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1. Introduction

Let Ω be a smooth bounded domain in R
N , N ≥ 1, let p > 0 and let m : Ω → R

be a function that changes sign in Ω. Consider the problem
⎧
⎨

⎩

−Δu = mup in Ω
0 �≡ u ≥ 0 in Ω
u = 0 on ∂Ω.

(1.1)

When 1 < p < (N + 2) / (N − 2) (superlinear problem) it is well known that
(1.1) has a solution if and only if m > 0 in a set of positive measure (see e.g.,
[3], [1] and its references). A similar result is true if p = 1 (linear eigenvalue
problem with indefinite weight) in the sense that the aforementioned condition
on m is necessary and sufficient for the existence of a unique positive principal
eigenvalue with respect to the weight m (e.g., [17], [16] and its references).
Furthermore, as a direct consequence of the strong maximum principle and
Hopf’s lemma, under suitable regularity assumptions (namely, m ∈ Lr (Ω),
r > N), in both cases the solution u is strictly positive in Ω and ∂u/∂ν < 0
on ∂Ω, where ν denotes the outward unit normal to ∂Ω. In other words, the
solution automatically belongs to the interior of the positive cone of C1+θ

(
Ω
)
,
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θ ∈ (0, 1). However, it turns out that for the sublinear problem (i.e. 0 < p < 1)
the matter of existence of strictly positive solutions in Ω for (1.1) is much more
involved, even in the one-dimensional case. Our aim in the present paper is to
study the existence and nonexistence of strictly positive solutions in this latter
situation, when Ω is a ball in R

N .
For p ∈ (0, 1) and m ∈ Cθ

(
Ω
)
, it is known that (1.1) possesses a solution

if and only if m (x0) > 0 for some x0 ∈ Ω. This was established using sub- and
supersolutions in Theorem 2.2 in [2] under some additional hypothesis on m,
and a generalization of this result for a strongly uniformly elliptic differential
operator and only asking that m ∈ C

(
Ω
)

was proved by the authors in [12],
Theorem 3.2 and Remark 3.3, employing iterative and fixed points methods.
We note that in both works the only information available on the solution u
is that u > 0 in the set {x ∈ Ω : m (x) > 0}.

Concerning the question of existence of strictly positive solutions for (1.1)
when p ∈ (0, 1), to our knowledge no necessary condition on m is known
(other than the obvious one derived from the maximum principle), and the
only sufficient condition we found in the literature (see [15, Theorem 4.4], or
[14, Theorem 10.6]) is that the solution Ψ of the linear problem

{ −ΔΨ = m in Ω
Ψ = 0 on ∂Ω (1.2)

satisfies Ψ > 0 in Ω, and even in this case the solution of (1.1) need not belong
to the interior of the positive cone. Moreover, this last condition is far from
being in some sense necessary as the following example shows.

Consider the problem
{ −u′′ = 2

(
1 − 4 cos2 x

)
u1/2 in (0, π)

u (0) = u (π) = 0.
(1.3)

A few computations yield that u .= sin4 x
4 is a solution of (1.3), but the solution

of (1.2) with 2
(
1 − 4 cos2 x

)
in place of m is Ψ (x) .= x2 − πx + 1 − cos (2x)

which satisfies Ψ < 0 in (0, π). Let us observe however that the aforementioned
condition is in fact necessary and sufficient for the existence of positive solu-
tions for some related nonlinear problems, see [7] and [13]. Let us also mention
that examples as (1.3) provide an easy way to obtain situations in which there
exists a solution of (1.1) which actually vanishes in a subset of the domain.
Indeed, one simply has to take any domain Ω̃ ⊃ Ω and extend m (in any form)
and u by zero outside Ω.

In order to prove our results we shall mainly rely on the sub- and super-
solution method. There are various reasons for which this is a natural choice.
One of them is that many closely related semilinear problems can be tackled
quite satisfactorily with this approach. Another one is given by the following
elementary remark:

Remark 1.1. Let ψ be the solution of (1.2) with m+ in place of m, where as
usual we write m = m+ −m− with m+ = max (m, 0) and m− = max (−m, 0).
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Let k ≥ (‖ψ‖∞ + 1)p/(1−p). Then k (ψ + 1) is a supersolution of (1.1) since

−Δ(k (ψ + 1)) = km+ ≥ (k (‖ψ‖∞ + 1))p
m+ ≥ m (k (ψ + 1))p in Ω

and Φ = k on ∂Ω. Furthermore, it is clear that this remains valid if we replace
−Δ by a linear second order elliptic operator with nonnegative zero order
coefficient.

It follows from the above remark that the only task is to construct some
subsolution for (1.1) that is strictly positive in Ω. This will be carried out,
roughly speaking, splitting the domain in parts, building subsolutions in each
of them and checking that they can be joined correctly in order to have a
subsolution for the whole domain. In the next section we shall accomplish this
for the one-dimensional problem. In this case our results give a quite complete
picture of what happens with the strictly positive solutions of (1.1). More
precisely, in Theorem 2.1 we shall supply conditions that assure either the
existence of strictly positive solutions or solutions in the interior of the posi-
tive cone. Moreover, under some evenness assumptions on m we shall provide
further sufficient conditions for the existence of strictly positive solutions or
belonging to the interior of the positive cone (see Theorem 2.3 and Proposition
2.5 respectively). Let us mention that neither of these conditions are compa-
rable with each other (see Remarks 2.2, 2.4 and 2.6). Let us also notice that
the distinction between strictly positive solutions and solutions in the interior
of the positive cone is of importance since the positive solution of (1.1), if it
exists, is unique (see e.g., [9], Theorem 2.1). On the other hand, in Theorem
2.7 we shall exhibit necessary conditions for the existence of strictly positive
solutions, which are of similar type as the ones stated in the above theorems.
We would like to point out that all these conditions are given in terms of some
Lq-norms and positive principal eigenvalues, which is quite natural for this
kind of semilinear problems (see e.g., [5,8,18,11]).

