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On Strong Consistency of a Class of Recursive Stochastic
Newton-Raphson Type Algorithms with Application to
Robust Linear Dynamic System ldentification

lvana Kovagevic, Branko Kovatevic, andZeljko Burovié

Abstract: The recursive stochastic algorithms for estimating thepeaters of linear
discrete-time dynamic systems in the presence of distedancertainty has been
considered in the paper. Problems related to the constructi min-max optimal
recursive algorithms are demonstrated. In addition, tihheisthess of the proposed al-
gorithms has been addressed. Since the min-max optimai@okannot be achieved
in practice, an approximate optimal solution based on arsdeistochastic Newton-
Raphson type procedure is suggested. The convergence pfahesed practically
applicable robustified recursive algorithm is establistiezbretically using the mar-
tingale theory. Both theoretical and experimental analysiated to the practical ro-
bustness of the proposed algorithm are also included.

Keywords: Recursive algorithms, convergence, robustness, paramstienation,
nonlinear filtering, nongaussian noise.

1 Introduction

The presence of large unmodelled errors may severely degted performance
of optimal statistical estimation methods [1-4]. Many daoing examples can
be found in areas such as flight control, electric power systdelecommunica-
tions, industrial process control, econometrics, bioro@dsystems, etc. [5-9]. Es-
timation algorithms based on the Gaussian random error hi@le been found
to be especially inefficient when the real error distribotiselongs to the heavy
tailed variety, giving rise to occasionally very large esrmamed outliers [1-4].
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Therefore, considerable efforts have been oriented tcsvire robust estimation
algorithms possessing a low sensitivity to error distiifmutchanges, usually valid
locally within a prespecified class. The fundamental cobntion to the field of ro-
bust estimation has been given by Huber, who introduceddheept of min-max
robust estimation [3]. Further developments of this idezeHad to applications on
different type of problems, including system identificatiagtate estimation, signal
processing and adaptive control [L0—16]. However, thengttheoretical results in
robust identification are restricted mostly to static medél7, 18]. In the case of
dynamic systems such an analysis is difficult, owing to bbéhdynamic nature of
system model and nonlinear form of a robust algorithm itEE820]. As a con-
sequence, the convergence study of robust dynamic systamtifidation schemes,
is rather complicated. In general, there are at least twooagpes for a such anal-
ysis. The first one is the ordinary differential equation @xpproach [19]. The
second one uses the martingale convergence theorem, aederfs an extremely
powerful method that relies on relatively weak assumptid®s20].

The purpose of this article is to extend the concept of mix-ptimal estima-
tion to the problem of robust recursive identification ofelar, dynamic, discrete-
time single input single output systems in the presencestfidiance uncertainty.
Problems related to the construction of min-max optimalrsige algorithms of
stochastic gradient type are demonstrated. The link betwee min-max opti-
mal recursive parameter estimation and robust recursiva@npeter estimation has
been also established. Since the min-max optimal solutismat be achieved
in practice, a simple procedure for constructing a robéstifiecursive stochastic
Newton-Raphson type algorithm, based on a realizable megalitransformation of
the prediction error together with a suitable generatiothefweighting matrix, is
suggested. The convergence of the proposed algorithmablested theoretically
using the martingale theory. This results in a set of ratheakwconditions under
which the proposed algorithm should perform satisfactainl practice. Experi-
mental analysis, based on Monte Carlo simulations, ilustthe discussion and
show efficiency of the derived robustified recursive aldoritin a non Gaussian
and impulsive noise environment.

2 Problem Formulation

Let an abstract linear, dynamic, discrete-time, time-iiarg system under consid-
eration be modeled by a linear difference equation with fipaameters

n m

Yi) = - ayi—K+ 3 uli Kk + &) (1)

k=1 k=1



On Strong Consistency of a Class of Recursive Stochastic ... 3

wherey(i) € RY, u(i) € R, &(i) € R are system output, measurable input, and
stochastic input or noise, respectively, while the cortstapi = 1,...,n andb;,
j=1,...,mand represent the system parameters. It will be assumedhthae-
quence{&(i)} is a stochastic process, generating an increasing seqoéscdb-
sigma algebragF }, and that constants andn are a priory known0 < m< n).
Furthermore, the probability density function (pdf) é{i) is not completely
known, but some knowledge of this pdf is available, which barrepresented as
a certain clas® of zero-mean symmetric pdf’s to which the real disturbandé p
belongs.

