ON STRONG PSEUDOPRIMES TO SEVERAL BASES

GERHARD JAESCHKE

Abstract

With ψ_{k} denoting the smallest strong pseudoprime to all of the first k primes taken as bases we determine the exact values for $\psi_{5}, \psi_{6}, \psi_{7}, \psi_{8}$ and give upper bounds for $\psi_{9}, \psi_{10}, \psi_{11}$. We discuss the methods and underlying facts for obtaining these results.

1. Primality tests by means of strong pseudoprimes

Computer algebra systems, as for instance AXIOM [2], use strong pseudoprimes for testing primality of integers. The advantage of such tests is that they are very efficient. The disadvantage is that they are only probabilistic tests when the integers are not restricted to certain intervals. To make such tests deterministic for integers in prescribed intervals, one has to know the exact number of necessary so-called "strong pseudoprimality tests". For this purpose we introduce the numbers $\psi_{1}, \psi_{2}, \ldots$ for which we compute lower and upper bounds. These numbers are defined and discussed in this section; in $\S 2$ we derive some facts which are the basis for finding bounds for the numbers ψ_{k}. In §3 we discuss the methods which led to our results.

In view of Fermat's "Little Theorem" we know that n is certainly not a prime when we have $b^{n-1} \not \equiv 1 \bmod n$ for an integer b with $1<b<n-1$. That is, if n is prime, then

$$
\begin{equation*}
b^{n-1} \equiv 1 \quad \bmod n \tag{1}
\end{equation*}
$$

An odd composite number n for which (1) holds is called a "pseudoprime to base b " (we write $\operatorname{psp}(b, n)$). Usually, for a composite n there exist small bases b such that (1) is violated, but there are numbers n which are pseudoprimes to every base b coprime with n. These are called "Carmichael numbers". Therefore, a stronger criterion than (1) is needed for testing primality which leads to the concept of "strong pseudoprime to base b ". When $n=1+2^{h} d$ with d odd, $h>0$, and when n is a composite number, then n is called a "strong pseudoprime to base b " if either

$$
\begin{equation*}
b^{d} \equiv 1 \quad \bmod n \tag{2a}
\end{equation*}
$$

or

$$
\begin{equation*}
b^{2^{k} d} \equiv-1 \quad \bmod n \tag{2b}
\end{equation*}
$$

[^0]for an integer k satisfying $0 \leq k<h$. We write $\operatorname{spsp}(b, n)$ if and only if n is a strong pseudoprime to base b. From [3] we know that there are 4842 strong pseudoprimes to base 2 which are less than $25 \cdot 10^{9}$, but there does not exist any integer below this limit that is simultaneously a strong pseudoprime to all the bases $2,3,5,7,11$. The last fact can be used for a fast primality test for numbers $n<25 \cdot 10^{9}$, as is easily seen.

Now we turn to the definition of the integers ψ_{k} mentioned above. Let q_{1}, \ldots, q_{k} be the first k primes. Then ψ_{k} is the smallest positive integer n such that n is a strong pseudoprime to all the bases q_{1}, \ldots, q_{k}. Thus, if $n<\psi_{k}$, then only k strong primality tests are needed in order to find out whether n is prime or not. This shows the importance of knowing strong pseudoprimes to several bases.

From the paper [3] we obtain the following facts:

$$
\begin{aligned}
& \psi_{1}=2047 \\
& \psi_{2}=1373653, \\
& \psi_{3}=25326001, \\
& \psi_{4}=3215031751, \\
& \psi_{5}>25 \cdot 10^{9} .
\end{aligned}
$$

In this note we state some additional results, namely:

$$
\begin{aligned}
\psi_{5} & =2152302898747=6763 \cdot 10627 \cdot 29947 \\
\psi_{6} & =3474749660383=1303 \cdot 16927 \cdot 157543 \\
\psi_{7} & =341550071728321=10670053 \cdot 32010157 \\
\psi_{8} & =341550071728321=10670053 \cdot 32010157 \\
\psi_{9} & \leq 41234316135705689041=4540612081 \cdot 9081224161, \\
\psi_{10} & \leq 1553360566073143205541002401 \\
& =22754930352733 \cdot 68264791058197, \\
\psi_{11} & \leq 56897193526942024370326972321 \\
& =137716125329053 \cdot 413148375987157 .
\end{aligned}
$$

In order to obtain a lower bound l_{k} for ψ_{k}, one has to show the nonexistence of strong pseudoprimes to the bases q_{1}, \ldots, q_{k} less than l_{k}. The upper bounds for the ψ_{k} are obtained by constructing strong pseudoprimes to the bases q_{1}, \ldots, q_{k}. How this is performed will be discussed in $\S \S 3$ and 4.

