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Abstract. This paper deals with two games defined upon well known
generalizations of max cut. We study the existence of a strong equi-
librium which is a refinement of the Nash equilibrium. Bounds on the
price of anarchy for Nash equilibria and strong equilibria are also given.
In particular, we show that the max cut game always admits a strong
equilibrium and the strong price of anarchy is 2/3.

1 Introduction

Suppose that n agents communicate via radio signals but only two distinct fre-
quencies are available. In this scenario we are given a symmetric n × n matrix
which indicates, for each pair of agents, the strength of the interference that
they experiment if they select the same frequency. We suppose that each agent
chooses her frequency in order to minimize the sum of interferences that she ex-
periments1, no matter what is the situation of the others. We use strategic game
theory as a formal framework to study the following question: What would be
the worst configuration that the selfish agents can reach compared to a solution
where a central entity assigns frequencies optimally? When Nash equilibria – a
situation where no agent can unilaterally deviate and benefit – are considered,
this ratio is better known as the price of anarchy (PoA) [10]. It captures the per-
formance of systems where selfish players interact without central coordination.
Intuitively, a PoA far from 1 indicates that the system requires regulation.

Nash equilibria are considered as stable configurations. However a Nash equi-
librium is not sustainable if the agents can realize that they all benefit if they
perform a simultaneous deviation whereas any unilateral move is inefficient. The
strong equilibrium introduced by Aumann [2] is a refinement of the Nash equi-
librium where for every deviation by a group of agents, at least one member of
the group does not benefit. The strong price of anarchy (SPoA) [1] is the PoA
reduced to strong equilibria.

So, what are the PoA and SPoA of the above mentionned interference game?
The game was already studied in [6,4,7]. It is defined upon the well known max
cut problem: Given a simple weighted graph, find a bipartition of the vertex
set such that the weight of the edges having an endpoint in both parts of the
partition, i.e. the cut, is maximum. In the max cut game, a player’s utility is
her contribution to cut, i.e. the weight of the edges of the cut which are incident
1 Or equivalently, maximize the sum of interferences that she does not experiment.
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to her. The game always possesses a pure Nash equilibrium since it admits a
potential function [15] (the weight of the cut). It is a kind of folklore that the
PoA is 1/2. Up to our knowledge, nothing is known about the existence of a
strong equilibrium and the SPoA of the max cut game.

In this paper, we study two generalizations of the max cut game which
are similarly defined upon two generalizations of max cut: nae sat and max
k−cut. An instance of the nae sat problem is a set of clauses, each of them
being satisfied if its literals are not all true (or not all false) and one asks a truth
assignment maximizing the weight of satisfied clauses. max cut is equivalent to
nae sat if each clause is made of two unnegated variables. In the nae sat game,
every player tries to maximize the weight of satisfied clauses where she appears.
A motivation of the nae sat game is given in the sequel. In the max k−cut
problem, one asks a k partition of the vertex set inducing a maximum weight
cut. Its associated game is the interference game with k frequencies instead of 2.

2 Definitions and Notations

A strategic game is a tuple 〈N, (Ai)i∈N , (ui)i∈N 〉 where N is the set of players (we
suppose that |N | = n), Ai is the set of strategies of player i and ui : ×iAi → R

is player i’s utility function. A pure state or pure strategy profile of the game is
an element of ×iAi. Although players may choose a probability distribution over
their strategy set, we only consider pure strategy profiles in this paper. Players
are supposed to be rational, i.e. each of them plays in order to maximize her
utility.