Introducing the backward shift operatgr®y(i) = y(i — k), the equation (1) can
be written in the polynomial form

A(g Yy(i) = B(q Hu(i) + & (i) )

where ] i
Algh) =1+Saq ™ B(ah) =Y ba* 3)

k=1 k=1

are the characteristic and control polynomial, respeltiv@ne can also rewrite (1)
as a linear regression equation

y(i)=Z"())o+& (i) (4)

where ZT (i) = [~y(i—1),...,—y(i—n),u(i—1),...,u(i—m)] is the vector of
input-output data, an®" = [a; -~ anby --- by is the constant parameter vector.
The system representation in (2) is known as the autordgeessodel with ex-
ogenous input (ARX), or the infinite impulse response filtdR). The problem of
recursive identification of a system described by (4) candresidered as the task
of estimation the unknown parameter ved®m real-time, on the basis of current
input-output measurements. Formulation of the identificaproblem reduces to
the choice of a forecasting or prediction mogél)= y(i/0) and the choice of an
identification criterion or average loss [17—20]

J(0) =E{F[v(i,0)]}. ()

Herev (i,0) =y(i) —y(i/0) is the output prediction error, whilE(-) is the
loss function. The solution reduces to determining an ifleation algorithm

0(i)=f(8(-1).y(0),u()) (6)

which determines the estimatégi) of the system parameter vect8rfrom the
preceding estimateé (i — 1) and current input-output measuremefysi),u(i)}.
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The goal is to develop a forecasting mogel)),"an optimal loss functiof (-) in (5)
and, finally, an algorithm (6) which should be optimal in atagr sense.

Starting from (1) or (4), the mean-square optimal forecgsthodel, minimiz-
ing the criterionE {v2 (i, 0) }, is given by [18-20]

y(i/6)=[1-A(@")]y()+B(@ Hu()=2"(i)6 (7)

whereZ (i) and 8 are given by (4). The concept of optimality is closely retbte
the level of available prior information on the system andhserved disturbances,
as it will be discussed in the next section.

3 Review of Min-Max Optimal Robust Parameter Estimation

With incomplete prior information on disturbances, one camstruct min-max
optimal, robust identification algorithms, minimizing therformance index for the
least favorable pdf within a given class [1-4]. Namely,liée a class of parameter
vector estimates and (T, p) the asymptotic estimation error covariance matrix of
T € 1 when the pdf i € P . Consider the game in which we chodke 1, while
nature choosep € P, andV (T, p) is the payoff. This game has a saddle point pair
(To, Po) if To and po satisfy

minmaxV (T, p) =V (To, po) = maxminV’ (T, p). (8)
This Ty is referred to as the min-max optimal robust estimate janid the least
favorable pdf.
Particularly, if T is the class of recursive stochastic gradient type estiraato
the vector® in (4), represented by [18—20]

O =063-1+rMHziy(v(,0(-1)) (9)

wherev (i,é) —y(i)— ©TZ(i) is the prediction error, or measurement residual,
the min-max optimal robust estimat®s is defined by [1-4]

F()=Fo()=—logpo(.) (10)

W) =to() =F() (11)
, -1

r (i) =ro() = [E{ws() }EZHZT0)}] (12)

Herepg () is the least favorable pdf minimizing the Cramer-Rao bouittin
a given clas® [17,18]. In this wayyp (-) in (11) is the maximum likelihood (ML)
type function corresponding to a unique least favorableggdfithin a prespecified
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classP, and (9) reduces to the ML type identification procedure pj—However,
the problem of finding the pdbo (-) requires the solution of a non-classical varia-
tional problem, which is tractable only by numerical meth§l7, 18]. It is solvable
analytically only in the case of finite memory systems, Ag:) =1 in (2), when

it reduces to the task of minimizing the Fisher informatioip) = E {(p’/p)z}

within the classP [17, 18]. Numerous examples of class&sand the correspond-
ing solution for the pdfpp (-) minimizing the Fisher informatiom (p) within the
given class?, can be found in [18]. Moreover, the optimal weighing mafri(-)
in (12) cannot be constructed in practice, since it requirgsiory knowledge of
the real disturbance pdf. Therefore, in robust estimatiore looks for estimators
that are quite efficient if the underlying disturbance disttion is normal but are
also very efficient even though the underlying distributi@s long tails, generating
the extreme values of a measurement signal named outliéis.pfoperties is the
so-called efficiency robustness [1-4].

In general, the construction of a practically applicableursive robust identifi-
cation algorithm requires further approximations of thermax optimal solution.
A possible approach based on a weighted least squares medoating the ef-
fects of extreme disturbances or outliers, has been prdpgod@1]. An alternative
approach, based on a stochastic gradient type algorithined¢thbined with the
recursive generation of the weighting matrix in (12) by sbgpstep optimization
of the additional criterion and convenient approximatidapresented in [22]. An-
other possibility for generating an approximate optimdlison of (12), based on a
recursive stochastic Newton-Raphson type procedureesepted in the next sec-
tion. It should be noted that a recursive estimator of the t§§), not necessarily
using the particulary function of the ML type in (11), is called an approximate
maximum likelihood recursive estimator, or recursive Mieator [3,17-19].

