10)

where E is the 3× 3 identity matrix, the skew operation returns the skew-symmetric matrix
matrix associated with the unit vector u (and is the inverse of the ax operation), and ⊗
denotes the outer (dyadic) product.37 Q(u, θ) can also be represented using matrix expo-
nentiation as

Q(u, θ) = exp (skew(θu)) . (11)

This representation makes evident the connection between the orthogonal tensor Q, a mem-
ber of the Lie group SO(3), and the skew-symmetric tensor skew(θu), a member of the asso-
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ciated Lie algebra so(3).64 The transpose QT (u, θ) can be obtained as QT (u, θ) = Q(u,−θ).
We again use Nk knot coordinates to discretize the filament into Nk − 1 segments. At

every knot coordinate ŝi a rotation tensor Qi is parameterized with free model parameters
uAx
i and θAxi . To enforce normalization, we represent uAx

i in polar coordinates using the polar
and azimuthal angles, βAx

i and γAxi respectively. Thus the collection of angles θAxi , βAx
i , and

γAxi parameterize Qi at ŝi. On the ith segment (where ŝi ≤ ŝ < ŝi+1), the rotation tensor
Qi(q) is taken to be the geodesic curve on the manifold SO(3) which connects the two tensors
Qi and Qi+1, where q(ŝ; ŝi, ŝi+1) = (ŝ− ŝi)/L̂i is the local segment variable as in the spline-
based model. The geodesic curve depends on the metric D used to define distances in SO(3),
and we use the metric

D(QA,QB) = |θA,B|, (12)

where θA,B is the angle in the axis-angle parameterization of the tensor QBQ
T
A rotating QA

to QB.65 It can be shown that the geodesic curve Qi(q) connecting Qi and Qi+1 using this
metric is

Qi(q) = exp
(
q ln

(
Qi+1Q

T
i

))
Qi, (13)

where ln is the matrix logarithm.66,67 As described in the Supplementary material,
Section B.2 this curve can then be expressed in terms of the free model parameters
θAxi , βAx

i , γAxi , θAxi+1, β
Ax
i+1, and γAxi+1. The global tensor curve Q(ŝ) is given piecewise by

Qi(ŝ) on the Nk − 1 segments.
To represent the backbone curve r(ŝ) in the geodesic model, we write its derivative with

respect to ŝ in the local director triad basis dα:

dr(ŝ)
dŝ

= ζα(ŝ)dα(ŝ) (14)

where summation over repeated indices is implied. Here we treat the components ζα(ŝ) as
constants on each segment, i.e. ζα(ŝ) = ζi,α for ŝi ≤ ŝ < ŝi+1, although this assumption could
be relaxed. The piecewise constant components ζi,α are additional free model parameters.
We refer to the model where ζi,α are all independent as the “geodesic Cosserat” (GC) model.
We can also optionally set ζi,1 = ζi,2 = 0 on all segments, implying that dr/dŝ is everywhere
parallel to d3(ŝ) such that there is zero shear on the filament. The filament is still extensible,
since ζi,3 6= 0, so this model is referred to as the “geodesic extensible Kirchoff” (GEK) model.
To obtain the backbone curve r(ŝ), we integrate dr/dŝ from the minus-end position of the
filament r0 = r(ŝ = 0), as shown in Equation 29 in the Supplementary material, Section B.2.
The initial point r0 is the final free parameter in the GC and GEK models. We note that
the filament energy E(K) will not depend on r0 due to translation invariance, but external
potentials Eext(K) such as cross-linkers bound to the filament will depend on r0. For the
GC model, there are 6Nk elements in K, while for the GEK model there 4Nk + 2.

A significant benefit of the geodesic parameterization of r(ŝ) and Q(ŝ) is that it allows
the energy density to be analytically integrated along the length of the filament to give
an exact expression for the total filament energy E(K). We describe the derivation of this
expression in the Supplementary material, Section B.3. As an intuitive picture, the geodesic
curves used in this model can be thought of as representing a “linear” interpolation between
rotation tensors in their natural mathematical space, and they are therefore expected to be
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a useful tool for parameterizing how several free rotation tensors are connected together.

2.5 MEDYAN model

For comparison, we describe here the original zero-width mechanical model used in the
simulation platform MEDYAN.17 This model has no allowed shearing or twisting, although
excluded volume repulsion is included between filaments using a finite effective filament
radius.18 The energy in this model does allow for stretching and bending. The filament is
again discretized into Nk knot coordinates and Nk− 1 segments. Each segment is a straight
line with a current length Li = si+1−si and a reference length L̂i = ŝi+1− ŝi. The stretching
energy on each segment is a quadratic function of these lengths:

Estretch
i =

S3,3

2L̂i

(
Li − L̂i

)2
. (15)

The segment acts like a spring with spring constant S3,3/L̂i. At each internal knot coordinate
there is a bending potential involving the angle θMED

i,i+1 between the ith and (i+ 1)th segment:

Ebend
i =

B1,1

L̂i

(
1− cos

(
θMED
i,i+1

))
, (16)

where i = 1, . . . , Nk − 2. We show in the Supplementary material, Section B.3 that this
expression for the bending energy can be obtained as a special case of the GC model bending
energy. In the MEDYAN model, the knot points ri are the only free parameters, and the
backbone curve r(ŝ) is a linear interpolation between these points. There are thus 3Nk

elements in K for this model.

2.6 Dynamical model

We also briefly describe for comparison the dynamical model of a filament developed by
Gazzola et al. in Ref. 35. Rather than directly seeking equilibrated configurations of the
filament, the dynamical approach propagates the filament’s configuration forward in time
using discretized equations of motion based on the forces and torques in the filament. Prop-
agating the configuration forward for long times with dissipation will cause the filament to
converge to its equilibrated configuration under some external loads. The filament in this
model is discretized into Nn − 1 linear segments which, when Nn is large, allows for a good
approximation to any arbitrary filament backbone configuration. In our usage here, we take
Nn � Nk, so there are far fewer degrees of freedom in the variational models than in the
dynamical model. The backbone ri(t) is specified at each of the Nn coordinates, and the
rotation tensor Qi(t) is specified on each of the Nn − 1 segments. These quantities are up-
dated in discrete time steps δt using a second-order velocity Verlet integrator scheme. The
equations of motion correspond to an isotropic energy function given by the top row of terms
in Equation 5. For fine spatial and temporal discretization this model has been shown to
be very expressive, capturing a range of realistic filament behaviors, and we use it in this
paper as the “ground truth” to which our computationally accelerated variational models
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can be compared to assess their accuracy. We refer the reader to Ref. 35 for details of this
model, and to the follow-up paper, Ref. 68, in which extensions to this dynamical model are
developed to treat multiple spatial scales simultaneously.

2.7 Binding to surface

In one-dimensional filament models like the original MEDYAN model, external loads such
as bound cross-linkers on the filament are attached directly to the filament backbone. In the
new models presented above, the filament has a finite width and external loads may attach
to the surface of the filament, exerting shearing and twisting forces. This introduces an extra
degree of freedom at the attached arc-length coordinate ŝb corresponding to the position on
the perimeter of the filament’s cross-section at ŝb to which the load is attached. This cross-
section is spanned by the vectors d1(ŝ

b) and d2(ŝ
b), and the one-dimensional position on the

perimeter of the cross-section can be parameterized by the polar angle φb with respect to
the local d1(ŝ

b) axis. For a circular cross section, the position of the attached load is given
by

rb = r(ŝb) +R
(
cos
(
φb
)
d1(ŝ

b) + sin
(
φb
)
d2(ŝ

b)
)
, (17)

where R is the filament radius. This position therefore couples not just to the backbone r(ŝb)
but also to the local rotation tensor Q(ŝb) through dα(ŝ) = Q(ŝ)d̂α. This binding of an
attached linker to the local perimeter of the filament cross-section is illustrated in Figure 2.

By allowing for cross-linkers to bind to the surface of a filament rather than its backbone,
an extra degree of freedom φb is introduced. We note that during a simulated binding
event, this degree of freedom could be chosen in several ways, which we describe in the
Supplementary material. For example, to provide additional biological realism a modeller
could fix φb for the possible binding sites to lie along a helix which wraps around the filament.
In this way, the helical microstructure of actin could be encoded into the available binding
sites.
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Figure 2: The cross-section of a filament with a bound cross-linker is shown. The cross-linker
is visualized in purple and the local director triad is visualized as a set of colored vectors.
The angle φb and bound position rb appearing in Equation 17 are also illustrated.