Given a state a, (a−i, bi) denotes the state where ai is replaced by bi in a
while the strategy of the other players remains unchanged. A state a is a Nash
equilibrium (NE) if there no player i ∈ N and a strategy bi ∈ Ai such that
ui

(
(a−i, bi)

)
> ui(a). Given two states a, a′ and a coalition C ⊆ N , (a−C , a′)

denotes the state where ai is replaced by a′
i in a for all i ∈ C. A state a is a

strong equilibrium (SE) if there is no non-empty coalition C ⊆ N and a profile
a′ ∈ A such that ui

(
(a−C , a′)

)
> ui(a) for all i ∈ C. A state a is an r-strong

equilibrium (r-SE) if there is no non-empty coalition C ⊆ N of size at most r
and a profile a′ ∈ A such that ui

(
(a−C , a′)

)
> ui(a) for all i ∈ C. Therefore a

SE is a NE, a NE is a 1-SE and a SE is n-SE (n is the number of players).
The price of anarchy (PoA) measures the performance of decentralized sys-

tems [10] via its Nash equilibria. More formally, let Γ be a family of strate-
gic games, let γ be an instance of Γ , let Aγ be the strategy space of γ, let
Q : Aγ → R+ be a social function, let E(γ) be the set of all pure Nash equilibria
of γ and let oγ be a social optimum for γ (i.e. oγ = argmaxa∈Aγ

Q(a)). The
pure price of anarchy of Γ is minγ∈Γ mina∈E(γ) Q(a)/Q(oγ). If SE(γ) denotes
the set of all strong equilibria of γ then the strong price of anarchy (SPoA) [1] is
minγ∈Γ mina∈SE(γ) Q(a)/Q(oγ). The r-SPoA is similarly defined when restrict-
ing ourselves to r-strong equilibria.
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3 Related Work and Contribution

The max cut game is a game of congestion [11]. Congestion games is a particular
subclass of potential games [15] which are known to always possess a pure strat-
egy NE. Any NE of the max cut game corresponds to a local optimum whose
computation is sometimes polynomial (cubic graphs [13], unweighted case) but
PLS-complete in general [16]. Rencently Christodoulou et al. [4] studied the
rate of convergence to an approximate NE in the max cut game and the social
welfare of states obtained after a polynomial number of best response steps.

The max cut game is close to the party affiliation game [6] and the consensus
game [3]. The max k−cut game is related to the model of migration studied by
Quint and Shubik [12]. A land where several animals live is partitioned into k
areas and each animal has to choose one. Two animals seeking the same resources
(e.g. food or living conditions) compete if they share the same area. We assume
that every kind of resource exists in each area. Then each animal migrates to
the area where competition is minimum.

In a broader study on clustering games [7], Hoefer proved that the PoA of the
unweighted max k−cut game is (k − 1)/k. However, nothing is known about
existence of a SE for this game and its SPoA. Up to our knowledge, nothing is
known about the PoA of the nae sat game, the existence of a SE and the SPoA.
However every game studied in this paper is a particular case of congestion
games. Congestion games possess a SE in many situations (some of them are
identified in [8,9,5,14]) but its existence is not always guaranteed.

In this paper we study the existence of a SE and the (S)PoA of the max
k−cut and nae sat games. Section 4 is devoted to the nae sat game. If each
clause has two literals then we prove that any optimal solution is a SE and the
SPoA is 2/3. With more literals per clause, we show that no 2-SE is guaranteed
while a pure NE, a 1-SE in fact, must exist. The PoA of the nae sat game
is in general 1/2 and q/(q + 1) if each clause if made of exactly q ≥ 3 literals.
Section 5 is devoted to the max k−cut game. Our positive result states that
any optimal solution is a 3-SE (when k = 2, an optimal cut is a SE by the result
given for the nae sat game). Our negative result states that for k ≥ 3, there
is an instance with two distinct optimal cuts: one is a SE while the other is not
a 4-SE. Before giving a conclusion, we show that the r-SPoA of the max cut
game is equal to 1/2 if r is bounded above by the square root of the number of
players.

Due to space limitations, proofs are sometimes sketched or skipped.

4 The nae sat Game

Given a set X of boolean variables and a set C of clauses, each of them being
composed of at least two literals defined over X and a weight function w : C →
R+, nae sat is to find a truth assignment τ : X → {true, false} such that
the weight of NAE-satisfied clauses is maximum. A clause is NAE-satisfied if its
literals are not all true or not all false (nae= not all equal). In the following
q-nae sat refers to the case where each clause has exactly q literals.
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In the nae sat game, each variable is controlled by a selfish player with
strategy true or false. A player’s utility is the weight of NAE-satisfied clauses
where she appears. The social function is the weight of NAE-satisfied clauses.