4 Robustified Recursive Stochastic Newton-Raphson Type Alg
rithms

In order to apply a Newton-Raphson type procedure, one happooximate the
average loss (5) with the empirical average loss [17-19]
[
J(O) =ity F(vik8)). (13)
K=1

Under certain conditions, withgrowing J; (.) in (13) converges td(.) in (5)
[18]. Thus, one can resort to the approximate Newton-Rapltygoe method for

solving a set of nonlinear equations resulting from theroptity condition of (13).
This leads to an iterative algorithm of the form [17-19]
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6(i)=6(—1)—[i033 (8(i—1))] "[i0ed (B(i—1))] (14)
with Og () being the partial derivative operator
() () a() a0
B00)= | Gar " " Gan dby" b |

Moreover, with largei and by virtue of approximate truth of the optimality
condition, yieldingdgJi—1 (6) ~0andv (i, 8 (i — 1)) ~ & (i), one obtains from (5)
and (13) the following approximate expressions

063 (8(i—1)) =-Z()y(v(i,6(i-1))

i023 (6(i—1) =a IZ Z(K)Z" (k)
k=1

(15)

where (1) = F'(-) and a = E{¢/ (& (i))}. In deriving he second relation in

(15) is used the fact thdf3J; (6) ~ 033 (6) = aE{Z(i)Z" (i)}, together with

the approximation of the mathematical expectation withatithmetic mean, i.e.
E{Z()Z" (i)} ~i71¥}_41Z(k)Z" (k) . By substituting the first relation from (15)
in (14), one obtains the parameter update equation (9)h&umtore, by introducing

r)=[i033 (8G-1)] " (16)

the second relation in (15) reduces to
riy=rt(i-1+az@i)z" (. 17)

Additionally, the matrix inversion lemma states that if thatrices A, B, C and D
satisfy the equation [18—20]

At=B'+C'D'C

then L
A=B-BC' (CBC"+D) "CB.

By choosing
A=T(i),B=T(i—-1),C"=Z(i),D1=aq,
one obtains from the matrix inversion lemma and the relafiof)

ri—-1ziHz"™{Hri-1

FO ==Y T 7 mri-nza)

(18)
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The relations (9) and (18) define a robustified recursivehstsiic Newton-
Raphson type algorithm, with some initial guesée(@) =0, (0) = cl, wherec
is some positive constant ahds the identity matrix of corresponding order.

Moreovetr, in practice one has to adopt a class of realizallegplures (9), with
Y (-) being a suitable chosen nonlinearity, which has to cut ddfdbtliers. As
mentioned before, regarding the practical importance bfeaing robustness with
respect to ouliers contaminating the Gaussian disturlzauisis function has to pro-
vide high efficiency at the nominal Gaussian model, as welbasa strategically
chosen set of outlier models(efficiency robustness [1-Aditionally, it is de-
sirable that this function be bounded and continuous [1Ngjnely, boundedness
insures that no single observation can have an arbitraaiigel influence on esti-
mates, while continuity insures that patchy outliers wik imave a major effects.
This requirement is known as resistant robustness [1-4lis;Tth (z) should look
like z for small values of the argument in order to preserve the regular observa-
tions generated by normal distribution, but it has to groanar than linear with
|z|, in order to suppress the influence of outliers. This cowesg, for example, to
the choice of the saturation type nonlinearity named Hutiuence function [3]

W@ =min( %55 ) santz (19)

whereo is the disturbance standard deviation, and the tuning antisthas to be
chosen so as to give the desired efficiency at the nominalsgausodel [3]. How-
ever, the noise varianag? is usually unknown and it must be estimated. Although
ad hock, a popular robust estimate @f is the median of the absolute median
deviations [1]

d (i) = median{|y (k) — median{y (k)}|} /0.6745, k=i —L+1,---,i  (20)

The divisor 0.6745 is used because thew o if the sample size L is large
enough and if the sample actually arises from a normal Higion. This partic-
ular scheme of selecting d at each step i suggests appepehates of the tuning
constant k in (19). Namely, sinak~ o, the parameter Kk is usually taken to ap-
proximately be the value close to 1.5. Moreover, a commoticehfor the sliding
window length is from the interval € (5,30) [13, 15].

Othery (-) functions that are commonly used in robust estimation céfoned
in [1-3].

Remark 1 If one chooses

W(-)=to(-)=—Tlog(po ()"

_ argmi (21)
Po = argmini (p)
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this function does not provide the optimality in the min-nmsense (8), but
it minimizes the conditional covariance of the parametetineste increment
E { [63)-6(-1)][6()-6(i— 1)]T‘ 1 } for the least favorable pdfqgn
(21) [9]. Namely, if the aim is to desensitize the algorithithwespect to outliers
occurring at instant i, the choice/(-) = () provides to make the incremental
covariance as small as possible, having in mind the suppasedracy achieved in
the preceding iteration.

Remark 2 The idea of introducingp (-) in (21) can be justified also by analyzing
one-step optimal estimates. Supposing tBdh (4) is a random vector, one can
show that this function corresponds to the saddle point efdbnditional error

covariance E{ [6())—0] [6() —G)]T‘ F1 } [9].

Remark 3 The choice ofy(-) in (19) corresponds to thgyp () function in (21)
when P is the— contaminated family, defined fi~4]

P=P.={p|p=(1-€)N(0,02) +¢eh},e€[0,1) (22)

with h(-) being zero-mean symmetric pdf anc{(]};loz) is the zero-mean normal
pdf with the variances? [3]. The least favorable pdf pin (21) within the class
(22) is normal with exponential tails, yielding(po) = 2(1— &) er f (k) a2, where
erf is the error functior[3].