3 Results
Here we present both validation and application results using the models described above.
Model validation is done by comparing the equilibrated filament configurations for different
test cases to the finely discretized dynamical model of Gazzola et al., which we take to be
the ground truth.35 The results indicate that under small applied loads all models agree
well, but for larger applied loads the geodesic models, which avoid the small-angle approxi-
mation, perform significantly better than the spline-based models which exhibit systematic
bias. In the Supplementary material, Section A.1, we show that the geodesic models also
better reproduce the theoretical predictions of Euler buckling compared to the spline-based
models. The original zero-width MEDYAN model also produces systematically unbiased rod
configurations under large deformations but does not allow for finite filament widths. To
demonstrate a novel application of the new finite-width models, we simulate a “chiral bun-
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dle,” a group of seven filaments with non-zero chiral coupling rigidity C3,3 interconnected
by surface-bound cross-linkers. Pulling vertically on the bundle induces a twist of each fila-
ment which, through the attached cross-linkers, causes the entire bundle structure to adopt
a twisted configuration. Such a structure may be relevant to the physiological functioning
of actin stress fibers in eukaryotic cells and also demonstrates the possibility of intrinsic
filament chirality propagating up a spatial scale to break chiral symmetry in the structure
of a cross-linked bundle.69

3.1 Model comparisons

To assess the accuracy of the spline-based and geodesic models introduced above, we compare
their equilibrated configurations to the steady state configuration of the finely-discretized dy-
namical model with dissipation. Five models are compared against the dynamical model: the
Bézier spline-based model with a first order small-angle expansion (“B, m = 1”), the Bézier
spline-based model with a second order small-angle expansion (“B, m = 2”), the geodesic
extensible Kirchoff model (GEK), the geodesic Cosserat model (GC), and the original ME-
DYAN model. To quantify the difference between the equilibrated configurations, we use
two similarity measures. The first, Cr, measures the root-mean-squared distance between
the backbone curves of two filaments A and B:

Cr
(
rA(ŝ), rB(ŝ)

)
=

(
L̂−1

∫ L̂

0

||rA(ŝ)− rB(ŝ)||2dŝ

)1/2

, (18)

where ||·|| denotes the vector norm. The second similarity measure, Cd, is introduced to
measure the average difference in the vectors dA3 (ŝ) and dB3 (ŝ) along the reference arc-length:

Cd
(
dA3 (ŝ),d

B
3 (ŝ)

)
= L̂−1

∫ L̂

0

(
1− dA3 (ŝ) · dB3 (ŝ)

)
dŝ. (19)

Both Cr and Cd are evaluated numerically using a large number of sample points.
Three test cases, labeled (A), (B) and (C) in Figure 3 were used to assess the models’

accuracy. The deformation in each test case is in a 2D plane so that the configurations can
be easily visualized. In test case (A), a 500 nm-long filament is pulled by four springs in
opposing directions, while in test cases (B) and (C), a 100 nm long filament is pulled by three
springs. Test cases (B) and (C) are distinguished by the strength of the pulling such that the
springs in test case (C) are much more stretched than those in (B), causing a greater filament
deformation. The filaments in each test case are modeleled as isotropic (with the coupling
matrix elements Cα,β in Equation 5 set to zero), and the springs attach directly to the
filament backbone. This is done to allow comparison with the original MEDYAN model and
the dynamical model implementations, which do not currently support anisotropic filaments
or surface-bound cross-linkers. The details of the set up for these test cases are described in
the Supplementary material, Section A.2.

For the three test cases, we generally observed that the closest agreement with the dy-
namical solution was obtained by the geodesic models, however for the small deformations
in test case (B) all models agree well with each other (see Table 1). This indicates the
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sufficiency of the small-angle approximation for small applied loads. For large loads, the
spline-based models have systematically smaller deformations than the geodesic and dynam-
ical models, which is a major shortcoming. The original MEDYAN model does not exhibit
this systematic error though it is less precise due to its linear segment shapes. The difference
between the GEK and GC models is negligible for all test cases, resulting from the high
shearing modulus of actin; the extra degrees of freedom in the GC model should still be
useful for modeling other types of filaments. Both geodesic models agree very well with the
dynamical solution, with only slight differences in shape even for large applied loads. Min-
imizing the geodesic models to obtain the equilibrated configurations takes on the order of
seconds of computational time, however, whereas propagating the finely discretized dynami-
cal model until it is equilibrated takes on the order of days. We display in the Supplementary
material, Section A.4 the profile of shearing, extensional, bending, and twisting strain for
the variational models along the length of the equilibrated filament for the third test case.
We also show in the Supplementary material, Section A.3 the computational timing of the
variational models along with their accuracy as Nk is varied. Finally, we show in Table 2 the
equilibrated filament and spring energies for each test case. We see that in each case the dy-
namical model achieves the smallest total energy of all models, which we might expect due to
its comparative lack of restrictions on the filament configuration. However, the agreement in
energy between the geodesic models and the dynamical model is excellent. Although in these
test cases the difference between the GEK and GC models is small, we expect that in the
context of real cytoskeletal networks, where molecular motors and branching molecules bind
to the surfaces of filaments, the shearing degrees of freedom in the GC will be important.
Such bound molecules can produce localized shearing forces which would not be resolved in
the GEK model.

Table 1: The difference metrics Cr and Cd between each model and the dynamical model are
reported for the three test cases. The label of each test case matches the panel of Figure 3
where that case is visualized.

Case Metric B, m = 1 B, m = 2 GEK GC MEDYAN
(A) Cr (nm) 18.40 13.05 3.89 3.86 9.16

Cd 0.041 0.022 0.008 0.008 None
(B) Cr (nm) 1.06 0.39 0.30 0.28 0.23

Cd 0.001 0.000 0.000 0.000 None
(C) Cr (nm) 6.31 2.69 0.84 0.80 0.93

Cd 0.036 0.011 0.000 0.001 None
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Table 2: The equilibrated filament energies E (top row for each model), external energies
from bound linkers Eext (middle row), and total energy Etot (bottom row) are reported for
the three test cases. The label of each test case matches the panel of Figure 3 where that
case is visualized. All units of energy are pN nm.

Case Energy B, m = 1 B, m = 2 GEK GC MEDYAN Dynamic
E 6, 458 10, 179 6, 351 6, 365 3, 986 6, 806

(A) Eext 104, 842 81, 320 66, 038 65, 978 65, 531 60, 024
Etot 111, 300 91, 499 72, 389 72, 343 69, 517 66, 830
E 712 900 936 940 935 980

(B) Eext 4, 423 4, 115 4, 068 4, 056 4, 065 3, 961
Etot 5, 135 5, 015 5, 004 4, 996 5, 000 4, 941
E 3, 895 6, 966 8, 689 8, 689 8, 160 9, 099

(C) Eext 95, 747 87, 669 84, 076 83, 990 84, 792 82, 989
Etot 99, 642 94, 635 92, 765 92, 679 92, 952 92, 088
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Figure 3: A comparison of the variational and dynamical models is shown. (A) The equi-
librated backbone curve, projected onto the x-axis, for the five variational models and the
dynamical model are shown in the bottom plot, colored according to the legend. This panel
corresponds to the first test case described in the main text. The five knot points of the
variational models are shown as solid circles through which the curves pass. The black ar-
rows attached to the dynamical solution’s curve indicate the attachment point and direction
of the bound cross-linkers, and the arrow lengths are proportional to the x coordinate of
the cross-linkers’ other ends. (B) (resp. (C)) This panel is the same as panel (A), except
it applies to the second (resp. third) test case described in the main text. We note that
the GEK model curve is closely matched by the GC model curve and is hidden behind it in
these graphs. 18



3.2 Bundle study

Here we apply the new variational models to explore the induced chirality of a bundle of
cross-linked actin filaments. The intuition underlying this study is based on actin stress
fibers, which are bundles comprising ∼ 7− 20 filaments under significant tensile stress that
transmit cell-wide forces during processes like cell migration.1,50 The chiral coupling between
axial stretching and filament twisting, captured by the C3,3 parameter, opens the possibility
that the filaments in a stress fiber also experience significant torsion under axial stress. We
hypothesize that, due to the finite width of the actin filaments, this torsion will move the
attached point of the bound cross-linker protein which will in turn pull on the other filament
to which it’s bound. This will cause the peripheral filaments to tilt with respect to the
central filament, such that the entire bundle structure acquires a helical pitch due to the
applied tension, the twist-stretch coupling, and the bound cross-linkers.
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Figure 4: The structural details of the chiral bundle simulation are shown. (A) A side-on
view is shown of a bundle of 7 filaments. Each filament is 500 nm long, lies along the z-axis,
and has 3 sets of cross-linkers (shown in green) attached at its ends and midpoints to each of
its neighboring filaments. A constant force F is applied to each filament at both ends, causing
each filament to undergo a twist due to the twist-stretch coupling when C3,3 6= 0 pN nm.
(B) A top-down view of the same bundle is shown, illustrating more clearly the rotation of
the outer filaments around the central filament. The resting length of the cross-linkers is h.
Red and blue wedges are drawn to illustrate the outer and inner angles θo and θi describing
the bundle’s twist. It is shown how the the steric penalty (εsteric 6= 0) can cause |θi| ≈ |θo|.
(C) Without the steric penalty, the filaments tend to move inward rather than tilt and bend
around the central filament, such that |θi| > |θo| ≈ 0. (D) An illustration is shown of the
unit vectors v̂f and v̂l used in the definition of the steric interaction energy, equation (21).