As an application, imagine a population of animals cut into two groups (or
gangs) denoted by T and F . Anyone can choose to live in T or F but not in
both. In addition every individual i carries a set γi of genes (his genotype) that
he wants to be ideally present in both groups. If i chooses T (resp. F ) then all
his genes are in T (resp. F ) and exactly |γi ∩

⋃
j∈F γj | (resp. |γi ∩

⋃
j∈T γj |) of

his genes are in F . Then, in order to maximize the presence of his genotype, i
prefers T if |γi ∩

⋃
j∈F\{i} γj | ≥ |γi ∩

⋃
j∈T\{i} γj |, otherwise i prefers F . One

can model the situation as a nae sat game: each animal i is a variable xi, each
gene g carried by at least two animals is a clause including a positive literal xi

iff g ∈ γi. Thus, i ∈ T (resp. i ∈ F ) means xi is true (resp. xi is false).
The nae sat game always has a pure Nash equilibrium since it can be defined

as a congestion game. Then it is consistent to study its pure PoA.

Theorem 1. The PoA of the nae sat game is

(i) q/(q + 1) if each clause has size exactly q with q ≥ 3
(ii) 1/2 otherwise

Now we turn our attention to strong equilibria. We first show that every instance
of the 2-nae sat game possesses a SE.

Theorem 2. Every optimum of the 2-nae sat game is a SE.

It follows that every optimum of the max cut game is a SE since max cut is
equivalent to 2-nae sat if all literals are positive. When q ≥ 3, the following
result states that some instances of the q-nae sat game do not have a (q−1)-SE
(the existence of a 1-SE, i.e. a NE, is guaranteed).

Theorem 3. For any q ≥ 3, the existence of a (q − 1)-SE is not guaranteed for
the q-nae sat game.

Then it is consistent to study the pure SPoA of the 2-nae sat game.

Theorem 4. The SPoA of the 2-nae sat game is 2/3.

Proof. Let I = (X, C) be an instance of 2-nae-sat where X is the set of variables
and C is the set of clauses weighted by w. Let σ (resp. σ∗) a strong equilibrium
(resp. an optimal truth assignment) of I. Without loss of generality, we assume
that σ(x) = true for all x ∈ X . Indeed if σ(x) = false then one can replace
every x (resp. x) by x (resp. x) and set σ(x) = true.

Let A = {x ∈ X : σ(x) = σ∗(x)} and B = X \ A. In particular, we have
σ∗(x) = true for every x ∈ A and σ∗(x) = false for every x ∈ B. Note that the
truth assignment where every variable of A is set to false and every variable of
B is set to true is also optimal. Indeed switching all variables of a clause does
not change its status, i.e. it remains NAE-satisfied or NAE-unsatisfied.
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Let us suppose that |A| = r and |B| = s. We rename the variables of A
and B as follows. From now on A = {a1, . . . , ar} and B = {b1, . . . , bs}. If Aj

denotes {aj , aj+1, . . . , ar} for j = 1, . . . , r (resp., Bj denotes {bj, bj+1, . . . , bs}
for j = 1, . . . , s) then we suppose that the player associated with aj (resp., bj)
does not benefit when every a ∈ Aj (resp., every b ∈ Bj) plays false while
the others play true. Notice that this renaming is well defined because σ is a
strong equilibrium. Actually, when players in Aj form a coalition, then at least
one player does not benefit because σ is a strong equilibrium.