In Sect. 3 we shall adapt to the radial case some of the techniques devel-
oped for the one-dimensional problem, and we shall also be able to prove
necessary and sufficient conditions on m (see Theorems 3.1, 3.2 and 3.3 for the
sufficient conditions, and Theorem 3.4 and Remark 3.5 for the necessary ones).
Let us note however that the bounds in the latter case are sometimes sharper
or give more information than the ones that we find for the N -dimensional
problem.

We conclude this introduction with some last few comments. There are
of course many interesting questions about the strictly positive solutions of
(1.1) that still remain open. It is not clear whether the ideas in the present
paper are applicable to a non-radial m when N > 1, and it is even less clear
how to attack (1.1) in the case of a general smooth bounded domain and/or
a general linear second order differential operator. We are strongly convinced
that similar conditions (i.e., in terms of some Lq-norm or principal eigenvalues)
to the ones that appear here should still be true in this cases, but we are not
able to supply a proof.
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2. The one-dimensional case

For a < b, let Ω .= (a, b) and m : Ω → R with m− �≡ 0. We consider the
problem

⎧
⎨

⎩

−u′′ = mup in Ω
u > 0 in Ω
u = 0 on ∂Ω.

(2.1)

Let

P ◦ .= interior of the positive cone of C1+θ
(
Ω
)
,

λ1 (m, I) .= positive principal eigenvalue for m in I, for any interval I ⊆ Ω.

Theorem 2.1. Let m ∈ L2 (Ω) and suppose there exist a ≤ x0 < x1 ≤ b such
that 0 �≡ m ≥ 0 in I

.= (x0, x1).
(i) Assume that m− ∈ L∞ (Ω) and

∥
∥m−∥∥

L∞(Ω)
≤ 2 (1 + p)

((1 − p) max {b− x0, x1 − a})2 λ1 (m, I)
. (2.2)

Then there exists u ∈ W 2,2 (Ω) solution of (2.1).
(ii) Assume that

max

{∫ b

x0

∥
∥m−∥∥

L1(t,b)
dt,

∫ x1

a

∥
∥m−∥∥

L1(a,t)
dt

}

<
1

λ1 (m, I)
. (2.3)

Then there exists u ∈ W 2,2 (Ω) ∩ P ◦ solution of (2.1).

Proof. We proceed in several steps. Since m− �≡ 0 it must occur that either
x1 < b or x0 > a (or both). If x1 < b we argue as follows. By (2.2) we may
pick c such that

λ1 (m, I) ≤ c ≤ 2 (1 + p)
((1 − p) (b− x0))

2 ‖m−‖∞
,

and due to the homogeneity of (2.1) it is enough to prove (i) for mc
.= cm.

Define

β
.=

2
1 − p

, λ
.=

[
c (1 − p)2 ‖m−‖L∞(Ω)

2 (1 + p)

]β/2

, (2.4)

Φ0 (x) .= λ (b− x)β
, for x ∈ [x0, b] .

Clearly Φ0 is decreasing and convex in [x0, b] and Φ0 (b) = 0 < Φ0 (x) for
all x ∈ [x0, b). Also, taking into account (2.4) some computations yield that
−Φ′′

0 ≤ mcΦ
p
0 in (x0, b) and ‖Φ0‖∞ ≤ 1.

On the other hand, let ϕ > 0 (not depending on c) and λ1 (mc, I) be
satisfying

{ −ϕ′′ = λ1 (mc, I)mcϕ in I
ϕ = 0 on ∂I (2.5)
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with ‖ϕ‖∞ = 1. From the election of c we get −ϕ′′ = λ1 (mc, I)mcϕ ≤ mcϕ
p

in I. Also, since mc|I ∈ L2 (I), by standard regularity arguments ϕ ∈ W 2,2 (I).
Then, if t1, t2 ∈ I with t1 < t2 we may integrate over (t1, t2) (see e.g., [4],
Theorem 8.2) to obtain that

ϕ′ (t1) − ϕ′ (t2) = −
∫ t2

t1

ϕ′′ = λ1 (mc, I)
∫ t2

t1

mcϕ ≥ 0 (2.6)

and thus ϕ is concave in I.
Let ρ

.= max {x ∈ I : ϕ (x) = 1}, and let x ∈ (ρ, x1) be the great-
est abscissa of the intersection points between the graphs of Φ0|(ρ,x1) and
ϕ|(ρ,x1). Such a x exists because x1 < b and ‖Φ0‖∞ ≤ ‖ϕ‖∞. We note that
Φ′

0 (x) ≥ ϕ′ (x). Indeed, let γM be the maximum γ > 0 such that the graph of
(Φ0 + γ)|(ρ,x1)

intersects the graph of ϕ|(ρ,x1), and denote by xM the abscissa
of the point of intersection between the graphs of (Φ0 + γM )|(ρ,x1)

and ϕ|(ρ,x1).
Then xM ≤ x and (Φ0 + γM )′ (xM ) = ϕ′ (xM ). Therefore the concavity of ϕ
and the convexity of Φ0 say that Φ′

0 (x) ≥ ϕ′ (x).
In a similar way, if also x0 > a we set Φ1 (x) .= λ (x− a)β for x ∈ [a, x1],

where λ and β are given by (2.4). Reasoning as above we find that −Φ′′
1 ≤ mcΦ

p
1

in (a, x1) and that there exist some ρ ∈ (x0, ρ] and x ∈ (
x0, ρ

)
such that

Φ1 (x) = ϕ (x) and Φ′
1 (x) ≤ ϕ′ (x).