The weighting matrix (i) in (18) depends om and, as a consequence, the
rate of estimates convergence also depends on it. Moretbreefactora allows to
make practically very important connections between thdinear transformation
Y () and the weighting matrix sequence.Unfortunately, it i ifficult to express
these dependences explicitly. However, it can be showragyatopriate choice of
a results in some intuitively appealing robust identificatigrocedures, derived in
the literature within different contexts and in differenays. Namely, since the real
disturbance pdf is not known, a convenient possibility iadopta = Epo{w() ()} =
I (po), with Ep, {-} being the expectation with respect to the least favorableppd
in (21). The resulting algorithm is formally similar to thebustified Kalman filter
or least squares method [13, 15]. Furthermore, wti¢i) = 1 the recursion (18)
reduces to the Riccati equation corresponding to the reeulesast-squares method
[19]. This algorithm differs from the least-squares metloodly by the insertion
of nonlinear transformatioy (-). Finally, if one approximates the mathematical
expectatioror = Ep { ()} by a single realizatio, (-), one obtains an algorithm
with changing factor = a (i) = g (v (1,6 (i—1))) in each step. An algorithm
of the same form, starting from off-line estimates of consgarameters in static
plants, has been derived in [17, 18].
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The proposed algorithm has been derived on the basis of @ppations and
somewhat heuristic reasoning. However, all the availabéetally applicable
recursive robust estimators are obtained as a result obappations and assump-
tions, requiring further practical and/or theoreticalifieations. We shall give the
figure of merit of the proposed algorithm on the basis of caymece analysis us-
ing martingale theory, combined with experimental analysised on Monte Carlo
simulations.

5 Convergence Analysis

The basic convergence result is the lemma of Neveu [19, 26]b€Tprecise, let
(Q,F,P) be a probability space arf C F, C --- a sequence of sul -algebras
of F, andx(t) is a sequence of real random variables adaptéd Then{x(t) R} is

a martingale provided th& {|x(t)|} < c almost surely (a.s.), i.e. with probability
1 (w.p.1), andE{x(t) /R_1} = x(t—1) w.p.1. Alternatively, ifE {x(t) /R_1} <
x(t—1) w.p.1 we say tha{x(t),R} is a supermartingale. Then, the following
lemma can be proven [19, 20].

Lemmal Let {z,} be a sequence of nonnegative random variables €fhd a
sequence of increasing adapted sigma algebras, {.€.F,. Suppose

E{z0/Fn-1} <zo-1+0an

andy,_; an < o w.p.1. Then{z,} converges w.p.1 to a finite nonnegative random
variable Z as n— oo, i.e. limy 0 2y = Z° W.p. 1.

This result is restated in a number of forms that suit bettespecific theoret-
ical analysis. A unified treatment of a number of almost sunevergence theo-
rems, based on the facts that the processes involved pa@ssessmon almost su-
permartingale properties has been proposed by Robbinsiagch8nd [23]. This
result is stated below.

Theorem 1 For each nletg, B, é,and{, be non-negative f~measurable random
variables such that

E{Zn+1|Fn} <Z (14 Bn)+én—n

Thenlimy,_.» z, exists and is finite, i.elimp 0z, = z" w.p. 1, andy_;{n <
owwW.p.1, 0N {3 <o, Ty gén < oo}
The results of the Theorem 1 and/or Lemma 1 can be used to tirexaonver-

gence of the proposed robustified recursive stochastidegratype algorithm (9),
(18). The results are summarized in the theorem stated below
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Theorem 2 Consider the model (2), (3) and the algorithm (9), (18) sabje the
conditions:

Al All zeros of the polynomial (lq—l) are inside the unit circle, and the se-
quence{u(i)} is bounded.

A2 {& (i)} is a sequence of independent and identically distributeid (i
random variables, such that the probability distributioonétion P(-)
is symmetric, and E& (i) /F_1} = 0, E{&2(i)|F-1} = 0% < o, while
v(i) — &(i) € K1, with F_; being the o -algebra generated by
E(O)v ,E(i—l),Z(O),"' 7Z(i_1)'

A3 The functiony (+) is odd and continuous almost everywhere.

A4 The function ¢/(-) grows slower than linear, ie. |P(2)] <
K, (1+ k'2|z|) K, € (0,0), K, € [0,00).

A5 The coefficientr in (18) is positive and bounded, i.a.€ (0,K”), k" < 0.

A6 If @ (2) =E{y (& (i)+2)|F_1} then zp (2) > ;a2 for each z£ O and a
given by (18).

A7 The observation vector grows g (i) |2 < Mlog®r (i), M > 0, > 0, where

r(i)y=Tr {I"l (i)} with Tr{.} being the trace of a matrix anjdl|| represents
the Euclidean norm.

A8 The persistent excitation conditions
lim Amin {74 (i)} = 0 w.p.1
k .
lim 10971
|—00 Amm{r_ (l)}
for some k> 1+ 9, with d being given by A7, whergmi,{.} denotes the
minimal eigenvalue of a matrix.

=0wp.l

Then® (i) converges to the true parameter val@avith probability one (w.p.1),

~

i.e. P{lim_.0O(i)=0}=1

The proof of the theorem is given in the appendix. A similaufeis derived
in the literature, but it relies on a rather strong assunmptib bounded condition
number of the inverse of algorithm weighting matrix [22]. Asonsequence, a
practical application of a such algorithm requires a caadinumber monitoring
scheme. Moreover, a numerical difficulty may also arise wihencondition num-
ber gets too large. This problem is overcome by introducheyassumption A8.