2. Foundations of the algorithm

In this section we formulate some statements which form the basis for the algorithm in $\S 3$, where bounds for the numbers ψ_{k} have to be computed. The first statement requires the concept "signature of the prime p to the bases a_{1}, \ldots, a_{w} ". Let $l_{a}(p)$ denote the smallest positive exponent x such that $a^{x} \equiv 1 \bmod p$, where $\operatorname{gcd}(a, p)=1$. Such an integer always exists by Fermat's theorem. Obviously, one has $p \equiv 1 \bmod l_{a}(p)$. Let us further denote by $\Delta(g)$ the exponent of the greatest power of 2 that divides the integer g. Then $\Delta\left(l_{a}(p)\right)$ is called the "signature of p to base a ". More generally, if

$$
\nu=\left(a_{1}, \ldots, a_{w}\right), \quad \operatorname{gcd}\left(a_{i}, p\right)=1 \quad \text { for } i=1, \ldots, w
$$

we define

$$
\sigma_{p}^{\nu}=\left(\Delta\left(l_{a_{1}}(p)\right), \ldots, \Delta\left(l_{a_{w}}(p)\right)\right)
$$

and call this w-tuple the "signature of p to the bases a_{1}, \ldots, a_{w} ". Finally, we write

$$
\operatorname{psp}\left(\left(a_{1}, \ldots, a_{w}\right), n\right) \text { or } \operatorname{spsp}\left(\left(a_{1}, \ldots, a_{w}\right), n\right)
$$

respectively, if and only if n is a pseudoprime or strong pseudoprime, respectively, to all the bases a_{1}, \ldots, a_{w}. By means of these notions we formulate the first fact concerning strong pseudoprimes.
Proposition 1. Let $n=p_{1} \cdots p_{t}$ with different primes p_{1}, \ldots, p_{t}. Further let $\nu=\left(a_{1}, \ldots, a_{w}\right)$ with different integers a_{1}, \ldots, a_{w} greater than 1 such that $\operatorname{gcd}\left(a_{i}, p_{j}\right)=1$ for all $i=1, \ldots, w ; j=1, \ldots, t$. Under these assumptions $\operatorname{spsp}(\nu, n)$ holds if and only if $\operatorname{psp}(\nu, n)$ is valid and all $p_{j}, j=1, \ldots, t$, have the same signature to all of the bases a_{1}, \ldots, a_{w}, i.e., $\sigma_{p_{1}}^{\nu}=\cdots=\sigma_{p_{t}}^{\nu}$.
Proof. This statement is an immediate consequence of the following equivalences:

$$
a^{2^{k} d} \equiv-1 \bmod n \Leftrightarrow \Delta\left(l_{a}\left(p_{i}\right)\right)=k+1 \quad \text { for all } p_{i} \mid n \text { and } \operatorname{psp}(a, n)
$$

and

$$
a^{d} \equiv 1 \bmod n \Leftrightarrow \Delta\left(l_{a}\left(p_{i}\right)\right)=0 \quad \text { for all } p_{i} \mid n \text { and } \operatorname{psp}(a, n),
$$

where $n=1+2^{h} d, d$ odd, $0 \leq k<h$, and $\operatorname{gcd}(a, n)=1$.
Proposition 1 serves on the one hand for constructing strong pseudoprimes to several bases by multiplying primes which have identical signatures, and on the other hand for proving the nonexistence of such strong pseudoprimes below some given limit.
Example. For $\nu=(11,13,17)$ we have