We next define u by u .= Φ1 in [a, x], u .= ϕ in [x, x] and u .= Φ0 in [x, b]
(if x1 = b we simply set u .= Φ1 in [a, x] and u

.= ϕ in [x, b]; and if x0 = a
we proceed analogously). Then u is well defined, u ∈ C

(
Ω
) ∩ H1

0 (Ω), u > 0
in Ω (and u = 0 on ∂Ω). Furthermore, an integration by parts shows that
u satisfies −u′′ ≤ mcu

p in the weak sense in Ω because Φ′
1 (x) ≤ ϕ′ (x) and

Φ′
0 (x) ≥ ϕ′ (x). Therefore, taking into account Remark 1.1 we get a bounded

solution u ≤ u ∈ H1
0 (Ω) of (2.1) with mc in place of m, and hence also

u ∈ W 2,2 (Ω).
Let us prove (ii). Without loss of generality we assume that a < x0 <

x1 < b (in fact, one can can see that the cases in which this does not happen
are as in (i) easier to treat). It follows that m− �≡ 0 in (x1,b) and (a, x0). For
0 < ε < (b− x0)

−1 let

mε
.=

1 − ε (b− x0)
∫ b

x0
‖m−‖L1(t,b) dt

m (2.7)

and define

Φε (x) .=
∫ b

x

∥
∥m−

ε

∥
∥

L1(t,b)
dt+ ε (b− x) , x ∈ [x0,b] . (2.8)

It holds that Φε is decreasing, Φ′
ε is increasing (in particular, Φε is convex)

and 0 < Φε (x) ≤ 1 for all x ∈ [x0, b). Moreover, it is clear that for a.e. such x,
−Φ′′

ε (x) = −m−
ε (x) ≤ mε (x) Φp

ε (x) and also Φε (b) = 0, Φ′
ε (b) = −ε.

On the other side, let ϕ > 0 and λ1 (mε, I) be given by (2.5) with mε

in place of mc. Making ε smaller if necessary, by (2.3) we can choose ε such
that λ1 (mε, I) ≤ 1. Indeed, the strict inequality is immediate from (2.3) for
ε = 0 and thus also for ε > 0 sufficiently small. Since ‖ϕ‖∞ = 1 it follows that
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−ϕ′′ ≤ mεϕ
p in I. Moreover, if ρ ∈ I satisfies ϕ (ρ) = 1, arguing as in (i) we

find some x ∈ (ρ, x1) such that Φε (x) = ϕ (x) and Φ′
ε (x) ≥ ϕ′ (x).

Define now uε by uε
.= 0 in [a, x0], uε

.= ϕ in [x0, x] and uε
.= Φε in [x, b].

Then uε is a weak subsolution for (2.1) with mε in place of m, and hence
recalling Remark 1.1 we obtain a nonnegative solution v of (2.1) (due to the
homogeneity) which satisfies v > 0 in (x0, b) and v′ (b) < 0.

Reasoning similarly we may construct some w ≥ 0 solution for (2.1) such
that w > 0 in (a, x1) and w′ (a) > 0. If we set u .= max (v, w) then u is a strictly
positive subsolution of (2.1) satisfying u′ (b) < 0 < u′ (a) and so recalling once
again Remark 1.1 the theorem follows. �

Remark 2.2. (i) Observe that Theorem 2.1 (i) says in particular that for any
m that changes sign in Ω (with m− ∈ L∞ (Ω)), (2.1) has a solution if p
is close enough to 1.

(ii) Let us mention that the conditions (2.2) and (2.3) are not comparable.
Indeed, it is clear that if (2.1) is almost linear (i.e. p ≈ 1) then (2.2) is
weaker than (2.3). Conversely, fixing everything except m−, if the L1-
norm of m− is small enough and the L∞-norm of m− is sufficiently large
then (2.3) is fulfilled but (2.2) is not.

Under some evenness assumptions, further sufficient conditions on m can
be stated. For b > 0 and x0 ∈ (0, b) we fix for the rest of the section

Ω .= (−b, b) , Ω0
.= (−x0, x0) .

Theorem 2.3. (i) Let m ∈ L2 (Ω) with m− ∈ L∞ (Ω). Suppose there exists
x0 > 0 such that in Ω0 m is even and 0 �≡ m ≥ 0. Let

M1
.=

(1 + p) ‖m‖L1(0,x0)

(1 − p) (b− x0)
, M2

.=
2p (1 + p)

((1 − p) (b− x0))
1+p

x1−p
0 λ1 (m,Ω0)

and assume that
∥
∥m−∥∥

L∞(Ω)
≤ max (M1,M2) .

Then there exists u ∈ W 2,2 (Ω) solution of (2.1).
(ii) Let m ∈ L2 (Ω) and suppose there exists m ≤ m and satisfying (i). Then

the same conclusion of (i) holds.

Proof. We start arguing as in the first part of Theorem 2.1. Suppose first
‖m−‖L∞(Ω) ≤ M1. For x ∈ [x0, b], let Φ be the ”polynomial” given by (2.4)
with β as there and λ also as there but with c = 1. We set α .= Φ(x0). After
some computations one can check that −Φ′′ ≤ mΦp in (x0, b) and also that
‖m−‖∞ ≤ M1 implies

Φ′ (x0) ≥ −αp ‖m‖L1(0,x0)
. (2.9)

We shall next construct a solution for
{ −w′′ = mwp in Ω0

w = α on ∂Ω0.
(2.10)
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Let Ψ > 0 be the solution of −Ψ′′ = m in Ω0, Ψ = 0 on ∂Ω0. As in Remark
1.1 it can be verified that K (Ψ + 1) is a supersolution of (2.10) for every
K ≥ max

(
α, (‖Ψ‖∞ + 1)p/(1−p)

)
.