The assumptions Al and A2 are commonly used in the convesgstucly of
recursive stochastic gradient type identification aldpons, based on martingale
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theory [19,20]. The assumption A1 means that system undesigderation in (1) or
(4) is bounded input-bounded output (BIBO) stable, whiled&hotes that additive
measurements noise in (2) is a zero-mean white sequendeouldsbe noted that
the assumption Al is not formally needed to prove the comuerg Theorem 2
(see, appendix), but it is introduced since the BIBO stigbié one of the most
desired properties of a system. Thus, the convergencet @fsliheorem 2 is in
charge for both stable and unstable systems. On the other banconvergence
result exposed in [22] can be applied only for a stable system

The assumptions A3 and A4 define the class of nonlinear fometwvhich pro-
vide for the consistent parameter estimates. Mauty) functions that are com-
monly used in robust estimation, such as Huber’s, Hamp&ugey’s, and An-
drew’s nonlinearity satisfy the above assumptions [1-4{hdugh the assumption
A4 means thatp (-) function may be unbounded, all the mentiong() functions
are bounded and continuous from practical reasons relatdtbtresistant robust-
ness. Moreover, the noise variangé in A2 has not to be finite provideg (-)
function is bounded. Finally, it is hoped, and some numésiaulations seem to
substantiate this hope, that the robust estimators apptbata asymptotic behavior
providedy (-) function is bounded [9-17].

The assumption A6 is a new one. A condition for A6 to be satisBghat

o= [ Wura) -y u-a)dPu

is monotonically nondecreasing. Bearing in mind A2 and A& will be fulfilled
if both the functiongy (-) andP(-) have a common raising point, i.g/(z+¢) >
Y(z—¢);,P(z+¢€)>P(z—¢) for somezand everye > 0, yieldingag (a) > 0 for
a# 0 andg (0) = 0. Thus, the assumption A6 is fulfilled ¢ () function is odd,
continuous almost everywhere, monotone increasing armewise continuously
differentiable. As mentioned before, a desirable pratticaperty is thaty (-)
function is also boundedi, = 0 in A4).
Particularly, ifP is the class of pdf’s with bounded variance, i.e.

P= {p'/_izzp(z)dzg 02}

the least favourable pdf in (21) is zero-mean Gaussian Wihvariances?, yield-

ing Wo(2) = z/d? [17,18]. Thus, the resulting algorithm is the recursivestea
squares method [19,20]. Moreover= 1 (py) = 02 and@, (2) = z/0?, so that the
condition A6 is fulfilled. On the other hand, for tlee-contaminated class of pdf’s
(22) the optimal nonlinearityp (+) in (21) is defined by (19), yielding (z) = Bz
wheref3 = a‘zf'fk p(u)du[17,18]. Therefore, the hypothesis A6 is also satisfied,
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and the resulting algorithm is a robust version of the cotieeal linear recursive
least squares method [19, 20].

The assumption A7 determines the rate of the observatiotovgoowth, but it
is not restrictive sinc is an arbitrary positive constant.

Furthermore, it is fairly obvious that some condition on thput sequence
must be introduced in order to secure a reasonable idemitficeesults. Clearly,
an input that is identically zero will not be able to yieldlfilformation about the
system input-output properties. Required input shouldtexall natural modes of
the system. Such an input is called persistently exciting, A8 represents one of
the weakest versions of the persistent excitation assomfitd, 20].

Remark 4 The results of Theorem 2 are also valid if the noise sequéitgen (1)
is no more a zero mean white, but represents a colored or [zte® zero mean se-
guence generated by a moving average proce(ssé:) e(i) = & (i) with e(i) being
a zero mean white sequence, Whiléqi‘l) =1+ z!:1 ciq~' represents a polyno-
mial whose roots lies inside the unit circle. The systemasgntation (2) with a
such noise model is known as autoregressive moving averagelmith exoge-
nous input (ARMAX). Then, all assumptions of the Theorem 2irenthe same
with the exceptions that A6 changes tabz (z/C (q 1)) — 1/2az] > 0 for every
z+# 0. Moreover, the forecasting model (7) becomes [19, 20]

B(a)
C(a™)

9(i/6) = u(i) +

C(a?)

1- m] y(i)=27(i/6)6 (23)

where

eT :{al,"' 7an7b17"' 7bm7C1>"' >C|}

Z7(i/6) ={-y(i—1),---,—y(i—n),u(i-1),
~u(i—m),v(i—1,0),v(i—1,0)}

with the output prediction errow (i,0) = y(i) —y(i/6). In the implementation
of the algorithm, one has to replace the unknofvmith the corresponding most
recent estimate, i.e. to replasg(j, 0) with v (j,0 (j—1)), j=1,---,i.