We define some subsets of C as follows:

– A clause c ∈ C belongs to ζA
j (resp. ζB

j ) iff σ NAE-satisfies c, c contains a
literal defined upon aj (resp. bj) and c is not NAE-satisfied by the truth
assignment where the variables of {aj, aj+1, · · · , ar} (resp. {bj, bj+1, · · · , bs})
are false while any other variable is true. Let ζA =

⋃r
j=1 ζA

j and let ζB =⋃s
j=1 ζB

j .
– A clause c ∈ C belongs to χA

j (resp. χB
j ) iff σ NAE-satisfies c, c contains

a literal defined upon aj (resp. bj) and c /∈ ζA
j (resp. c /∈ ζB

j ). Let χA =⋃r
j=1 χA

j and let χB =
⋃s

j=1 χB
j .

– A clause c ∈ C belongs to αA
j (resp. αB

j ) iff σ does not NAE-satisfy c, c con-
tains a literal defined upon aj (resp. bj) and c is NAE-satisfied by the truth
assignment where the variables of {aj, aj+1, · · · , ar} (resp. {bj, bj+1, · · · , bs})
are false while any other variable is true. Let αA =

⋃r
j=1 αA

j and let
αB =

⋃s
j=1 αB

j .
– A clause c ∈ C belongs to βA

j (resp. βB
j ) iff σ does not NAE-satisfy c, c

contains a literal defined upon aj (resp. bj) and c /∈ αA
j (resp. c /∈ αB

j ). Let
βA =

⋃r
j=1 βA

j and let βB =
⋃s

j=1 βB
j .

In what follows, w(C) denotes the weight of a given set of clauses C. Let us give
some intermediate properties.

Property 1. ζA
j ∩ ζA

j′ = ∅ for all j, j′ such that 1 ≤ j < j′ ≤ r and ζB
j ∩ ζB

j′ = ∅
for all j, j′ such that 1 ≤ j < j′ ≤ s.

Property 2. σ∗ does not NAE-satisfy any clause c ∈ αAΔαB .

Property 3. σ∗ does not NAE-satisfy any clause c ∈ βA ∪ βB.

Property 4. σ∗ does not NAE-satisfy any clause c ∈ ζA ∩ ζB.

Using Properties (2), (3), (4) and C = αA ∪ αB ∪ βA ∪ βB ∪ ζA ∪ ζB ∪ χA ∪ χB

we can give the following bound on Q(σ∗):

Q(σ∗) ≤ w(αA ∪ αB) + w(βA ∪ βB) + w(ζA ∪ ζB) + w(χA ∪ χB)
− (

w(αAΔαB) + w(βA ∪ βB) + w(ζA ∩ ζB)
)

= w(αA ∩ αB) + w(ζAΔζB) + w(χA ∪ χB) (1)

The value of Q(σ) is as follows:

Q(σ) = w(ζA ∪ ζB ∪ χA ∪ χB) = w(ζA ∪ ζB) + w(χA ∪ χB) (2)
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Take any variable aj ∈ A. The utility of the associated player in the SE σ
is w(ζA

j ) + w(χA
j ). This utility becomes w(αA

j ) + w(χA
j ) if each player in the

coalition {aj , · · · , ar} sets his variable to false. By construction aj does not
benefit. Therefore w(ζA

j ) + w(χA
j ) ≥ w(αA

j ) + w(χA
j ) which is equivalent to

w(ζA
j ) ≥ w(αA

j ). Summing up this inequality for j = 1 to r and using Property
1, we obtain:

w(ζA) =
r∑

j=1

w(ζA
j ) ≥

r∑

j=1

w(αA
j ) ≥ w(αA) ≥ w(αA ∩ αB) (3)

One can conduct the same analysis and obtain:

w(ζB) =
s∑

j=1

w(ζB
j ) ≥

s∑

j=1

w(αB
j ) ≥ w(αB) ≥ w(αA ∩ αB) (4)

Using inequalities (3) and (4), we get:

w(ζA) + w(ζB) ≥ 2w(αA ∩ αB)
w(ζA) + w(ζB) + 2w(ζAΔζB) ≥ 2w(αA ∩ αB) + 2w(ζAΔζB)

2w(ζA ∪ ζB) + w(ζAΔζB) ≥ 2w(αA ∩ αB) + 2w(ζAΔζB)
3w(ζA ∪ ζB) ≥ 2w(αA ∩ αB) + 2w(ζAΔζB)