On the other hand, let 0 < ϕ ∈ W 2,2 (Ω) and λ1 (m,Ω0) be given by (2.5)
with m and Ω0 in place of mc and I respectively. Recalling that ‖ϕ‖∞ = 1 one
can also see that α+ λ1 (m,Ω0)

−1/(1−p)
ϕ is a subsolution of (2.10). It follows

that there exists some α < w ∈ W 2,2 (Ω0) solution of (2.10). We notice next
that w is even. Indeed, since m is even in Ω0, w (−x) is also a solution, but the
solution of (2.10) is unique because the positive solution of −v′′ = m (v + α)p

in Ω0, v = 0 on ∂Ω0 is unique (see e.g., [9], Theorem 2.1). In particular,
w′ (0) = 0. Let v .= w − α. Integrating over (0, x0) we find that

w′ (x0) = v′ (x0) =
∫ x0

0

v′′ = −
∫ x0

0

m (v + α)p ≤ −αp ‖m‖L1(0,x0)
. (2.11)

Thus, taking into account (2.9) and (2.11), defining u .= Φ in [x0, b] and u .= w
in [0, x0] and extending u as an even function we obtain a strictly positive
weak subsolution for (2.1) (although m is not necessarily even in Ω, this is
correct since the definition of Φ is based on the L∞ norm of m−) and so from
Remark 1.1 we get the solution.

Suppose now that ‖m−‖∞ ≤ M2. Then it holds that

Φ′ (x0) ≥ −x−1
0 λ1 (m,Ω0)

−1/(1−p)
. (2.12)

We claim that w′ (x0) ≤ −x−1
0 λ1 (m,Ω0)

−1/(1−p). Indeed, arguing as in (2.6)
we see that ϕ is concave and it is also even (by uniqueness, because the positive
principal eigenvalue is simple and ‖ϕ‖∞ = 1). It follows that ϕ is nonincreas-
ing in (0, x0) (because ϕ is C1) and so ϕ (0) = 1 since ‖ϕ‖∞ = 1. Hence
ϕ′ (x0) ≤ −1/x0. Furthermore, recalling that w − α ≥ λ1 (m,Ω0)

−1/(1−p)
ϕ

(by the construction of w) and w (x0) = α, we deduce that w′ (x0) ≤
λ1 (m,Ω0)

−1/(1−p)
ϕ′ (x0) and thus the claim is proved. Therefore the exis-

tence of a solution for (2.1) can be derived as in the final part of the above
paragraph taking into account the claim and (2.12).

To end the proof we note that if some m satisfies (i) then there exists a
solution u of (2.1) with m in place of m. If m ≤ m, then u is a subsolution of
(2.1) and so Remark 1.1 proves (ii). �

Remark 2.4. (i) Let us note thatM1 andM2 neither are comparable. Indeed,
fixing m and x0, one can see that when b >> 0 it holds that M1 > M2,
but either if p ≈ 1 or if b− x0 ≈ 0 then M2 > M1.

(ii) It is also easy to check that in general the conditions in Theorems 2.1
and 2.3 are not comparable.

We next provide further sufficient conditions for the existence of solutions
in P ◦. We observe that here m is assumed to be even in the whole Ω.
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Proposition 2.5. (i) Let m ∈ L2 (Ω) be an even function. Suppose there
exists x0 > 0 such that 0 �≡ m ≥ 0 in Ω0, and assume either

∥
∥m−∥∥

L1(x0,b)
< ‖m‖L1(0,x0)

or (2.13a)

∥
∥m−∥∥1−p

L1(x0,b)

[∫ b

x0

∥
∥m−∥∥

L1(t,b)
dt

]p

<
1

x1−p
0 λ1 (m,Ω0)

. (2.13b)

Then there exists u ∈ W 2,2 (Ω) ∩ P ◦solution of (2.1)
(ii) Let m ∈ L2 (Ω), and suppose there exists m ≤ m and satisfying (i). Then

the same conclusion of (i) holds.

Proof. The proof is similar to the proof of Theorems 2.1 and 2.3 and hence
we omit the details. Let us first assume (2.13a). For ε > 0 sufficiently small
and x ∈ [x0, b], let mε and Φε be given by (2.7) and (2.8) respectively, and let
αε

.= Φε (x0). Then −Φ′′
ε ≤ mεΦp

ε in (x0, b) and also Φε (b) = 0, Φ′
ε (b) = −ε.

Making ε smaller if necessary, by (2.13a) we can take ε such that Φ′
ε (x0) ≥

−αp
ε ‖mε‖L1(0,x0)

. Indeed, the strict inequality for ε = 0 is a direct consequence
of (2.13a) and therefore it is also true for ε > 0 small enough.

On the other side, let w be given by (2.10) with mε and αε in place of
m and α respectively. Then −w′′ ≤ mεw

p in Ω0, and as in (2.11) we have
w′ (x0) ≤ −αp

ε ‖mε‖L1(0,x0)
. Thus, setting u .= Φε in [x0, b], u

.= w in [0, x0]
and extending u evenly it holds that u is a strictly positive weak subsolution for
(2.1) with mε in place of m, satisfying |u′ (±b)| ≥ ε, and Remark 1.1 provides
the supersolution.