6 Numerical Examples

In order to investigate more precisely the practical robess of the pro-
posed algorithm, Monte Carlo simulations have been unkiemta The re-
sults presented are related to the fourth-order model, ngivethe form (4):
Z"(i)= [-y(i—1) .. —y(i—4) u(i—1)],andO” =[1 —0.18 078 —0.656 2.
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The sequencéu(i)} is adopted to be a white noise, witt{i) being the standard
normal random variabl8l (0, 1), while the disturbancé (i) is confined to the class
of £ -contaminated pdf’s (22) wita = 0.1 ando? = 1. The following algorithms
have been tested: 1) recursive least-squares algorithnotel® as RLS; 2) recur-
sive robust algorithm (9), (18) with the nonlinearity (19ittvk=1.5, and the scale
factor (20), calculated on the sliding frame lengthlef10 samples, denoted as
RRA.

The effect of desensitizing the estimates to the influenceithiers is illustrated
in Tab. 1, depicting the average square error norm for difieoutlier character-
istics, calculated on the basis of 100 Monte Carlo trials &0d iterations. Ob-
viously, the least-squares algorithm is slightly supet@robust algorithm in the
case of Gaussian disturbances (Tabh() = N(0,1) in (22)). The robust algo-
rithm is superior than the least-squares method even follenaaitlier variances
(Tab. 1,h(.) =N(0,10) orh(.) =L(0,1). It should be noted that the total noise
variance is equal to.0+0.1xvar{h(.)}, wherevar{L (0,1)} =2, var{C(0,1)} =
oo, var{N(0,10)} = 10), and gives significantly better performances for lame¥
lier variances (Tab. h(.) =C(0,1) ). Moreover, the robust method performs quite
well uniformly for different outlier statisticé (-), under the circumstances charac-
terized by a small or moderate value of the contaminatiomedegy< 0.1. This is
encouraging from the point of view of its application, sirbe real outlier pdh(-),
as well as the contamination degreeare not known in practice.

Table 1. Average mean-square error norm for ARX model (2)difidrent
outlier stiatistici\ (L - Laplace C- CauchyN - normal pdf;o2 =1,6=01,
k=15,0(0)=0,r(0)=0.11)

[ Algor. [ L(0,1) | C(0,1) [ N(0,1) | N(0,10) |
RLS 0.1249| 0.9721| 0.0122| 0.1235
RRA || 0.0167| 0.0194| 0.0139| 0.0160

Moreover, the proposed robust procedure is nonlinear amasaguently, the
estimates may be highly influenced by initial conditi&g0) andI™ (0). However,
a low sensitivity to initial conditions is important for a@elring practical robustness.
The problem of initial conditions can be circumvented byngsa good starting
value as a result of off-line robust M-estimation [3,9, 181

Additionally, the application of algorithm requires theaex knowledge otr =
I (po), which depends on the contamination deggdsee, remark 3). Howeveg,
is not known in practice, and one has to adopt it a priory. Thealvalues of are
from the rang€0.02,0.1) [1-4]. The experiments have shown that the algorithm is
rather insensitive to the choice efbelonging to the above region.. As mentioned
before, another possibility is to approximate the expemaby a single realization,
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ie.a=a(i)~ ¢ (v(i,6(i—1))), resulting in an algorithm with adaptive factor
a in each step. The results obtained are similar to those pied@bove, but this
algorithm is more sensitive to the initial conditions.

To illustrate the characteristic of the proposed algoriihra case of correlated
measurement noise, we have applied the RLS and RRA algaritbithe ARMAX
model (2) (see, remark 4)

A(g')=1+083"-0167 % B(qg ') =0167 ,C(q ') =1+02q"

As before,{u(i)} is taken to be white normal sequerg€0,1) while {x(i)} is
contaminated normal, distributed as (22) with- 0.1 ando? = 1. Table 2 depicts
the average mean-square error norm, obtained on the badi@0oMonte Carlo
trials and 500 iterations, for different outlier statisthy-).

Table 2. Average mean-square error norm for ARMAX model afferegnt
outlier stiatistici\ (L - Laplace C- CauchyN - normal pdf;o2 =1,6=01,
k=15,0(0)=0,r(0)=0.1l)

[ Algor. [ L(0,1) | C(0,1) [ N(0,1) | N(0,10) |
RLS 0.1544| 1.9151| 0.0220| 0.1635
RRA | 0.0360| 0.0484| 0.0309| 0.0278

Similarly as in the previous example, linear RLS is sligtalyperior than the
nonlinear robust RRA for the Gaussian noise (Tath (2} =N (0,1) in (22)). How-
ever, in the presence of outliers (Tab.H,) =L (0,1) orC(0,1) orN(0,10) ) it
leads to the biased RLS estimates, while RRA performs quéleimvall situations.
As before, the reason lies not only in the nonlinear tramsédron of the prediction
errors, but also in an adequate way of generating the weigimiatrixI" (i), where
the factora keeps the eigenvalues bf(i) at values high enough to provide for
noise immunity.