$$
\sigma_{1531}^{\nu}=\sigma_{2551}^{\nu}=\sigma_{3571}^{\nu}=(0,0,0),
$$

and since $\operatorname{psp}(\nu, n)$ holds for $n=1531 \cdot 2551 \cdot 3571$, we also have $\operatorname{spsp}(\nu, n)$.
Proposition 2. Let a_{1}, \ldots, a_{w} be different primes. Then for primes $p \equiv 3 \bmod 4$ with p not dividing a_{1}, \ldots, a_{w} the signature $\sigma_{p}^{\left(a_{1}, \ldots, a_{w}\right)}$ depends only on the residue class of $p \bmod 4 a_{1} \cdots a_{w}$.
Proof. For $p \equiv 3 \bmod 4$ we evidently have $\Delta\left(l_{a}(p)\right) \in\{0,1\}$, and if $\sigma_{p}^{\left(a_{1}, \ldots, a_{w}\right)}$ $=\left(b_{1}, \ldots, b_{w}\right)$, then

$$
b_{i}=0 \quad \text { if }\left(\frac{a_{i}}{p}\right)=1, \quad b_{i}=1 \quad \text { if }\left(\frac{a_{i}}{p}\right)=-1
$$

Thus, $\sigma_{p}^{\left(a_{1}, \ldots, a_{w}\right)}$ depends only on the quadratic residue character of the a_{i} $\bmod p$. By the law of quadratic reciprocity it then follows

$$
\Delta\left(l_{a_{i}}(p)\right)=\Delta\left(l_{a_{i}}(q)\right) \quad \text { for } p \equiv q \bmod 4 a_{i}
$$

hence the assertion of the proposition.
Example. Let $\nu=(2,3,5,7,11)$. We want to find all primes $p \equiv 3 \bmod 4$ which have the signature $\sigma_{p}^{\nu}=(0,1,0,0,1)$. So we have to solve the system

$$
\left(\frac{2}{p}\right)=\left(\frac{5}{p}\right)=\left(\frac{7}{p}\right)=1 \quad \text { and } \quad\left(\frac{3}{p}\right)=\left(\frac{11}{p}\right)=-1
$$

This is equivalent to solving the system of congruences

$$
\begin{aligned}
& p \equiv 7 \bmod 8 \\
& p \equiv 7 \bmod 12 \\
& p \equiv 11,19 \bmod 20 \\
& p \equiv 3,19,27 \bmod 28 \\
& p \equiv 3,15,23,27,31 \bmod 44,
\end{aligned}
$$

which yields 30 classes mod 9240:

$$
p \equiv 31,199,559,1039, \ldots, 8959 \bmod 9240
$$

By means of Proposition 2 exactly the primes in each of these 30 classes are the desired primes.

For primes $p \equiv 1 \bmod 4$ we have no corresponding statement. But here the following proposition can be useful.

Proposition 3. For primes p, q it is true that

$$
\Delta(p-1)=\Delta(q-1) \text { and } \sigma_{p}^{(a)}=\sigma_{q}^{(a)} \quad \text { imply } \quad\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)
$$

Proof. This follows from

$$
\sigma_{p}^{(a)}=\Delta(p-1) \Leftrightarrow\left(\frac{a}{p}\right)=-1
$$

Example. By Proposition 3 it is easy to determine all primes $p \equiv 5 \bmod 8$ which have the signature $\sigma_{p}^{(2,3,5)}=(2,2,2)$. These are exactly the primes $p \equiv 53,77 \mathrm{mod} 120$. But each of the signatures $\sigma_{p}^{\nu}=(2,2,0)$ and $(2,2,1)$ for $\nu=(2,3,5)$ does not depend only on residue classes $\bmod 120$, as we shall se below. We find by Proposition 3 that

$$
\sigma_{p}^{(2,3,5)}=(2,2, \Delta) \quad \text { with } \Delta \in\{0,1\} \text { for } p \equiv 29,101 \bmod 120
$$

For these p we have (using the 4 th power residue character symbol)

$$
\left(\frac{5}{p}\right)_{4} \equiv 5^{(p-1) / 4} \quad \bmod p
$$

hence, in view of $\left(\frac{5}{p}\right)=1$,

$$
\begin{aligned}
& \left(\frac{5}{p}\right)_{4}=1 \text { implies } \sigma_{p}^{(2,3,5)}=(2,2,0) \\
& \left(\frac{5}{p}\right)_{4}=-1 \text { implies } \sigma_{p}^{(2,3,5)}=(2,2,1)
\end{aligned}
$$