To explore this possible effect, we simulated 7 filaments, each 500 nm long and 7 nm
in diameter, in a bundle connected by 3 sets of cross-linkers attached in a spoke and rim
pattern, as visualized in Figures 4.A, B, and C. Each filament represented using the B, m = 1
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model with 3 knot points. Despite its less accurate performance under large applied loads
(as shown in Figure 3), this model was observed to be consistent with other models tested
for this study, and we use it here because it produced the cleanest trends due to its easily
minimized energy function. The axial tension of a stress fiber was modeled by applying
a constant z-direction force F in opposite directions to both ends of every filament in the
bundle. The attached cross-linkers have a stretching energy given by

Elinker =
klinker
2

(l − h)2 , (20)

where l is the cross-linker’s instantaneous length and h is its rest length. With only this
energy included, the peripheral filaments in the bundle tend to twist under tension and move
inward toward the bundle center, allowing the lengths of the cross-linkers to achieve their rest
lengths without causing the filaments to tilt (see Figure 4.C). Certain actin binding proteins
such as Arp2/3 are known to form relatively rigid angles with respect to the actin filament.70
To account for this possibility, we also include a steric interaction which penalizes cross-linker
orientations deviating from the local surface normal of the filament, with an energy given by

Esteric = εsteric (1− v̂f · v̂l) (21)

where the unit vector v̂f denotes the local surface normal and v̂l denotes the unit vector
pointing along the cross-linker’s length from the local attachment point (see Figure 4.D.
for an illustration of these vectors). This steric geometric penalty has the effect that the
bundle is less compressible, such that filaments are less able to move toward the bundle
center and will instead tend to tilt and rotate to satisfy the linker length penalty. The
adjustable parameters of this set-up are F , C3,3, εsteric, klinker, and h. We independently
varied these parameters one at a time, holding the other parameters at their default values
of F = 100 pN, C3,3 = 105 pN nm, εsteric = 500 pN nm, klinker = 10 pN/nm, and h = 8 nm.

We distinguish between the inner and the outer rotation of the bundle under tension.
The inner rotation θi is the angle through with the central filament is twisted from its minus
end to its plus end, and we define γi = |θi|/L̂ as the rotation per unit length. To measure the
tilting of the peripheral filaments around the central filament, we define the outer rotation
θo as a function of the distance δr by which a given outer filament’s endpoints are separated
from each other when projected to the xy-plane. If the distance from a peripheral filament’s
endpoint to the central filament’s endpoint (i.e. the radius of the bundle) is a, then the outer
rotation angle is defined as θo = arccos (1− (δr)2/2a2), given per unit length as γo = |θo|/L̂
(see Figure 4.B for an illustration of these angles). The inner rotation |θi| will always be
greater than or equal to |θo|, and if the cross-linkers perfectly transmit the rotation of the
filaments into the tilting of the outer ring, then |θi| = |θo|.

Several notable trends are observed in this study, displayed in Figure 5. First, we find a
transition from a linear dependence of both γo and γi on F to sublinear dependence, at which
point the outer and inner rotations also begin to separate from each other so that γi > γo
(Figure 5.A). This behavior is also symmetric about F = 0, with compression inducing
twisting in an approximately equal but opposite amount to stretching for small loads. These
observations qualitatively agree with the intuition of linear response for small disturbances
transitioning to nonlinear response for large disturbances. We also find a transition from
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linear to superlinear dependence on C3,3 (Figure 5.D).
Second, we find a strong nonlinear dependence of γo and γi on εsteric resembling a

second-order phase transition (Figure 5.B).71 Below an apparent threshold around εsteric ≈
0.1 pN nm the applied force rotates the central filament by a fixed amount and the peripheral
filaments rotate and move inward to satisfy the cross-linker length energy penalty. Above
this threshold, and in a continuous manner, the steric penalty causes the filaments to tilt
and bend rather than move inward to satisfy the cross-linker length penalty, causing γo to
increase and γi to decrease. Above an upper threshold around εsteric ≈ 100 pN nm this trend
saturates, and only small, though interestingly non-monotonic, changes are observed in γi
and γo which now roughly coincide. Similar behavior is found for the dependence on klinker,
although the outer rotation below the lower transition threshold ∼ 0.01 pN/nm is constant
at a finite value, not zero, implying that the steric penalty alone can cause outer rotation of
the bundle (Figure 5.E).
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Figure 5: Results from the chiral bundle simulation are shown. (A) A plot is shown of the
inner (blue) and outer (green) rotation magnitude per unit length, measured in radians per
nm, as the force F is varied. The black arrow indicates the value of F used when the other
parameters are varied, and similarly for the arrows in the other plots. The black dashed lines
show the linear response around F = 0 pN. (B) A plot is shown of the inner and outer γ as
εsteric is varied. (C) A plot is shown of the inner and outer γ as h is varied. The dashed line
and shaded area indicate the mean and standard deviation of 100 realizations of randomly
placing 3 cross-liners between the pairs of filaments, rather than attaching them at the ends
and filament midpoint. (D) A plot is shown of the inner and outer γ as C3,3 is varied. (E) A
plot is shown of the inner and outer γ as klinker is varied. (F) A plot is shown of the relative
extension L/L̂ as F is varied for two values of the coupling parameter C3,3. The inset is a
blow-up around F = 0 pN showing the crossover behavior.

Third, we find that as the cross-linker resting length h is increased, both γi and γo
monotonically decrease, and γi grows relative to γo suggesting less effective transduction of
inner rotation to outer rotation for large linker lengths (Figure 5.C). We also tested the
effect of randomly placing the cross-linkers between the filaments rather than at the ends
and midpoint of the filaments, controlling for the number of cross-linkers between each
pair. For each value of h, we sampled 100 realizations of cross-linker positions with uniform
probability along the filament lengths. We expected that the ordered (but statistically
unlikely) arrangement of cross-linkers enhances the transduction of inner to outer rotation
because the forces throughout the bundle are highly coordinated. The rare configuration
with ordered cross-linkers is indeed more effective at causing outer rotation than the typical
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random configuration, as shown by the dotted lines in Figure 5.C which have larger γi and
smaller γo for all h.

Finally, we tested how the mechanical coupling between twisting and stretching affected
the force-extension curve of the bundle, shown in Figure 5.F. The equilibrated length L of
the central filament was measured as a function of the pulling force and divided by its initial
value L̂ = 500 nm to give the relative extension. We found that a non-zero C3,3 allows for
greater extension and greater compression for a given force F . For C3,3 = 0 pN nm the
force-extension curve is perfectly linear, while for C3,3 6= 0 pN nm it smoothly interpolates
between an asymptotically linear regime for F � 0 pN and a nonlinear crossing regime
around the point C3,3 = 0 pN nm, F = 0 pN.

3.3 MEDYAN Implementation

As a final application, we implemented the GC model into MEDYAN.17 This implementation
consists of several new modelling choices, which we describe in detail in the Supplementary
material. These new modelling choices have to do with allowing for chemical reactions, such
as cross-linkers and molecular motors binding to filaments and filament polymerization and
depolymerization reactions, using the new filament mechanical model presented in this paper.
These additional chemical considerations, which allow the current mechanical model to be
incorporated in a versatile active matter simulation platform, should significantly expand
the model’s usefulness in studying cytoskeletal dynamics.