7 Conclusion

The problem of recursive robust identification of linear dgmic discrete-time sin-
gle input-single output systems has been considered indperp A theoretical
analysis has shown that the asymptotically min-max optimaust algorithms
cannot be constructed in practice. Arguments are givercatigig possibilities of
applying realizable, but nonoptimal, nonlinear transfation of the prediction er-
ror. As aresult, a general form of robustified recursive Bgstic Newton-Raphson
type identification schemes is adopted. The convergencheoptoposed recur-
sive algorithm is established theoretically using the ingele theory. In order
to investigate practical robustness of the algorithm, Me@arlo simulations have



On Strong Consistency of a Class of Recursive Stochastic ... 15

been undertaken. The results obtained have shown that fibeerty of the ro-
bust algorithm is generally better than for the conventioaaursive least-squares
method. Moreover, the implementation of the robust rewarsigorithm is inex-
pensive, since it requires effectively no additional caoseither computer time or
program complexity.

Appendix
A Proof of the Convergence Theorem 2

If we denote@( ) — O(i) — © and introduce the Lyapunov’s stochastic function
V(i)=0T ()r1(i)&(i), we obtain from (9)
V(i) =0T (i-1r1(i)0(i-1)
+287(i-1)Z()w(v(i,6(-1))) (24)
+ZT(HrHziw?(v(i,63-1)).

By adding and subtracting (i — 1) to the right hand side of (24) and taking into
account (17), one obtains

V(i)=V(i—1)4+20" (i— 1) Hw((v(i,6(-1))
+a (07 (i )Z()) (25)
+ZT (O (H)Z ) w? (v (i,6(-1))).

Let us define the function

@ (O (i-1)Z()) =E{y?(-v (i,6(i—1))|F_1} (26)

where
v(i,6(-1)=-0"(i-1)Z(i)+&() (27)

is the prediction error, or residual. The functidn (.) exists under the same condi-
tions as the functio®; (.). Taking into account the hypothesis A4, one concludes

@ (BT (i-1)Z(i) <k [1+kz(éT (i—l)Z(i))z] (28)

wherek; andk; are a finite positive and nonnegative constants, respéctiSace
Tr {bbT} =b"b for a column vectob, by applying the trace operation on (17) and
choosingb = Z (i), one obtains

riy=r(i—1)+az"(i)Z(. (29)
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By dividing (25) with lod‘r (i) and taking the expectation, as well as by applying
A2, A3 and (26)-(28), one obtalns further

E{ V(i) F }<V(i—1)_2(:)T(i—1)Z(i)

log¥r (i) ~ log®r (i) log¥r (i)
< [0 (8 (i-1)Z(0) - 58 (-2 ()]
- 22T ()T () Z(i (30)
ko (B (.-1)2(.))2%k—§'()i)(')

ZT(H)ra)z)
klk—.
log“r (i)
By analyzing the third term in (30), we have

~ T/
Xr1/2<“1)2<)ZT()F1/2( Hr¥2i-1 (31
~ T .

Moreover, the well known result from matrix analysis stdfi@da square matrix
A and vectoib [18-20]

=kiko®T (i— )T Y2(i—1)

|Amin| HbH § ||AbH S |Amax| ||b||7
| Amin] [|B]|? < [T Ab] < [Amax [|b]®

with Amin and Amax being the eigenvalues @& with smallest and largest absolute
values, and|b||? = b"b. Thus, by choosing in (32)

b=r"2(-1)6(-1) ,A=TY2(i-1)z()Z" ())r¥?(i—1)
further follows
O (i—1)rY2(i—nr¥2i—-1z@MHz" (Hr¥2(i—-nr2i-16(Gi-1)
< Ama{PY2-1Z()ZT (P2 (- 1)} |
= dma{ (V2= Z() 2" (Y2 (-1} T (i-r M2~
x T Y2(i-1)6(i—1)
)Z
)

(32)

F’l/z(i—l)é(i—l)Hz

<Tr{r2(i-92()Z" (Y2 -1} 8 (i-HrHi-18(i-1)

=Te{r2( -1z Z" (HrY2-Djvi-1).
(33)
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Bearing in mind thal'r {AB} = Tr {BA} and adopting
B=TY2(i-1) , A=TY2(i—-1)Z())Z" (i)
one obtains
Te{r2(-0z()ZTHr2(-1} =T {r(i-1z(HZ" 0} (64

Furthermore, since for a square matAxand some column vectds is fulfilled
Tr{Abb" } =b'Ab, one concludes from (32) and (34), after choosing I" (i — 1)
andb=Z(i)

Te{r (i-1Z()ZT ()} < Amax{T (= 1}|Z (1)1 (35)
By subtracting (35) into (33), one obtains
OT(i—-nrY2(i-yr¥2i-1z@)z"(Hr2(i-1yr2(i-16(i-1)
< Amax{T (= D}Z([)?V (i-1).

(36)
Moreover, by subtracting (36) into (31), further followsin A7
5T (i - 1)7 (1)
ko O (I'Og r)(lz)(')) ZT ()T () Z (i)
V(-1 LD ST iy e iy o
klkzlog r())\max{r(l— Dz =z ()rizd -

Mlog®r(i) V(i—2)1 . .o,
< klkz)\mm{rfl(i DY iogr () D)z
V(i—1) log‘r(i—1) ZT()r@i)z()
*logkr (i — 1) Amin {T 2(i— 1)} log°r (i)
whereks = kjkoM andc =k — & > 1. Bearing in mind (37), the relation (30) ca be
rewritten as

V(i) V(i—-1) logkr (i—1)  ZT ()T (i) Z(i)
E{ I3 }<71) [1+k )

log“r (i) 1S ~ logr (i — Amin{T LG —1))  logCr (i
BT (i—1)Z(i) — o\ ax .
2 @@= DZ0) - 580120
ZT()r(i)z()
T log¥r (i)

(38)
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Let us introduce the notations

z_1=V(i—1)/log"r (i—1);

S logkr (i—1)  ZT ()T (i)Z(i)
A= 3/\m.n{rfl(i—1)} log®r (i)
L ZTHrmz(, (39)
Si-1=ki ogfr ()
O (i—1)Z(i ~1 . ~T :
1= I(oId(—rzl)() @ (67 (.—1)2(0)—%@ (i-1)z().