Both p-types occur in each of the residue classes $29,101 \bmod 120$:

$$
\sigma_{29}^{(2,3,5)}=\sigma_{701}^{(2,3,5)}=(2,2,1), \quad \sigma_{149}^{(2,3,5)}=\sigma_{101}^{(2,3,5)}=(2,2,0)
$$

For an efficient determination of large strong pseudoprimes to several bases we use later on

Proposition 4. If p and $q=2 p-1$ are primes, and if b is an odd integer with $\operatorname{gcd}(b, p)=\operatorname{gcd}(b, q)=1$, then we have

$$
\operatorname{psp}(b, p q) \text { if and only if }\left(\frac{q}{b}\right)=1
$$

Proof. Under the above assumptions we have

$$
b^{p q-1} \equiv 1 \bmod p q \Leftrightarrow b^{p-1} \equiv 1 \bmod q .
$$

But with $p-1=\frac{q-1}{2}$ and $q \equiv 1 \bmod 4$ we obtain the assertion by the law of quadratic reciprocity.
Remark. For $b=2$ we simply have

$$
\operatorname{psp}(2, p(2 p-1)) \Leftrightarrow p \equiv 1 \bmod 4
$$

under the assumption that $p, 2 p-1$ are primes.

3. Algorithm

In this section we start by describing the general procedure for determining all strong pseudoprimes n to given bases, where n is bounded by a prescribed limit g and has a given number t of prime factors. We continue by applying this procedure to special cases, which yield the results presented in $\S 1$.

In all the following discussions we can restrict ourselves to squarefree integers, in view of Proposition 4 in [3] and the fact the congruences $2^{p-1} \equiv 1 \bmod p^{2}$ and $3^{p-1} \equiv 1 \bmod p^{2}$ do not hold simultaneously for any prime p below $3 \cdot 10^{9}$ [3].

Let q_{i} denote the i th prime, and let $\nu=\left(q_{1}, \ldots, q_{w}\right)$. If a large integer g is given and t is a small positive integer ≥ 2, then we want to solve the following problem:

Find all strong pseudoprimes $\leq g$ to the bases q_{1}, \ldots, q_{w} that have t different prime factors.
Case 1. We start by assuming $t \geq 3$.
Phase 1. We determine all $(t-1)$-tuples $\left(p_{1}, \ldots, p_{t-1}\right)$ with primes p_{1}, \ldots, p_{t-1} such that
(A) $q_{w}<p_{1}<\cdots<p_{t-1}$,
(B) $\sigma_{p_{1}}^{\nu}=\cdots=\sigma_{p_{t-1}}^{\nu}$,
(C) $p_{1} \cdots p_{t-2} p_{t-1}^{2}<g$.

We call the $(t-1)$-tuples satisfying (A), (B), (C) "feasible $(t-1)$-tuples".
Phase 2. For each feasible $(t-1)$-tuple $\left(p_{1}, \ldots, p_{t-1}\right)$ we proceed as follows. We choose one of the primes q_{1}, \ldots, q_{w} as b.

Step 1. We compute $\eta=\operatorname{lcm}\left(l_{b}\left(p_{1}\right), \ldots, l_{b}\left(p_{t-1}\right)\right)$.
Step 2. If $\operatorname{gcd}\left(\eta, p_{1} \cdots p_{t-1}\right)>1$, then the $(t-1)$-tuple $\left(p_{1}, \ldots, p_{t-1}\right)$ is ignored. Otherwise, compute the multiplicative inverse c of $p_{1} \cdots p_{t-1} \bmod \eta$, i.e., $c=\left(p_{1} \cdots p_{t-1}\right)^{-1} \bmod \eta$.

Step 3. For each prime $y \leq g /\left(p_{1} \cdots p_{t-1}\right)$ with $y \equiv c \bmod \eta$ we test whether $\operatorname{spsp}\left(\nu, p_{1} \cdots p_{t-1} y\right)$ holds or not.
Case 2. We now assume that $t=2$. For each prime $p<\sqrt{g}$ we first compute

$$
\lambda_{p}=\operatorname{lcm}\left(2, l_{q_{1}}(p), \ldots, l_{q_{w}}(p)\right)
$$

Then all products $P=p\left(1+k \lambda_{p}\right)$ are computed for $k=1+(p-1) / \lambda_{p}, \ldots$, $\left[(g-p) / p \lambda_{p}\right.$], where $1+k \lambda_{p}$ must be prime. For each product P we test whether $\operatorname{spsp}(\nu, P)$ holds or not.