If (2.13b) is fulfilled, then we can now fix ε > 0 such that Φ′
ε (x0) ≥

−x−1
0 λ1 (mε,Ω0)

−1/(1−p). Hence as in the last paragraph of Theorem 2.3 we
obtain w′ (x0) ≤ Φ′

ε (x0) and we can reason as above. �
Remark 2.6. (i) Let us note that if m|[0,b] = m+χ[0,x0] − m−χ(x0,b], then

(2.13a) is equivalent to
∫

Ω
m > 0.

(ii) The inequalities in Proposition 2.5 are also not comparable. Indeed, sup-
pose for instance that m|[0,b]

.= kχ[0,x0] − cχ(x0,b] where k, c are two pos-
itive constants. In this case (2.13a) and (2.13b) become

c (b− x0) < x0k

c (b− x0) <
(

2x0

b− x0

)p( 2
π

) 2

x0k

respectively (because λ1 (1,Ω0) = (π/2x0)
2) and it is easy to find situations in

which either inequality is stronger than the other, varying p and the relative
sizes of x0 and b− x0.

We end the section exhibiting that similar conditions to the ones stated
before must be imposed in order to have existence of solutions for (2.1). Let us
observe that the bounds in (2.16) are slightly better than the corresponding
ones in (2.15): the integral on M in (2.15) should be running over (0, x0)
instead of (0, b). Let us notice also that clearly the two inequalities in (2.15)
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(and (2.16)) are non-comparable. Indeed, take for instance p = 1/2, fix m−

and vary m+. In order to avoid overloading the notation we write

‖m‖
L

1
2 (c,d)

.=

(∫ d

c

m
1
2

)2

(2.14)

Theorem 2.7. Let m be an even function and suppose (2.1) has a solution
u ∈ W 2,2 (Ω). If there exists x0 > 0 such that m,m′ ≤ 0 in (x0, b), then

∥
∥m−∥∥

L
1
2 (x0,b)

≤ M and
∫ b

x0

m− (t)
∥
∥m−∥∥

p
1−p

L
1
2 (t,b)

dt ≤ M
p

1−p

∥
∥m+

∥
∥

L1(0,x0)
,

where M
.=

2 (1 + p)
(1 − p)2

∫ b

0

∥
∥m+

∥
∥

L1(0,t)
dt; (2.15)

and if there exists x1 > 0 such that m ≤ 0 and m′ ≥ 0 in (0, x1), then
∥
∥m−∥∥

L
1
2 (0,x1)

≤ N and
∫ x1

0

m− (t)
∥
∥m−∥∥

p
1−p

L
1
2 (0,t)

dt ≤ N
p

1−p

∥
∥m+

∥
∥

L1(x1,b)
,

where N
.=

2 (1 + p)
(1 − p)2

∫ b

x1

∥
∥m+

∥
∥

L1(x1,t)
dt. (2.16)

Proof. Suppose first that m,m′ ≤ 0 in (x0, b). Then, multiplying (2.1) by u′

we get
(
(u′)2 /2

)′
≤ (m−u1+p/ (1 + p)

)′ in (x0, b). Let x ∈ (x0, b). Integrating

over (x, b) we find that (u′ (x))2 /2 ≥ m− (x)u (x)1+p
/ (1 + p). Observe next

that proceeding as in (2.6) we find that u is convex in (x0, b) because m ≤ 0
there, and hence since u (b) = 0 we must have u′ ≤ 0 in (x0, b). Therefore, tak-
ing square root in the above inequality, dividing by u1+p and again integrating

over (x, b) we obtain u (x)(1−p)/2 ≥ 1−p
2

(
2

1+p

)1/2 ∫ b

x
(m−)1/2 and hence

u (x) ≥
[

(1 − p)2

2 (1 + p)

∥
∥m−∥∥

L1/2(x,b)

]1/(1−p)

for all x ∈ [x0, b] . (2.17)

Also from (2.1) we get −u′ (x0) ≥ ∫ b

x0
m− (t)up (t) dt and so (2.17) implies

that

u′ (x0) ≤ −
[

(1 − p)2

2 (1 + p)

]p/(1−p) ∫ b

x0

m− (t)
∥
∥m−∥∥p/(1−p)

L1/2(t,b)
dt. (2.18)

On the other side, let x ∈ (0, x0) and t ∈ (0, b). Since u es even (by
uniqueness, because m is even) it holds that u′ (0) = 0. Thus, integrating (2.1)
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over (0, t) we get −u′ (t) ≤ ∫ t

0
m+up and so integrating now over (x, b) we

deduce that

0 ≤ u (x) ≤
∫ b

x

∫ t

0

m+ (r)up (r) drdt ≤ ‖u‖p
L∞(0,x0)

∫ b

0

∥
∥m+

∥
∥

L1(0,t)
dt

because m ≤ 0 in (x0, b). Hence,

‖u‖L∞(0,x0)
≤
[∫ b

0

∥
∥m+

∥
∥

L1(0,t)
dt

]1/(1−p)

. (2.19)

In particular, (2.19) and (2.17) with x = x0 prove the first inequality in (2.15).
Furthermore, since −u′ (x0) ≤ ∫ x0