In Figure 6 we show a snapshot from a MEDYAN simulation, in which an actomyosin net-
work comprising physiological concentrations of actin, myosin (non-muscle myosin IIA) and
cross-linkers (α-actinin) has undergone a network-wide contraction away from the simulation
boundaries. This motor-driven contraction is in keeping with well-documented behavior of
actomyosin networks at these concentrations.10,17,72 The key point is that the network in
Figure 6 has binding molecules attached to the surfaces of the actin filaments rather than
their backbones, allowing for network-level shearing and twisting forces, filament rotational
dynamics, and chiral phenomenon to be studied in silico. We report here only the feasibil-
ity of implementing the GC model into a network-level simulation platform like MEDYAN,
rather than any trends observed using this implementation which we plan to explore in depth
in future works.
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Figure 6: A visualization of a contractile actomyosin network from a MEDYAN simulation
is shown, in which actin filaments are drawn as red tubes, myosin minifilaments are shown
as blue cylinders, and α-actinin cross-linkers are shown as green cylinders. The left panel
shows a blow-up of a region of the full network, which is shown in the right panel, in which
additional detail of the surface-bound minifilaments and cross-linkers can be seen. The
director triads, which are defined at every point on the actin filaments, are visualized as
periodically spaced red, green, and blue arrows. The orange spheres represent the knot
coordinate points, and the black box represents the simulation boundary. The snapshot is
taken after 150 s of simulated time.

4 Discussion
An important physical feature currently missing from large-scale mechanochemical simula-
tions of cytoskeletal networks is the finite width of the filaments. This precludes studying
effects in which filaments can rotate or shear in response to forces in the network, arising for
instance from bound molecular motors or polymerization against a boundary. To address
this, we have presented in this paper a set of options for parameterizing the configurations
of filaments with finite widths in a computationally efficient way, requiring only a small
number of free model parameters. We focused here on variational models, in which we ex-
plore functional forms for a filament’s mechanical degrees of freedom in order to efficiently
find their equilibrated configurations. We introduced two main classes of functional forms:
one in which a sequence of splines is used to parameterize the filament configuration, and
one in which a sequence of geodesic curves in the space of orthogonal rotation tensors is
used. In the spline-based approach, the intractable expressions for the strain components
necessitated a small-angle expansion of the energy function. This was not necessary in the
geodesic approach due to simplifications in the expressions of the strain components aris-

25



ing from the geodesic curve parameterization. This small-angle approximation is commonly
made in treatments of elastic rods, but is shown here to give rise to significant deviations
from expected behavior under large applied loads.37,73 By avoiding the small-angle approxi-
mation, the geodesic approach showed close agreement even under large applied loads when
compared with accurate yet computationally expensive dynamical simulations, whereas the
spline-based approach exhibited systematically smaller deformations compared to the dy-
namical solution. This systematic error may also be partly explained by examining the
ŝ-profiles of the strain components in the various models, as discussed in the Supplementary
material, Section A.4.

One practical concern in implementing the various functional forms introduced here is
the associated computational cost of evaluating the filament position and energy and of
numerically minimizing the energy. A related issue of these models is their locality, or the
dependence of local quantities on either only “nearby” parameters of the model rather than
on almost all parameters of the model. For instance, in the spline-based models smoothness
is enforced by relating the control points of later segments to those of earlier segments.
This causes the expression for the position on segment i to depend on all parameters up
to that segment, so that the complexity of the model grows faster than linearly with the
number of knot points. It should be possible to use B-splines to alleviate this non-locality in
future developments.58,59 Non-locality is more inherent in the geodesic model, arising from
the expression of the backbone curve r(ŝ) as an integral up to ŝ of the tangent dr/dŝ. While
closed form solutions for this integral are straightforwardly obtained (see the Supplementary
material), there is no way to avoid this dependence of the position on segment i on the
parameters up to segment i. Measurements of the time taken to evaluate the energy function
as Nk is varied for each model nonetheless show that the geodesic models may be more
computationally efficient than the spline-based model, as discussed in the Supplementary
material, Section A.3.

Various extensions to the models presented here are possible. For the spline-based mod-
els, it was mentioned that B-splines may be used to improve locality, and exponential splines
could also be used to increase expressivity by allowing for both polynomial and exponen-
tial contributions to the filament functional form.58–60 One could also mix the geodesic and
spline-based approaches. For instance, in the geodesic models one can relax the constraint
that the components ζα(ŝ) of dr/dŝ are constant on the segments; ζα(ŝ) could instead be
a spline function in ŝ on the segment and the energy terms involving ζα(ŝ) could still be
found exactly (see the Supplementary material, Section B.2). Other functional forms not
considered here could also be investigated. Rather than using splines to parameterize the
Euler angles of Q, splines could be used to parameterize curves of quaternions or other rep-
resentations for Q.74 In principle one could also allow the knot coordinates ŝi to become free
model parameters, so that the segment lengths are adjustable during minimization. Addi-
tionally, one may use the functional forms presented here but adopt a dynamical, rather than
variational, approach to study filament mechanics. Considering the free model parameters
of these functional forms to be generalized mechanical coordinates, one could derive equa-
tions of motion giving the time evolution of the filament’s configuration using Hamiltonian
or Langevin dynamics.75,76 This can offer a way to endow a filament with all mechanical de-
grees of freedom of the Cosserat model in time integration-based simulations of semi-flexible
polymer networks, while preserving the computational efficiency of tracking only a handful of
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free model parameters.14–16 Finally, our work is based on the Cosserat theory of elastic rods
which is more general than the Kirchoff theory, but less general than the theory of Green
and Naghdi which allows in-plane shearing of the rod’s cross-sections.77,78 Accommodating
in-plane shearing deformations considerably complicates the mathematics by introducing
non-orthogonal local directors, and we expect that it contributes only minor corrections to
the dynamics of filaments like actin. However, future work may apply this more general
approach to study biopolymer mechanics.

In this paper, we have considered a coarse-grained representation of an actin filament
which has a constant circular cross-section and lacks monomer-level resolution. In the ac-
companying paper, Ref. 68, we describe a finger-grained monomer-level model of an actin
filament that preserves the helical filament microstructure, and we develop a method for
smoothly connecting the monomeric model to the constant cross-section model presented
here. This multi-resolution modeling approach allows for fine control over the trade-off be-
tween biological detail and computational expense. In Ref. 68 we also discuss in detail issues
of parameterization, which was treated only briefly here (see Supplementary material), as
well as validations of these models using direct comparison to experimental measurements
of actin filament configurations. Therefore, while some important chemical detail has been
omitted in the present paper, we discuss in Ref. 68 how this detail can be built back into
the model in a systematic manner.

An exciting future application of efficient computational models of finite-width filaments
will be to investigate emergent chiral symmetry breaking in active, self-organizing cytoskele-
tal networks. Our simulation of a chiral filament bundle can be viewed as a preliminary in-
vestigation into this topic, showing that chirality in the mechanical compliance of individual
finite-width filaments (as encoded in the parameter C3,3) can give rise through surface-bound
cross-linkers to chiral rotation of a multi-filament bundle. Other mechanisms by which bro-
ken chiral symmetry can propagate to larger spatial scales may be studied in more complete
simulations of motorized cytoskeletal networks, for instance using a future version of ME-
DYAN augmented to use a Cosserat model for filaments.17 In addition, such network-level
simulations could explore the effect of cofilin on cytoskeltal dynamics. It has been shown
that cofilin molecules bind cooperatively to actin filaments and induce a torsional strain
that leads to filament severing.73,79 This non-trivial mechanical effect could be realistically
accounted for in simulation using the finite-width models presented here.
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A Supplementary results

A.1 Euler buckling study

As a test of the variational models introduced in this paper, we computed the force needed
to buckle the filaments as a function of their length. For inextensible and unshearable elastic
rods, there is a formula by Euler for the critical buckling force (i.e. the minimal force causing
the filament to buckle):

Fc =
π2B1,1(
KEL̂

)2 , (22)

where KE is a numerical constant depending on the constraints applied at the filament
endpoints, L̂ is the material length of the filament, and B1,1 is the bending stiffness appearing
in Equation 5 of the main text.2 In this study, the filaments lie initially on the z-axis and the
minus-ends are constrained to the origin but can freely rotate. A constant (gravitational)
force F is applied to the plus-end of the filament in the −z direction and the xy coordinates
of the plus-end are constrained to lie above the origin, but the filament may rotate at that
end. For this set-up, KE = 1. All mechanical parameters (S, B, and C) were chosen to
correspond to actin (see the Parameterization section of the Supplementary Material), and
the inextensibility and unshearability condition was imposed by setting S3,3 and S1,1 to 103

times their usual values. We also set C = 0. We tested 14 values of L̂, from 300 nm
to 1 µm in increments of 50 nm, and for each L̂ we tested 100 values of F , from 0.5 pN
to 50 pN in increments of 0.5 pN. The initial coordinates of the filament were given a
small random perturbation around the initially straight configuration to break the initial
symmetry and allow buckling to occur. A filament was judged to be buckled if its midpoint
displacement or energy exceeded certain threshold values, which were not found to be very
sensitive parameters. In Figure 7 we plot the minimal values of F for each L̂ which produced
a buckled filament. Through these points we fit curves of the form

Fc,fit = a
π2B1,1

L̂2
, (23)

for the prefactor a.
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Figure 7: The Euler critical buckling force Fc is shown for various filament lengths L̂ for
five variational models. The scatter plot data indicates the minimal value of F producing a
buckled configuration for that value of L̂, and through these points the curve in Equation
(23) is fit to determine the value of a for that model. The model labels are described in the
main text. The gray curve corresponds to the value a = 1.