Improvements of the algorithm. A central problem of this algorithm is the following. Given $\nu=\left(q_{1}, \ldots, q_{w}\right)$ and a prime p, find all primes q smaller than a given limit with $q>p$ and $\sigma_{q}^{\nu}=\sigma_{p}^{\nu}$. In order to do this efficiently, we apply Propositions 2 and 3.

If, for example, $p \equiv 3 \bmod 4$, then p has a binary signature

$$
\sigma_{p}^{\nu}=\left(\Delta_{1}, \ldots, \Delta_{w}\right) \quad \text { with } \Delta_{i} \in\{0,1\} \text { for } i=1, \ldots, w
$$

Then by Proposition 2 all primes $q \equiv 3 \bmod 4$ with $\left(q_{i} / p\right)=\left(q_{i} / q\right), i=$ $1, \ldots, w$, satisfy $\sigma_{q}^{\nu}=\sigma_{p}^{\nu}$. But there might be primes $q \equiv 1 \bmod 4$ which have a binary signature σ_{q}^{ν}. In order to find these q, we observe that

$$
\begin{equation*}
\left(\frac{q_{i}}{q}\right)=1 \quad \text { for } i=1, \ldots, w \tag{QR}
\end{equation*}
$$

must hold; since this condition is not sufficient (cf. example after Proposition 3), these q are only candidates for $\sigma_{q}^{\nu}=\sigma_{p}^{\nu}$.

Altogether, this means that the desired q-values belong to

$$
2^{2-w} \prod_{i=2}^{w}\left(q_{i}-1\right) \text { residue classes } \bmod 8 \cdot \prod_{i=2}^{w} q_{i}
$$

The residue classes defined by (QR) can be ignored in many cases, since we know in advance (i.e., independently of p) which primes q below a given limit satisfy (QR). So we know that
(F1) there are only 9 primes $q<10^{6}, q \equiv 1 \bmod 4$, with binary signature $\sigma_{q}^{(2,3,5,7,11)}:$

$$
\begin{aligned}
q= & 148201,170809,196681,238681,735529 \\
& 737641,921001,924361,988681
\end{aligned}
$$

and
(F2) there exist only 4 primes $q<10^{7}, q \equiv 1 \bmod 4$, with binary signature $\sigma_{q}^{(2,3,5,7,11,13,17)}$:

$$
q=4179289,7140169,7781929,8971561
$$

If, for instance, we have to determine all primes $q<1000000$ with $\sigma_{q}^{(2, \ldots, 11)}=$ $\sigma_{31}^{(2, \ldots, 11)}$, then by (F1) only the primes $q<1000000$ in the 30 classes mod 9240 in the example after Proposition 2 solve the problem.

Another example shall be discussed for a prime $p \not \equiv 3 \bmod 4$, where we make use of Proposition 3. Let $w=7$, that is $\nu=(2,3,5,7,11,13,17)$ and $p=97$. Determine all primes $q<300000$ with $\sigma_{q}^{\nu}=\sigma_{97}^{\nu}$. The maximal element in $\sigma_{97}^{\nu}=(4,4,5,5,4,5,5)$ is 5 . Thus, by Proposition 3 we determine all primes $q \equiv 33 \bmod 64$ that satisfy

$$
\left(\frac{3}{q}\right)=\left(\frac{11}{q}\right)=1 \quad \text { and } \quad\left(\frac{5}{q}\right)=\left(\frac{7}{q}\right)=\left(\frac{13}{q}\right)=\left(\frac{17}{q}\right)=-1
$$

which yields 1440 classes mod 16336320 . We find 12 primes q with $97<$ $q<300000$ in these classes, only two of which satisfy $\sigma_{q}^{\nu}=\sigma_{97}^{\nu}: q=257953$, 271393.

Further, we find 9 primes $q \equiv 1 \bmod 64, q<300000$, from the equation

$$
\left(\frac{3}{q}\right)=\left(\frac{5}{q}\right)=\left(\frac{7}{q}\right)=\left(\frac{11}{q}\right)=\left(\frac{13}{q}\right)=\left(\frac{17}{q}\right)=1,
$$

but none of them satisfies $\sigma_{q}^{\nu}=\sigma_{97}^{\nu}$. Therefore, the above 2 primes solve the problem.