In order to apply the convergence Theorem 2, one has to phate t1, 5 1, &1
and {1 are nonnegativé;_1; measurable random variables, satisfyg 5 <
0, ¥i2 1 & < co. Starting from (29), one concludes thaf) is a sequence of non
decreasing values, i.e(i) > r (i — 1). Furthermore, starting from A8 and since

(i) =Tr{r ()} = zTA L0} = dn{T 20} (40)

where A; are the nonnegative eigenvalues of the positive-semitefimatrix
~1(.), with Amin being the minimal eigenvalue, one concludes thag ligr (i) =

oo, or equivalently fori large enougtr (i) > 1, from which it follows log (i) > 0.
Furthermore, due to A6 and since the quadratic fokA(s) = 8T (i) ~1(i) B (i)
andZ" (i)I (i)Z (i) are nonnegative, one also concludes that, 31, & 1 and
{;_1 are nonnegativé;_; measurable random variables. Thus, it still remains to
show thaty;*, B < o, 372, & < o0, and this is equivalent to the condition

< ZTMHI (HZ()

— > <oow.pl 41
2, log'r () P 4D
for somec > 1. To prove (41), let us define the following matrix in the pamed
form A
A]_l A12 a Z (I) :|
A= =|_. N 42
[A21 Azz] Z(i) i 59

Then, Schurs formula allows the determinant of a portionetrimto be written as
a product of component determinants [24, 25], i.e.

detA = detAr; det(Axz — ApArf A1) = detAgpdet(Ar — AAAxr) . (43)
By substituting (42) into (43), further follows

atdet(Fr (i) —az(i)Z" (i) =detr (i) (at-Z" ()T ()Z(>)). (44)
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Starting from (17), one obtains
ri-1=r1@i-aziz (i (45)
and after substituting (45) in (44), we have
detr 1 (i—1) =detr (i) (1—aZ" (i)[ (i)Z(i))
from which it follows

detr —1 (i) — detr 1 (i — 1)

aZ'(Hr@i)z() = det 1 (1) (46)
Furthermore, since
detr 1 nﬁn)\ {r1)} < ARt} (47)

and
:Tr{r‘l(i)}:ﬁin)\i{r‘l(i)} > Amax{F (1)} (48)
one concludes from (47) and (48)
(i) [detr ()] 7",

log® (detr % (i) (49)
(n+m°

log°r (i) >

Thus, starting from the assumption A5, (46) and (49), onaiabt

(50)

12 azZ"(Hri)zi) _ (n+m)° - detr (i) —detr *(i—1)
o, :Z log°r (i) — Z detl (i) log® (detr 1 (i))

The relation (50) is easier to interpret if one views it as scoite-time approxi-
mation to a continuously relation defined as a function of mtiooously-timet.
That is, the sum in (50) should be a reasonable approximéditire corresponding
integral, and vice verse, yielding

detm (co
© detr1(i)—detrt(i—1)

dt
< [
Z detr 1 (i) log® (detr -1 - / tlog®t
(iog" (det 1)) =), tiog -

1
" (c—1)log® t(detr 1 (io))

<o w.p.l
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Here is used the fact thati) = Tr{r (i)} is the sequence of non decreasing
reals satisfying, due to (40) and A8, lim,r (i) = o w.p.1, while the sequence
detr ~1(i) has the same properties, owing to (49). Thus, starting frames,, one
can write def ~(i) > 0 fori > ip and def ~(») = o w.p.1. Moreover, starting
from (41), (50), (51) and A5, one concludes that the assumsgtof the conver-
gence Theorem 2 are satisfied.

By applying this theorem on (39), one obtainsilimz = z* w.p.1, wherez*
is a finite, nonnegative random variable. Additionally,rtitey from the definition
of z in (39) and using the second relation in (32) witk= Z (i), A=T~1(i) one

obtains .
7> )\min{ril(i)} H Q(i) HZ
- log“r (i) '
Taking into account the fact thatconverges towards a finite variable and using
the assumption A8, one concludes from (52) thatlim|| 8 (i) ||= 0 w.p.1, which
completes the proof.

Moreover, bearing in mind (52), one also concludes that &ie of estimates
convergence is defined by

K, /i 3
160) ":O{%} (53)

(52)

where limy ., O([x|)/|x = 0. Obviously, the expression (53) depends on the pa-
rametera , sincer (i) in (29) depends ox. Thus,a influences implicitly the rate

of estimates convergence, although it is very difficult talfine explicit expression
for this dependence.
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