All models obey the Fc ∝ L̂−2 scaling predicted by the Euler theory, but the quantitative
accuracy, judged by the deviation of a from 1, varies across the models. The value of
|a− 1| determined for each model is summarized in Table 3. Interestingly, the original zero-
width MEDYAN model has the best agreement with the Euler buckling theory, although
the geodesic models and the second order spline-based model also agree well. The first order
spline-based model significantly underestimates the buckling force, however, indicating the
insufficiency of the small-angle expansion for large filament deformations. Finally, we note
that the dynamical model also used in this paper has already been shown to exhibit excellent
agreement with the theoretical buckling prediction and is not tested here.35

Table 3: The deviation of the fitted prefactor a from 1 is shown for the five variational
models tested.

Model |a− 1|
B, m = 1 0.420
B, m = 2 0.155

GEK 0.106
GC 0.117

MEDYAN 0.080
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A.2 Description of test cases

We tested three cases of filament lengths and attached loads. In the test case (A) (Fig-
ure 3.A), the length of the filament is 500 nm and it lies along the z-axis. Four cross-linkers,
modeled as harmonic springs, are attached to the filament backbone at ŝb = 0, 167, 375,
and 500 nm; the other endpoints have x coordinates at x = 100, −100, 100, and −100 nm,
respectively. In the test case (B) (Figures 3.B and 3.C), the length of the filament is 100 nm
and it lies again along the z-axis. Three cross-linkers are attached to the backbone at
ŝb = 0, 33, and 100 nm; the other endpoints are at x = 30, −30, and 30 nm, respectively.
Test case (C) is identical to the test case (B), except the other cross-linker endpoints are at
x = 100, −100, and 100 nm, respectively. Each cross-linker has an equilibrium length of 8 nm
and a spring constant of 10 pN/nm. For the five variational models, we used Nk = 5 for each
test case, and for the dynamical model we used for each test case a segment length of 0.1 nm,
a time-step of 10−4 s, and a total simulation time of 50 s. The parameters in the matrices S
and B were chosen to describe actin filaments, as described in the Supplementary Material.
For these test cases, the coupling matrix C was set to zero. The variational models were
implemented in Mathematica, and minimization of Etot(K) was done using a Mathematica
library implementation of the conjugate gradient algorithm.63,80 For all comparisons to the
variational models, we used a dissipation constant of γd = 10 pN s/nm, and we checked that
the dynamical solution had indeed converged and represented an equilibrated configuration.
The dynamical model of Gazzola et al. was implemented in MATLAB.81

A.3 Timing and accuracy of the models

Here we study how varying the number of knot points Nk affects the accuracy and compu-
tational timing of the variational models. We measured the CPU time taken to evaluate the
energy function of the filament E(K) for each of these models and choices of Nk. All im-
plementations are done in Mathematica.63 Rather than report the absolute timing of these
function evaluations, we report the timing relative to the fastest time obtained (for the
Nk = 2 original MEDYAN model). Each timing data point is an average over 30 samples.
We also tested for each choice of Nk the model accuracy for the test case (C) in Figure 3
of the main text. We measured this accuracy using the RMSD backbone distance metric
Cr
(
rA(ŝ), rB(ŝ)

)
defined in Equation 18 of the main text, where rB(ŝ) for all comparisons

is the finely-discretized dynamical model solution. The results are displayed in Figure 8. We
note that the CPU time needed to stably propagate the dynamical model for long enough
to achieve an equilibrated filament configuration is orders of magnitude larger than the time
needed to numerically minimize any of the variational models, highlighting the extreme gain
in computational efficiency from using the variational approach.
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Figure 8: The timing and accuracy of the variational models is displayed as the number of
knot points Nk is varied. The top panel shows as scatter plot data the mean time taken to
evaluate the energy function E(K) for each condition, shown as a ratio over the time taken to
evaluate the MEDYAN energy function for Nk = 2. For each model, the scatter plot data is
fit by a function of the form aN b

k. The data is shown on a log-log plot, and the black dashed
line has a slope of 2. The bottom panel shows as joined scatter plot data the accuracy of
each model as a Nk is varied for the third test case in Figure 3 of the main text.
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Table 4: The scaling exponent of CPU time with Nk for the five variational models tested
here.

Model b

B, m = 1 2.18
B, m = 2 2.10

GEK 1.59
GC 1.69

MEDYAN 1.93

We see that the function evaluation timing for all models exhibit approximately a N b
k

scaling, with b ≈ 2 as shown in Table 4. We emphasize that the timing is studied only for the
function evaluation, rather than for the actual minimization of the energy which may depend
sensitively on the minimization algorithm employed. The accuracy increases monotonically
for each model as Nk is varied (with a small exception for the MEDYAN model at large
vales of Nk). In addition, it is found that each model’s accuracy tends to plateau after Nk

is made sufficiently large. However, the accuracies at which the different models plateau
varies significantly. While the MEDYAN model is observed to obtain realistic configurations
for large Nk, it is a zero-width model which does not include shearing and twisting of the
filament. Thus the geodesic models attain the best accuracy while allowing for filaments to
have all mechanical degrees of freedom in the Cosserat theory.

A.4 Strain profiles

To understand in greater detail how the various models differ in their representations of the
filament configurations, we plotted the filament strains κα(ŝ) and σα(ŝ) (defined in equations
(2) and (3) of the main text) along the reference arc-length ŝ. We used test case (C) of
Figure 3 in the main text, including the variational models as well as the finely-discretized
dynamical model. As displayed in Figure 9, for the spline-based models with m = 1 or
m = 2, the shearing and stretching strains σα on each segment are highly non-uniform and
quite large. This, when squared and integrated, creates a large stretching and shearing
energy penalty. On the other hand, the geodesic models by construction have uniform σα on
each segment, which apparently agrees better with the true strain profile of the dynamical
model. If the shearing strain profiles that are possible to express using the spline-based model
are not easily matched against those of the true filament, then the shearing energy penalty
may artificially restrict the spline-based filament configurations. This could then explain
the systematically smaller filament deformations observed in Figure 3 of the main text. We
observe that all models have similar bending strains κ1 and κ2. It is evident that the GC
model has smaller bending strain than the GEKmodel, due to the possibility in the GCmodel
of loading some strain into the shearing deformation in addition to the bending deformation.
Interestingly, on this bent filament, the second order spline-based model produces a non-
zero twisting strain κ3. This is likely due to the complexity of the corresponding energy
function which gives rise to some artefacts during the numerical minimization procedure.
We note that this erroneous twisting strain is small compared to the bending strains, and
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thus represents only a slight deviation from expected behavior.

Figure 9: A comparison is shown of strain profiles along an equilibrated filament in differ-
ent models for the third test case used in Figure 3 of the main text. (A) The total absolute
shearing strain is shown as a function of the reference arc-length ŝ. (B) The absolute stretch-
ing strain is shown as a function of ŝ. (C) The total absolute bending strain is shown as a
function of ŝ. (D) The absolute twisting strain is shown as a function of ŝ.

B Supplementary methods

B.1 Parameterization

Here we describe how the diagonal elements of B and S, which appear in the expression for
the energy density in the main text, are determined for actin filaments. We use the following
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relations, which may be found in Table 1 of Ref. 35:

B1,1 = EmodI1,1

B2,2 = EmodI2,2

B3,3 = GmodI3,3

S1,1 = αcGmodA

S2,2 = αcGmodA

S3,3 = EmodA.