In step 3 of phase 2 we can achieve a great reduction of the number of primality tests by applying Propositions 2 and 3 . Let $\nu=(2,3,5,7,11,13,17)$, $g=341550071728321, p=307, q=1987$. Then step 3 of phase 2 consists in computing all

$$
r \leq 559909889 \text { with } r \equiv 5227 \bmod 33762
$$

and testing r for primality and for $\sigma_{r}^{\nu}=\sigma_{307}^{\nu}$. Therefore, 16584 such tests have to performed. When we use Proposition 2 and solve the systems

$$
\left(\frac{2}{r}\right)=\left(\frac{2}{307}\right), \ldots,\left(\frac{13}{r}\right)=\left(\frac{13}{307}\right), \quad r \equiv 3 \bmod 4
$$

and

$$
\left(\frac{2}{r}\right)=\left(\frac{3}{r}\right)=\cdots=\left(\frac{17}{r}\right)=q, \quad r \equiv 1 \bmod 4
$$

we only have $304 r$-values as test-candidates.
Applications. We apply the algorithm to the following two special cases for w, g :

$$
\begin{array}{ll}
w_{1}=5, & g_{1}=3474749660383 \\
w_{2}=7, & g_{2}=341550071728321 \tag{SC2}
\end{array}
$$

It will be shown that there exists only one strong pseudoprime $n<g_{1}$ to the bases $2,3,5,7,11$, and no strong pseudoprime $n<g_{2}$ to the bases $2,3,5,7,11,13,17$.

Further, we present all strong pseudoprimes $\leq 10^{12}$ to the bases $2,3,5$ in Table 1 on the next page (see also Table 7 in [3]). It should be noted that Table 1 contains (in contrast to the results in [3]) two numbers being not of the form $(n+1)(k n+1)$, namely $77475820141=176041 \cdot 440101$ and $183413388211=$ 370891. 494521 .
(SC1). Let $\nu=(2,3,5,7,11)$.
(a) $t \geq 5$.

Define N_{p} to be the set of all primes $q>p$ with $\sigma_{q}^{\nu}=\sigma_{p}^{\nu}$. If $f_{p, k}$ denotes the k th element of N_{p} in ascending order, then we compute for each $p \leq 317$ the values $f_{p, 1}, \ldots, f_{p, 4}$ and obtain

$$
\min p \cdot \prod_{k=1}^{4} f_{p, k}=19 \cdot \prod_{k=1}^{4} f_{19, k}>g_{1}
$$

so that no $\operatorname{spsp}(\nu, n)$ exists with $n \leq g_{1}$ and which has more than 4 factors.
(b) $t=4$.

When $t=4$, phase 1 of the algorithm yields 1557 feasible triplets $\left(p_{1}, p_{2}, p_{3}\right)$.