3w(ζA ∪ ζB) + 2w(χA ∪ χB) ≥ 2w(αA ∩ αB) + 2w(ζAΔζB) + 2w(χA ∪ χB)
3Q(σ) ≥ 2Q(σ∗)

A tight example is composed of three clauses of weight one: x1 ∨x2, x3 ∨x4 and
x1 ∨ x3. If σ(x1) = σ(x2) = true and σ(x2) = σ(x4) = false then σ is a SE
NAE-satisfying the first two clauses. Indeed the utility of x2 and x4 is maximum
in this configuration (every clause where they appear is NAE-satisfied) so they
have no incentive to deviate. So when σ(x2) = σ(x4) = false, it is not difficult
to see that both x1 and x3 have the same utility as in σ, whatever they play. If
σ(x1) = σ(x4) = true and σ(x2) = σ(x3) = false then the three clauses are
NAE-satisfied. �
It follows that the SPoA of the max cut game is 2/3 (the tight example is made
of positive literals so it can be represented as an instance of max cut). When
restricting ourselves to instances of the nae sat game which admit a SE, the
proof of Theorem 4 can be extended to prove that the SPoA is q/(q + 1) if each
clause has size exactly q and 2/3 otherwise (it suffices to give adjusted proofs of
Properties 1 to 4).

5 The max k−cut Game

Given a graph G = (V, E) and a weight function w : E → R+, max k−cut is to
partition V into k sets V1, V2 . . . Vk such that the sum of the weight of the edges
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having their endpoints not in the same part of the partition is maximum. The
max k−cut game is defined as follows. Each vertex is controlled by a player
with strategy set {1, 2, . . . , k}. A player’s utility is the total weight of the edges
incident to her and such that her neighbor has a different strategy. The social
function Q for a state a is

∑
{[i,j]∈E:ai �=aj} w([i, j]).

The max k−cut game always has a pure Nash equilibrium since it can be
easily defined as a congestion game but an alternative proof is to observe that
an optimal k-cut is a NE (it is known that an optimum is a NE for max cut).
In [7] it is shown that the PoA of the unweighted max k−cut game is k−1

k and
one can easily extend the result to the weighted case.

Now we investigate the existence of a SE for the max k-cut game. The max
cut game (k = 2) always admits a SE since an optimal cut must be a SE. It is
a corollary of Theorem 2. When k ≥ 3, our positive result is that an optimal cut
of the max k-cut game is a 3-SE (proof by contradiction).

Theorem 5. Every optimum of the max k-cut game is a 3-SE.

The following result states that we can not go beyond r = 3 to prove that any
optimal cut is an r-SE.

Proposition 1. An optimum of the max 3-cut game is not necessarily a 4-SE.

Hence an optimum of the max k−cut game is not necessarilly a SE but the
existence of a SE is not compromised because the instance we found to state
Proposition 1 admits two optima, one is not a 4-SE whereas the other is a SE.

To conclude this section, one can be interested in bounding the SPoA of the
max cut game if only coalitions of limited size are conceivable, i.e. the q-SPoA.
The following result shows that, even if q is large, the q-SPoA drops to 1/2.

Theorem 6. For any ε > 0 and q = O(|V |1/2−ε) where |V | is the number of
nodes, the q−SPoA of the max cut game is 1/2.

6 Concluding Remarks

We investigated two games which generalize max cut and the focus was on
strong equilibria, their existence and how far they are from socially optimal
configurations. Some questions are left open.

For the q-nae sat game where q ≥ 3, we presented an instance without any
(q − 1)-SE but can we guarantee that there is an r-SE for some 1 < r < q − 1?
For example, is there a 2-SE when q ≥ 4? Another interesting direction would
be to characterize instances which possess a SE.

For the max k− cut game, we showed that a 3-SE exists but can we go
further? Though any optimum is not guaranteed to be a 4-SE, it is possible that
only some optima are 4-SE. Actually we conjecture that the max k− cut game
always possesses a SE. If it is true then what would the SPoA?
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