0
m+up we have

u′ (x0) ≥ −
[∫ b

0

∥
∥m+

∥
∥

L1(0,t)
dt

]p/(1−p)
∥
∥m+

∥
∥

L1(0,x0)
(2.20)

and thus (2.18) yields the remaining inequality.
In order to prove (2.16) we may proceed almost exactly as before. As

above, u is convex in (−x1, x1). Also, since u is even and C1 it follows that
u′ ≥ 0 in (0, x1). Define z (x) .= u (x) − u (0). Then z, z′ ≥ 0 in (0, x1).
Moreover, if z ≡ 0 in (0, δ) for some δ > 0, (2.1) says that m ≡ 0 in that
interval. But m ≤ 0 and m′ ≥ 0 in (0, x1) imply that m ≡ 0 in (0, x1) and
in this case we have nothing to prove. Thus we assume that z > 0 in (0, x1).
Now, (2.1) gives that z′′ = m− (z + u (0))p ≥ m−zp in (0, x1) and so taking
into account the above mentioned facts one we can reason as in the first part of
the proof and deduce lower bounds for z (x) (x ∈ [0, x1]) and z′ (x1) analogous
to those in (2.17) and (2.18). Also one can argue as in the preceding paragraph
and derive upper bounds for ‖u‖L∞(x1,b) and u′ (x1) similar to those in (2.19)
and (2.20) and this ends the proof. �

3. The N -dimensional problem in a ball

For 0 < R0 < R and N ≥ 2 we denote

BR0

.=
{
x ∈ R

N : |x| < R0

}
,

AR0,R
.=
{
x ∈ R

N : R0 < |x| < R
}
,

ωN−1
.= surface area of the unit sphere ∂B1 in R

N .

When f is a radial function we shall write (with a slight abuse of notation)
f (x) .= f (|x|) .= f (r). Here we shall denote by P ◦ the interior of the positive
cone of C1+θ

(
BR

)
. Let m : BR → R with m− �≡ 0. In this section we consider

the problem
⎧
⎨

⎩

−Δu = mup in BR

u > 0 in BR

u = 0 on ∂BR.
(3.1)
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In the first two theorems we study the cases in which m is nonnegative
in some BR0 ⊂ BR. The following one corresponds to the case treated in
Proposition 2.5. We note that here the proof becomes quite more technical.
The main reason is that there is no simple function which can play the role of
Φε in the aforementioned proposition. Observe also that we cannot prove an
analogous condition to (2.13b) since the positive principal eigenfunction with
respect to a nonnegative weight is not necessarily concave.

Theorem 3.1. (i) Let m ∈ Lq (BR), q > N , be a radial function. Suppose
there exists R0 > 0 such that m ≥ 0 in BR0 and

∥
∥m−∥∥

L1(AR0,R) < ‖m‖L1(BR0) . (3.2)

Then there exists u ∈ W 2,q (BR) ∩ P ◦solution of (3.1).
(ii) Let m ∈ Lq (BR), q > N , and suppose there exists m ≤ m and satisfying

(i). Then the same conclusion of (i) holds.

Proof. (ii) follows from Remark 1.1 as in the previous section. In order to prove
(i) we shall first assume that ωN−1R

N−1
0 = 1, and we shall prove it for some

mδ
.=

ωN−1

(1 + δ)
∫ R

R0
t−(N−1) ‖m−‖L1(At,R) dt

m, δ > 0. (3.3)

Since m− �≡ 0 in AR0,R, mδ is well defined. Let wδ ∈ W 2,q (BR) ∩ P ◦ be
the unique radial solution of −Δwδ = m−

δ in BR, wδ = 0 on ∂BR, and let Φ
be the fundamental solution of Laplace’s equation. For r ∈ (0, R) and ε ≥ 0
we set

uδ,ε (r) .=
(∥
∥m−

δ

∥
∥

L1(BR)
+ εωN−1R

N−1
)

(Φ (r) − Φ(R)) − wδ (r) .

It is clear that Δuδ,ε = m−
δ in BR − {0} and uδ,ε (R) = 0. Furthermore, since

wδ ∈ W 2,q (BR) with q > 1 we may apply the divergence theorem (as stated
e.g., in [6, p. 742]) and get −w′

δ (R)ωN−1R
N−1 =

∫

BR
m−

δ , and it also holds

that Φ′ (R) = − (RN−1ωN−1

)−1. Therefore u′
δ,ε (R) = −ε.

We next observe that r → uδ,ε (r) is decreasing in (R0, R) if ε > 0. Indeed,
for R0 < r < R the divergence theorem yields

∫

∂Ar,R
∂uδ,ε/∂ν =

∫

Ar,R
m−

δ ≥ 0
and thus rN−1u′

δ,ε (r) ≤ RN−1u′
δ,ε (R) < 0. It follows that uδ,ε > 0 in AR0,R

because uδ,ε (R) = 0 > u′
δ,ε (R) (if ε > 0).

Claim. There exist δ, ε > 0 small enough such that

uδ,ε (r) ≤ 1 for all r ∈ [R0, R] and u′
δ,ε (R0) ≥ −up

δ,ε (R0) ‖mδ‖L1(BR0) . (3.4)

We prove the claim. By (3.2) we may first choose δ > 0 such that
∥
∥m−∥∥

L1(AR0,R) (1 + δ)p
< ‖m‖L1(BR0) . (3.5)

Since Δuδ,ε = m−
δ in BR−{0} and u′

δ,ε (R) = −ε, from the divergence theorem
we obtain

− u′
δ,ε (r) =

[

εωN−1R
N−1 +

∫

Ar,R

m−
δ

]

/
(
ωN−1r

N−1
)

(3.6)
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for every r ∈ (0, R) and so integrating over (R0, R) we find that

uδ,ε (R0) =
∫ R

R0

[
εωN−1R

N−1 +
∥
∥m−

δ

∥
∥

L1(Ar,R)

]
/
(
ωN−1r

N−1
)
dr. (3.7)

Taking into account (3.3), (3.7) says that uδ,0 (R0) = 1/ (1 + δ) and so the
first inequality in (3.4) is true for ε > 0 sufficiently small. In particular, for
such ε′s, −Δuδ,ε = −m−

δ ≤ mδu
p
δ,ε in AR0,R. Moreover, since we are assuming

ωN−1R
N−1
0 = 1, from (3.5) and (3.6) with R0 in place of r we deduce that

−u′
δ,0 (R0) =

[∫

AR0,R

m−
δ

]

/
(
ωN−1R

N−1
0

)
=
∥
∥m−

δ

∥
∥

L1(AR0,R)

<
1

(1 + δ)p ‖mδ‖L1(BR0) = up
δ,0 (R0) ‖mδ‖L1(BR0)

and so the second condition in (3.4) is also fulfilled for ε > 0 small enough.
We fix for the rest of the proof ε and δ satisfying (3.4).