In these equations, Emod is Young’s modulus, Gmod is the shear modulus, αc is a geometrical
constant equal to 4/3 for circular cross-sections, A is the cross-sectional area, and Iα,β are
elements of the second (or polar) moment of inertia tensor. The diameter of an actin filament
is in the range of 5-7 nm, placing its cross-sectional area A in the range of 40-75 nm2.82 We
use A = 50 nm2 throughout. For a circular cylinder, the second moment of inertia tensor
is I = (A2/4π)diag(1, 1, 2).83 The Young’s modulus has been estimated for actin filaments
as Emod ≈ 2 GPa, however the shear modulus has not to our knowledge been directly
measured.84 To estimate the shear modulus of actin we use the formulaGmod = Emod/2(1+ν),
where ν is Poisson’s ratio.85 ν has been estimated for actin as 0.4.84,86 This gives Gmod ≈ 0.7
GPa.

B.2 Q(ŝ) and r(ŝ) in the geodesic models

As described in the main text, in the geodesic models there are Nk independent rotation
tensors Qi at each knot coordinate ŝi. Between these knot points, the tensors are given by

Qi(q) = exp
(
q ln

(
Qi+1Q

T
i

))
Qi, (24)

where q(ŝ; ŝi, ŝi+1) = (ŝ − ŝi)/L̂i runs from 0 to 1 along the segment arc-length. q can
be converted to the global arc-length coordinate ŝ using ŝ = ŝi + qL̂i. The global tensor
curve Q(ŝ), which is piecewise defined by the above equation, is continuous but not smooth
at the knot points. Smoothness could be enforced be requiring dQ/dŝ to be continuous
at the knot points, leading to equations relating the tensors of consecutive segments and
reducing the number of free model parameters, but for now we do not enforce this. We
use the axis-angle parameterization for each tensor Qi: for each i we have θAxi and uAx

i so
that Qi = exp

(
skew(θAxi uAx

i )
)
. The axis uAx

i must be a unit vector, which we take to be
parameterized by the polar and azimuthal angles βAx

i and γAxi . Thus the collection of angles
θAxi , βAx

i , and γAxi parameterizes Qi for each i.
Equation (24) can be expressed using the Rodrigues formula as (dropping the Ax super-

script)
Qi(q) =

(
cos
(
qθ̃i

)
(E − ũi ⊗ ũi) + sin

(
qθ̃i

)
skew (ũi) + ũi ⊗ ũi

)
Qi, (25)

where θ̃i and ũi are the angle and axis of the rotation tensor Qi+1Q
T
i .37 To find θ̃i and

ũi in terms of the model parameters θi, ui, θi+1, and ui+1, we use formulas (also due to
Rodrigues) expressing the axis-angle parameters uc, θc of a composite rotation Q(uc, θc) =
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Q(ub, θb)Q(ua, θa) in terms of those of the constituent rotations:74

cos

(
θc
2

)
= cos

(
θb
2

)
cos

(
θa
2

)
− sin

(
θb
2

)
sin

(
θa
2

)
(ub · ua) , (26)

sin

(
θc
2

)
uc = sin

(
θb
2

)
cos

(
θa
2

)
ub+cos

(
θb
2

)
sin

(
θa
2

)
ua+sin

(
θb
2

)
sin

(
θa
2

)
(ub × ua) .

(27)
To apply these expressions to find θ̃i and ũi we use Q(u, θ)T = Q(u,−θ) and identify
θb = θi+1, ub = ui+1, θa = −θi, and ua = ui.

In the geodesic Cosserat model, the backbone curve r(ŝ) is defined by the integral of

dr
dŝ

= ζα(ŝ)Q(ŝ)d̂α = ζα(ŝ)dα(ŝ) (28)

where summation over repeated Greek indices, indicating Cartesian components, is implied.
The formula for r(ŝ) is

r(ŝ) = r0 +

∫ ŝ

0

ζα(u)Q(u)d̂αdu, (29)

where u is a dummy variable of integration. The components ζα(ŝ) are assumed to be
constants on each segment, i.e. ζα(ŝ) = ζi,α for ŝi ≤ ŝ < ŝi+1. The integral from 0 to ŝ splits
up into integrals over the segments up to the one including ŝ. If ŝ is in segment i, we have
for the last segment’s contribution∫ ŝ

ŝi

ζα(u)Q(u)d̂αdu = ζi,α

(∫ q(ŝ)

0

Qi(q(u))
du
dq

dq

)
d̂α

=

(
ζi,αL̂i

∫ q(ŝ)

0

(
cos
(
qθ̃i

)
(E − ũi ⊗ ũi)

+ sin
(
qθ̃i

)
skew (ũi) + ũi ⊗ ũi

)
dq

)
Qid̂α

= ζi,αL̂i

((
sin
(
q(ŝ)θ̃i

)
θ̃i

)
(di,α − fi,αũi)

+

(
1− cos

(
q(ŝ)θ̃i

)
θ̃i

)
(ũi × di,α) + q(ŝ)fi,αũi

)
, (30)

where fi,α = ũi · di,α, and we used du/dq = L̂i. In the geodesic extensible Kirchoff model,
ζi,1 = ζi,2 = 0 for all i, so the sum over α in Equation (30) includes only the α = 3 term. Let
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us denote the right hand side of equation (30) as pi(q). We then have for the final result

r(ŝ) = r0 +

iŝ−1∑
i=0

pi(1) + piŝ(q(ŝ)), (31)

where iŝ is the index of the cylinder containing arc-length coordinate ŝ. Thus in the geodesic
Cosserat model, r(ŝ) depends on all parameters θAxi , βAx

i and γAxi for i = 0 . . . iŝ + 1, ζi,α,
for i = 0 . . . iŝ, α = 1, 2, 3, as well as r0.

B.3 Energies in the geodesic models

Here we derive the filament energy Ei in segment i, in which ŝi ≤ ŝ < ŝi+1. The total energy
in the filament is a sum over the Nk − 1 segments:

E =

Nk−2∑
i=0

Ei, (32)

and each Ei is itself a sum over the various terms in the expression of the energy density
ε(ŝ) (see Equation 5 in the main text). To evaluate Ei we will need to calculate integrals of
the form ∫ ŝi+1

ŝi

κα(ŝ)κβ(ŝ)dŝ,
∫ ŝi+1

ŝi

σα(ŝ)σβ(ŝ)dŝ, and
∫ ŝi+1

ŝi

κα(ŝ)σβ(ŝ)dŝ

using the geodesic parameterization of r(ŝ) and Q(ŝ).
We start with the integrals over κα(ŝ)κβ(ŝ). The definition of κα(ŝ) is

κα(ŝ) = ax
(
QT (ŝ)

d
dŝ
Q(ŝ)

)
· d̂α. (33)

On segment i, we can write this in terms of the local variable q(ŝ; ŝi, ŝi+1) as

κα(q(ŝ)) =
dq
dŝ

ax
(
QT
i (q(ŝ))

d
dq
Qi(q(ŝ))

)
· d̂α

= L̂−1i ax
(
QT
i (q)

d
dq
Qi(q)

)
· d̂α. (34)

The argument of the ax operation is

QT
i (q)

d
dq
Qi(q) = Q

T
i

(
exp

(
q ln Q̃i

))T d
dq

(
exp

(
q ln Q̃i

)
Qi

)
= QT

i

(
exp

(
q ln Q̃i

))T
ln Q̃i exp

(
q ln Q̃i

)
Qi

= QT
i ln Q̃iQi, (35)

where Q̃i = Qi+1Q
T
i , and where we have used the facts that exp (qA) and A commute for
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any matrix A and that exp
(
q ln Q̃i

)
is orthogonal. A major simplification has occurred, in

that the dependence on q has dropped out. Returning to equation (34) we have

κα(q) = L̂−1i ax
(
QT
i ln Q̃iQi

)
· d̂α

= L̂−1i

(
QT
i ax

(
ln Q̃i

))
· d̂α

= L̂−1i ax
(
ln Q̃i

)
· di,α, (36)

where we used the identity ax
(
QAQT

)
= det (Q)Q ax (A) for all skew-symmetric tensors

A and orthogonal tensors Q, as well as the fact that the inner product is invariant under
orthogonal rotations.37 In the axis-angle parameterization Q̃i = exp

(
skew

(
θ̃iũi

))
, and we

have
κα(q) = L̂−1i θ̃iũi · di,α. (37)

Proceeding to the integral calculation, we have∫ ŝi+1

ŝi

κα(ŝ)κβ(ŝ)dŝ =
∫ 1

0

L̂−2i κα(q)κβ(q)L̂idq

= L̂−1i θ̃2i (ũi · di,α) (ũi · di,β) . (38)

Finally, we note that the vectors di,α = Qidα can be expressed in terms of the model
parameters, so that the final result depends only on K as required.