On the other side, let 0 < v ∈ W 2,q (BR0) be the unique solution of

{ −Δv = mδv
p in BR0

v = uδ,ε (R0) on ∂BR0 .
(3.8)

Such a v exists; in fact, it can be constructed (with the obvious changes) exactly
as in (2.10). Furthermore, since the sub- and supersolutions that are used in
this case are radial, mδ ≥ 0 in BR0 and one can obtain such a v with a standard
iterative procedure, we see that v is a radial function (let us note that the radial
symmetry of v also follows from the uniqueness of the solution and the fact
that v (Rx) is also a solution when R is an isometry of R

N ). Also arguing as
in the first part of the proof one can verify that r → v (r) is nonincreasing
in (0, R0) because mδ is nonnegative in BR0 . Hence, v (r) ≥ uδ,ε (R0) for all
r ∈ (0, R0) and thus

v′ (R0) = ωN−1R
N−1
0 v′ (R0) = −

∫

BR0

mδv
p ≤ −uδ,ε (R0) ‖mδ‖L1(BR0) .

(3.9)

Now we set u .= uδ,ε in the annulus AR0,R and u .= v in BR0 . Using again the
divergence theorem and taking into account (3.4) and (3.9) we verify that u
is a strictly positive weak subsolution for (3.1) satisfying ∂u/∂ν < 0 on ∂BR,
and therefore (i) follows recalling Remark 1.1.

To end the proof we notice that the assumption ωN−1R
N−1
0 = 1 can be

easily removed. Indeed, pick s such that ωN−1 (sR0)
N−1 = 1, and let u (x) .=

u (x/s) and m (x) .= m (x/s). Then (3.1) has a solution if and only if u solves
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⎧
⎨

⎩

−Δu = 1
s2mup in BsR

u > 0 in BsR

u = 0 on ∂BsR.
(3.10)

But (3.10) has a solution by the above part of the proof, because m ≥ 0 in
BR0 and (3.2) imply m ≥ 0 in BsR0 and

∥
∥m−∥∥

L1(AsR0,sR) < ‖m‖L1(BsR0)
respectively. �

The next result is the analogous of the first bound that comes along in
Theorem 2.3. We observe that here we have to impose the restriction

1 + p

1 − p
>

(N − 1) (R−R0)
R0

which did not appear before. Furthermore, we assume that m is radial in the
whole BR while in Theorem 2.3 m was even only in Ω0. Let us also point out
that if p ∈ (1 − 2/N, 1) and R0 ≥ R/2 then the bound in (3.11) corresponds
to the first inequality in the aforementioned theorem.

Theorem 3.2. (i) Let m ∈ Lq (BR) be a radial function with q > N and
m− ∈ L∞ (BR). Suppose there exists R0 > 0 such that m ≥ 0 in BR0

and assume that
∥
∥m−∥∥

L∞(BR)
≤ (1 + p)R0 − (1 − p) (N − 1) (R−R0)

ωN−1 (1 − p) (R−R0)RN
0

‖m‖L1(BR0) . (3.11)

Then there exists u ∈ W 2,q (BR) solution of (3.1).
(ii) Let m ∈ Lq (BR), q > N , and suppose there exists m ≤ m and satisfying

(i). Then the same conclusion of (i) holds.

Proof. We only sketch the proof since it is similar to one part of the proof of
Theorem 2.3. Let

β
.=

2
1 − p

, λ
.=

[
(1 − p)2R0 ‖m−‖L∞(BR)

2 [(1 + p)R0 − (1 − p) (N − 1) (R−R0)]

]β/2

(3.12)

and Φ (r) .= λ (R− r)β for r ∈ (0, R]. Using (3.12) we can verify that

ΔΦ (r) = λβ (R− r)β−2 (β − 1 − (N − 1) (R− r) /r)

≥ λβ (R− r)β−2 (β − 1 − (N − 1) (R−R0) /R0)
≥ m− (r) Φp (r) , for r ∈ [R0, R) .

On the other hand, let 0 < v ∈ W 2,q (BR0) be the solution of (3.8) with m and
Φ (R0) in place of mδ and uδ,ε (R0) respectively. Taking into account (3.11),
after some computations we find that

v′ (R0)ωN−1R
N−1
0 =

∫

BR0

Δv = −
∫

BR0

mvp

≤ −‖m‖L1(BR0) Φ (R0)
p ≤ Φ′ (R0)ωN−1R

N−1
0

and the theorem follows. �
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Theorem 3.3. (i) Let m ∈ Lq (BR), q > N , be a radial function. Suppose
there exists R1 > 0 such that m ≥ 0 in AR1,R and

∫ R

0

1
ωN−1rN−1

∥
∥m−∥∥

L1(Br)
dr ≤ 1

λ1 (m,AR1,R)
. (3.13)

Then there exists u ∈ W 2,q (BR) ∩ P ◦ solution of (3.1).
(ii) Let m ∈ Lq (BR), q > N , and suppose there exists m ≤ m and satisfying
(i). Then the same conclusion of (i) holds.