We next consider the integrals over σα(ŝ)σβ(ŝ). The definition of σα(ŝ) is

σα(ŝ) =

(
QT (ŝ)

dr
dŝ
− dr̂

dŝ

)
· d̂α

We next assume that the filament has zero shear or stretch in its un-deformed configuration,
so that dr̂/dŝ = d̂3, but this assumption could be relaxed. In the geodesic parameterization
of r(ŝ), we then have

σα(ŝ) =
(
QT (ŝ)ζβ(ŝ)dβ(ŝ)

)
· d̂α − δα,3

= (ζβ(ŝ)dβ(ŝ)) · dα(ŝ)− δα,3
= ζα(ŝ)− δα,3, (39)

where δα,3 is the Kronecker delta, and where we have used the invariance of the inner product
under orthogonal rotations as well as the orthogonality of dα(ŝ) and dβ(ŝ) for β 6= α. We take
ζα(ŝ) = ζi,α to be a constant on segment i (although this assumption could be relaxed without
overly complicating the model), so that the integrand σα(ŝ)σβ(ŝ) becomes independent of ŝ
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on the segment. We have∫ ŝi+1

ŝi

σα(ŝ)σβ(ŝ)dŝ =
∫ ŝi+1

ŝi

(ζi,α − δα,3) (ζi,β − δβ,3) dŝ

= L̂i (ζi,α − δα,3) (ζi,β − δβ,3) . (40)

For α = β = 3, this result implies that the stretching energy is

Estretch
i =

S3,3

2

∫ ŝi+1

ŝi

σ3(ŝ)
2dŝ

=
S3,3

2
L̂i (ζi,3 − 1)2

=
S3,3

2L̂i

(
Li − L̂i

)2
, (41)

where we used the fact that ζi,3 = Li/L̂i. Thus the stretching energy is that of a harmonic
spring with a spring constant given by S3,3/L̂i = EmodA/L̂i (see the Parameterization section
of the Supplementary Material). We also have that the shearing energy is

Eshear
i =

S1,1

2
L̂i
(
ζ2i,1 + ζ2i,2

)
. (42)

We note that stretching energy, Equation 41, is equivalent to the stretching energy used
in the MEDYAN model, Equation 15 in the main text. As a matter of interest, we next show
that the MEDYAN bending energy, Equation 16 in the main text, agrees to second order in
θMED
i,i+1 with the bending energies in the geodesic models if there is no filament twist, in which
case ũi · di,3 = 0. The bending energy in the geodesic model becomes

Ebend
i =

B1,1

2

∫ ŝi+1

ŝi

(κ1(ŝ)
2 + κ2(ŝ)

2)dŝ

=
B1,1

2L̂i
θ̃2i
(
(ũi · di,1)2 + (ũi · di,2)2

)
=
B1,1

2L̂i
θ̃2i , (43)

where the third line follows since ||ũi|| = 1. If we let θMED
i,i+1 = θ̃i, and expand Equation 16 to

second other with respect to θMED
i,i+1 , then Equation 16 in the main text and Equation 43 are

equivalent.
Finally, through similar steps to those outlined above it can be shown that the integral

over κα(ŝ)σβ(ŝ) is ∫ ŝi+1

ŝi

κα(ŝ)σβ(ŝ)dŝ = θ̃i (ũi · di,α) (ζi,β − δβ,3) . (44)

This completes the derivation of the filament energy, expressed in terms of the free model
parameters in K.
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B.4 MEDYAN Implementation

To implement the GC model into a network-level simulation platform such as MEDYAN,
several additional modelling choices need to be considered, particularly related to how chem-
ical reactions such as (de)polymerization and binding of cross-linkers and molecular motors
will occur. Other steps for implementation are necessary, such as finding explicit expressions
for the energy gradient functions to use in our custom numerical minimization routine, but
we omit here these tedious but straightforward details. In the remainder of this section we
describe how chemical reactions are handled in our implementation, but we first give a brief
overview of the MEDYAN simulation platform.

B.4.1 MEDYAN simulation protocol

A detailed introduction to the MEDYAN (Mechanochemical Dynamics of Active Networks)
model can be found in Ref. 17, and several applications can be found in Refs. 10,18,48,50–
55. Here we describe the aspects of MEDYAN relevant to the this paper, and direct the
reader to the above references for a thorough description. A MEDYAN simulation proceeds
by iterating a cycle of four steps which propagate the chemical and mechanical dynamics
forward while coupling between the two. The steps are as follows:

1. Evolve system using stochastic chemical simulation for a time δt.

2. Compute the changes in the mechanical energy resulting from the reactions that oc-
curred in step 1).

3. Mechanically equilibrate the network in response to the new stresses from step 2).

4. Update the reaction rates of force-sensitive reactions based on the new tensions from
step 3).

The mechanics of the system consists of a filament mechanical model, which is the primary
subject of the this paper, as well as other potentials describing the stretching of cross-
linkers and motors and the excluded volume repulsion between nearby filaments and between
filaments and the boundary. These latter potentials are treated here identically to previous
MEDYAN works, and we refer the reader to Ref. 17 for a description. We focus next on the
chemical simulation protocol, step 1) of the above simulation cycle.

B.4.2 Chemical dynamics in MEDYAN

In MEDYAN, diffusing chemical species have discrete copy numbers and belong to several
compartments that form a regular grid comprising the simulation volume. The compartment
size is chosen so that the well-mixed assumption holds inside each compartment, allowing
the use of mass-action kinetics to determine propensities for participating in chemical reac-
tions within compartments and diffusion events between adjacent compartments. The Next
Reaction Method (NRM) is used to stochastically choose which event will occur next and
the time to that reaction.87,88 The user specifies the chemical species and the reactions in
which they participate. Several types of reactions are possible. Polymerization reactions
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cause the subtraction of a diffusing monomer from the local compartment and its conver-
sion into a filament species, lengthening the filament, and depolymerization reactions do
the opposite. Filaments in MEDYAN have explicit spatial coordinates rather than just the
compartment-level copy numbers of the diffusing species. This network of spatially resolved
filaments lies over the compartment grid, so that sections of filaments are able to react with
diffusing species according to the local compartment copy numbers. As a result, a filament
may react with a diffusing species such as a cross-linker (e.g. α-actinin), branching (e.g.
Arp2/3), or molecular motor (e.g. NMIIA) which will in turn alter the system’s mechan-
ical energy. Binding reactions occur on a discrete set of binding sites along the filament
and stochastically occur according to the number of those binding sites and the local copy
number of diffusing binding molecules. A bound molecular motor may undergo a walking
reaction in which it moves one of its ends to an adjacent filament binding site, stretching
the motor and generating forces. Unbinding and motor walking reactions are modeled as
force-sensitive, such that their propensities depends on the forces sustained by the molecules.
Other reactions not used in this paper but allowed in MEDYAN include filament nucleation,
filament destruction, filament severing, and filament branching reactions.

B.4.3 Binding of linkers and motors in the GC model

In the original MEDYAN implementation where filaments are 1D objects, the binding sites
to which cross-linkers and molecular motors attach on the filaments are a discrete set of
points on the 1D filament backbones. Binding reactions are allowed when a pair of such
binding sites on nearby filaments are within a user-specified distance threshold determined
by the binding molecules size, and the reaction then occurs stochastically through the NRM
algorithm. In the finite-width filament models presented in this paper, binding sites are
not restricted to lie on the filament backbone but instead can lie on the filament surface,
which introduces an additional degree of freedom φb at the filament backbone position rb

(see Figure 2 of the main text). We next describe two ways to determine the new degree of
freedom φb, though others may be designed as well.