Proof. The proof follows the lines of the proof of the first part of the proof of
Proposition 2.5 with some changes. Let us indicate them. We prove (i) for

m̃
.=

m
∫ R

0
1

ωN−1rN−1 ‖m−‖L1(Br) dr
.

For β > 0, let Φ be the solution of ΔΦ = m̃− in BR, Φ = β on ∂BR. Adding a
constant if necessary we may assume that Φ (0) = 0. The divergence theorem
tells us that r → Φ(r) is nondecreasing in (0, R). Moreover,

Φ (r) =
∫ r

0

Φ′ (t) dt =
∫ r

0

1
ωN−1tN−1

∥
∥m̃−∥∥

L1(Bt)
dt

and hence ‖Φ‖∞ = 1.
On the other side, let ϕ ∈ W 2,q (BR)∩P ◦ and λ1 (m̃,AR1,R) be satisfying

{ −Δϕ = λ1 (m̃,AR1,R) m̃ϕ in AR1,R

ϕ = 0 on ∂AR1,R

with ‖ϕ‖∞ = 1. Taking into account (3.13) we establish that λ1 (m̃,AR1,R) ≤ 1
and therefore −Δϕ ≤ m̃ϕp in AR1,R.

Let ρ .= min {r ∈ (R1, R) : ϕ (r) = 1}. It holds that Φ (ρ) < 1 = ϕ (ρ)
and Φ (R1) > 0 = ϕ (R1). It follows that the graph of Φ (r) intersects the
graph of ϕ (r) at some point with abscissa in (R1, ρ). Let γM be the maximum
γ > 0 such that the graph of (Φ + γ)|(R1,ρ) intersects the graph of ϕ|(R1,ρ).
Clearly such a γM exists (in fact, γM < 1). If r denotes the abscissa of the
intersection point between the graphs of (Φ + γM )|(R1,ρ) and ϕ|(R1,ρ), then
we must have (Φ + γM ) (r) = ϕ (r) and (Φ + γM )′ (r) = ϕ′ (r). Moreover,
Δ (Φ + γM ) = m̃− ≥ −m̃ (Φ + γM )p in Br because Φ + γM < ϕ (ρ) = 1 in Br.
Defining now u by u

.= Φ + γM in Br and u
.= ϕ in Ar,R we obtain a weak

subsolution satisfying ∂u/∂ν < 0 on ∂BR. �
The necessary conditions are a straightforward adaptation of the ones

for the one-dimensional problem. We note however that the upper bounds
for u derived in the proof of Theorem 2.7 are sharper than the ones that we
can use here (see also Remark 3.5 below). In order to avoid overloading the
notation we leave the L1/2-norms (see (2.14)) in terms of |x| = r.

Theorem 3.4. Let m ∈ Lq (BR), q > N , be a radial function and suppose
(3.1) has a radial solution u ∈ W 2,q (BR). If there exists R0 > 0 such that
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m (r) ,m′ (r) ≤ 0 in (R0, R), then

∥
∥m− (r)

∥
∥

L1/2(R0,R)
≤ (1 + p)R2

(1 − p)2N

∥
∥m+

∥
∥

L∞(BR0)
; (3.14)

and if there exists R1 > 0 such that m (r) ≤ 0 and m′ (r) ≥ 0 in (0, R1), then

∥
∥m− (r)

∥
∥

L1/2(0,R1)
≤ (1 + p)

(
R2 −R2

1

)

(1 − p)2N

∥
∥m+

∥
∥

L∞(AR1,R) . (3.15)

Proof. Suppose that there exists R0 > 0 such that m (r) ≤ 0 in (R0, R), and let
u be the radial solution of (3.1). As in the previous theorems, the divergence
theorem gives that r → u (r) is nonincreasing in (R0, R). Therefore from (3.1)
it follows that

u′′ (r) ≥ u′′ (r) + (N − 1)u′ (r) /r = m− (r)up (r) for r ∈ (R0, R) ,

and hence if m′ (r) ≤ 0 in (R0, R) we may proceed as in the first paragraph of
the proof of Theorem 2.7 and get

u (R0)
1−p ≥ (1 − p)2

2 (1 + p)

∥
∥m− (r)

∥
∥

L1/2(R0,R)
. (3.16)

On the other side, recalling that r → u (r) is nonincreasing in (R0, R), from
(3.1) we also derive

0 ≤ u ≤ (−Δ)−1 (
m+up

) ≤ ∥∥m+
∥
∥

L∞(BR)
‖u‖p

L∞(BR) (−Δ)−1 (1)

=
∥
∥m+

∥
∥

L∞(BR0)
‖u‖p

L∞(BR0)
(
R2 − r2

)
/2N in BR.

Therefore

‖u‖1−p

L∞(BR0)
≤ ∥∥m+

∥
∥

L∞(BR0)
R2/2N (3.17)

and thus (3.16) proves (3.14). We finally observe that (3.15) follows similarly.
�

Remark 3.5. If in the first part of (i) one also knows that m (r) ≥ 0 in (0, R0)
one can deduce the exact analogous bounds of Theorem 2.7. Indeed, in this
case r → u (r) is nonincreasing in (0, R0) and so

−u′′ (r) ≤ −u′′ (r) − (N − 1)u′ (r) /r = m+ (r)up (r) for r ∈ (0, R0)

and then the upper bounds for u can be proved as in 2.19, and also the rest
of the results. The same observation applies if m (r) ≥ 0 in (R1, R).

Acknowledgments

The authors would like to thank the referee for her-his careful and detailed
reading of the paper.



794 T. Godoy, U. Kaufmann NoDEA

References
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