The first method one can use to determine φbA and φbB, the binding angles on the filaments
A and B which are participating in the binding reaction, is to choose them so that they
minimize the distance between the two binding sites. This amounts to choosing the closest
distance between the perimeters of two circles which are arbitrarily oriented in 3D space. The
benefit of this choice is that it ensures that when the binding happens the binding molecule
does not erroneously pass through the either of the filaments, which should be sterically
prohibited. The downside is that it does not encode any microstructural information which
may be useful to realistically model a helical filament like actin. The second method which
can be used to determine φbA and φbB is to require that all binding sites lie on one or several
fixed helices wrapping around the filament. For instance, if the binding of some molecule is
known to occur on the major groove of an actin filament, then it is of interest to ensure that
the angles φb are chosen to correspond to the location of this groove at the point rb. This
method could allow for sterically prohibited overlap between the binding molecule and the
filament at the time of binding, but it has the benefit of encoding microstructural detail into
the model. Sterically prohibited overlap can be discouraged during the energy minimization
step by including the energy penalty term Esteric defined in Equation 21.
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B.4.4 (De)polymerization in the GC model

Here we consider how to update the parameters describing the geodesic filament configuration
when a polymerization or depolymerization reaction occurs. We will generally have some
set of model parameters before the event Kb and a set of parameters after the event Ka, and
the goal is to find Ka as a function of Kb depending on the type of event that occurs. We
specify the condition for determining Ka by requiring that the new curve does not differ on
the original domain from the previous curve, so that the new curve just extends the domain
of the previous one. We fix the maximum length which a filament segment can have at
L̂max
j , which complicates the situation by requiring slightly different update rules depending

on whether the (de)polymerization event causes a change in length that passes through this
maximum length. Additionally, we need to consider separately reactions occurring at the
plus and minus ends of the filament. We will describe these various cases in turn.

The first case is of a polymerization event at the filament plus-end on a segment that
is not yet at its maximum length L̂max

j , where we denote the segment index where the
polymerization event occurs j. We define the GC parameter sets Mj = {θAxj , βAx

j , γAxj } to
represent the angles fixing the rotation matrix Qj, and Lj = {ζj,1, ζj,2, ζj,3} to represent the
expansion coefficients the segment j. The original total filament length is L̂b and that of the
segment is L̂bj, and after the event the lengths are respectively L̂a = L̂b+δl and L̂aj = L̂bj+δl.
None of the parameters on the segments previous to j will be altered. The only parameters
which will change due to this event are in Lj andMj+1 (which specifies the rotation matrix
at the end of segments j). We will assume that Laj = Lbj, i.e. that the shearing and stretching
strain on the segment does not change due to the polymerization. The choice ofMa

j+1 will
be made based on the condition that the tangent vector to the backbone at the previous
plus-end point does not change due to the polymerization event:

∂ŝr(L̂
b;Kb) = ∂ŝr(L̂

b;Ka). (45)

The choice of evaluating this condition at the previous plus-end is arbitrary, and it could be
done anywhere on the segment. This condition implies that

ζbj,αQ
b
j(L̂

b)d̂α = ζaj,αQ
a
j (L̂

b)d̂α (46)

The original q coordinate at the plus-end is qb = 1, and afterwards the coordinate for L̂bj is

qa =
L̂bj

L̂bj+δl
. Because the ζα parameters are assumed equal, the above equation simplifies to

eq
bskew(θ̃bj ũ

b
j)Qj = eq

askew(θ̃aj ũ
a
j )Qj, (47)

or
qb

qa
skew(θ̃bjũ

b
j) = skew(θ̃aj ũ

a
j ). (48)

This simplifies to
qb

qa
θ̃bjũ

b
j = θ̃aj ũ

a
j , (49)
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and, since ũbj and ũaj are both unit vectors they must be equal if they point in the same
direction, leaving us with

ũbj = ũaj (50)

and

θ̃aj = θ̃bj

(
1 +

δl

L̂bj

)
. (51)

These equations needs to be solved to give θaj+1 in terms of the parameters inMb
j andMb

j+1.
This can be done by first writing

Qa
j+1 = eskew(θ̃aj ũ

a
j )Qb

j = eskew( q
b

qa
θ̃bj ũ

b
j)Qb

j. (52)

Since the right hand side is in terms of the previous, known model parameters, it can be
evaluated and a routine for then determining θaj+1, β

a
j+1, γ

a
j+1 from the resulting tensor

elements can be used. If instead of a polymerization event at the plus- end incomplete
segment there were a depolymerization event, the same results would carry through except

the ratio qb

qa
is now

(
1− δl

L̂bj

)
.

We next consider a polymerization event at the plus end which produces a new segment,
when L̂bj = L̂max

j . The same condition, that the tangent at the previous plus-end should be
unchanged, can be used in this case, but here it actually does not uniquely specify what the
new parametersMa

j+2 should be. The tangent can be written as

∂ŝr(L̂
b;Kb) = ζbj,αQ

b
j+1d̂α, (53)

which depends only onMb
j+1 and Lj. A second order derivative on r(L̂b;Kb) could be use to

constrainMa
j+2, but we can take the simpler option of simply settingMa

j+2 =Mb
j+1 =Ma

j+1,
so that the new segment has the same rotation matrix as the previous plus-end point. We
can also take Laj+1 = (0, 0, 1). Thus the new segment is assumed to continue straight in an
un-strained way from the tangent at L̂b. Smoothness is still guaranteed at L̂b. This freedom
of parameter choice when creating a new segment is a qualitative difference compared to
polymerization events occurring on an incomplete segment, but it should not introduce any
serious issues into the simulation. Any unrealistic choices for this polymerization process
will be resolved during the subsequent energy minimization routine, and the effects of this
on the system dynamics will be minor. Depolymerization events causing the destruction of
a plus-end segment can be trivially handled by keeping all parameters the same and simply
deleting the ones for the depolymerized segment.

We next consider a polymerization event occurring at an incomplete minus-end segment.
This requires updatingM0, L0, and r0. We again take La0 = Lb0 for simplicity. We require
the tangent vector to the backbone at the previous minus-end (qb = 0) to be equal to the
tangent in the new segment at qa = δl

L̂b0+δl
. This amounts to the condition

ζb0,αQ
b
0d̂α = ζa0,αQ

a
0(q

a)d̂α (54)
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or
Qb

0 = Qa
0(q

a) = eq
askew(θ̃a0 ũ

a
0)Qa

0. (55)

It will be easier to write the original tensor curve Qb
0(q

b) in the opposite direction, as the
curve that goes from Qb

1 to Qb
0, written in terms of the original qb as

Qb
0(q

b) = eq
bskew(θ̃b0ũ

b
0)Qb

0 = e(1−q
b)skew(−θ̃b0ũb0)Qb

1. (56)

The tangent condition at the original minus-end qb = 0 then reads

eskew(−θ̃b0ũb0)Qb
1 = e(1−q

a)skew(−θ̃a0 ũa0)Qb
1 (57)

or
eskew(−θ̃b0ũb0) = e(1−q

a)skew(−θ̃a0 ũa0). (58)

This leads to
ũb0 = ũa0 (59)

and
θ̃b0 = (1− qa)θ̃a0 , (60)

or

θ̃a0 =
L̂b0 + δl

L̂b0
θ̃b0. (61)

Writing
Qa

0 = eskew(−θ̃a0 ũa0)Qb
1 (62)

and substituting for θ̃a0 and ũa0 in terms of their original counterparts θ̃b0 and ũb0, this ex-
pression can be evaluated, and the sought after model parameters θa0 , βa0 , γa0 can be found
from the tensor Qa

0. To find ra0, the new minus-end position of the backbone, we require that
using the new parameters Ka the position of the backbone at ŝ = δl is equal to the previous
minus-end backbone position, i.e. that

rb0 = ra(δl) = ra0 +

∫ δl

0

∂ŝr(ŝ;Ka)dŝ (63)

or

ra0 = rb0 − p0

(
δl

L̂b0 + δl
;La0,Ma

0,Ma
1

)
, (64)

where p0(q) is defined in Equation 31.
For a depolymerization event at an incomplete minus-end segment, we evaluate the tan-

gent condition at qa = 0, qb = δl

L̂b0
. Through similar steps to those outlined above, this can

be shown to give the condition
(1− qb)θ̃b0 = θ̃a0 . (65)

The new minus-end position can be found as the previous backbone position evaluated at
ŝ = δl:

ra0 = r(δl;Lb0,Mb
0,Mb

1). (66)
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If the polymerization event at the minus-end creates a new segment, we follow the same
steps as in the plus-end new segment case by allowing the new segment to continue the
tangent at the previous minus-end in an unstrained way. This amounts toMa

0 =Mb
0 =Ma

1

and L0 = (0, 0, 1). The new minus-end position ra0 is found using Equation 64. Finally if a
depolymerization event destroys a segment, we simply find the new minus-end position using
Equation 66 and then discard the parameters of the destroyed segment, keeping all other
parameters the same.
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