Table 1. List of all strong pseudoprimes $<10^{12}$ to the bases $2,3,5$

		spsp-base			
number	factorisation	7	11	13	17
25326001	2251.11251	0	0	0	0
161304001	7333.21997	0	1	0	0
960946321	$11717 \cdot 82013$	0	0	0	0
1157839381	$24061 \cdot 48121$	0	0	0	0
3215031751	151-751-28351	1	0	0	0
3697278427	30403 - 121609	0	0	0	1
5764643587	37963 - 151849	0	0	1	0
6770862367	41143-164569	0	0	0	1
14386156093	397-4357-8317	0	0	0	0
15579919981	88261 • 176521	0	1	0	0
18459366157	$67933 \cdot 271729$	0	0	0	0
19887974881	$81421 \cdot 244261$	0	0	0	0
21276028621	103141 • 206281	0	0	1	0
27716349961	$117721 \cdot 235441$	0	0	0	0
29118033181	$120661 \cdot 241321$	0	1	0	0
37131467521	111253.333757	0	0	0	0
41752650241	117973.353917	0	1	1	0
42550716781	$145861 \cdot 291721$	0	0	0	0
43536545821	147541-295081	0	0	0	0
44732778751	$105751 \cdot 423001$	0	-	0	0
44778481441	122173-366517	0	0	0	1
48354810571	331-2971.49171	0	1	1	0
52139147581	161461 • 322921	0	0	0	0
53700690781	$163861 \cdot 327721$	0	0	0	0
56209415767	118543.474169	0	0	0	0
57698562127	120103.480409	0	0	0	0
67403434561	149893.449677	0		0	0
73796984161	156841 • 470521	0	0	1	0
74190097801	151-2551 - 192601	0	0	0	0
75285070351	137191.548761	0	0	0	1
75350936251	137251 • 549001	0	0	0	0
77475820141	176041-404101	0	0	0	0
79696887661	199621 - 399241	0	0	0	0
83828294551	$1231 \cdot 6151 \cdot 11071$	0	0	0	0
88473676747	$148723 \cdot 594889$	0	0	1	0
88974090367	149143.596569	0	0	0	0
98515393021	221941.443881	0	1	1	0
111737197441	149491.747451	0	0	0	0
114247549027	$169003 \cdot 676009$	0	1	0	0
118670087467	172243.688969	1	0	0	0
126223730461	$251221 \cdot 502441$	0	0	0	0
134670080641	211873.635617	0	0	0	0
135586888951	184111.736441	0	0	1	0
136136947201	139457.976193	0	0	0	0
148600530541	$272581 \cdot 545161$	0	0	0	0
150401047441	146581.1026061	0	0	0	0
156677923729	177019 -885091	0	0	0	0
157615339681	229213.687637	0	0	0	0
167259489409	182899.914491	0	0	0	0
174460968067	$208843 \cdot 835369$	0	0	0	0
183413388211	370891.494521	0	0	0	0
187403492251	216451-865801	0	0	0	0
216291665041	175781.1230461	0	0	0	0
218215348801	269701 - 809101		0	0	0
218673063181	330661 -661321	0	0	0	1
234311749201	182957.1280693	0	0	0	0

Table 1 (continued)

		spsp-base			
number	factorisation	7	11	13	17
240438464197	$245173 \cdot 980689$	0	0	0	0
244970876021	$202061 \cdot 1212361$	0	0	0	0
245291853691	$1171 \cdot 10531 \cdot 19891$	0	1	1	1
247945488451	$248971 \cdot 995881$	0	0	0	0
252505670761	$355321 \cdot 710641$	0	0	1	0
272447722207	$260983 \cdot 1043929$	0	0	0	0
291879706861	$382021 \cdot 764041$	0	1	0	0
295545735181	$221941 \cdot 1331641$	0	0	0	0
307768373641	$392281 \cdot 784561$	1	0	0	0
315962312077	$281053 \cdot 1124209$	1	0	0	0
331630652449	$257539 \cdot 1287691$	0	0	0	0
342221459329	$261619 \cdot 1308091$	0	0	0	0
353193975751	$297151 \cdot 1188601$	0	0	0	0
354864744877	$297853 \cdot 1191409$	1	0	0	0
362742704101	$301141 \cdot 1204561$	0	0	0	0
398214876001	$364333 \cdot 1092997$	0	0	0	0
405439595861	$259949 \cdot 1559689$	0	0	0	0
407979839041	$368773 \cdot 1106317$	0	0	0	0
431229929521	$182131 \cdot 2367691$	0	0	0	0
457453568161	$390493 \cdot 1171477$	1	0	0	1
490883439061	$495421 \cdot 990841$	0	0	0	0
503691743521	$409753 \cdot 1229257$	0	0	0	1
505130380987	$355363 \cdot 1421449$	0	0	0	0
528929555461	$419893 \cdot 1259677$	1	0	0	1
546348519181	$522661 \cdot 1045321$	1	0	1	0
549866444221	$524341 \cdot 1048681$	0	0	0	0
591090138721	$443881 \cdot 1331641$	0	0	0	0
602248359169	$347059 \cdot 1735291$	1	0	0	0
641498618881	$462421 \cdot 1387261$	0	0	0	0
659937299407	$406183 \cdot 1624729$	0	0	0	0
688529415421	$586741 \cdot 1173481$	0	1	0	0
712614969307	$422083 \cdot 1688329$	0	0	0	0
729421133761	$493093 \cdot 1479277$	0	1	0	0
733224429367	$428143 \cdot 1712569$	0	0	1	0
736775510329	$383869 \cdot 1919341$	0	0	0	0
741881186287	$430663 \cdot 1722649$	0	1	0	0
744049848481	$498013 \cdot 1494037$	0	0	0	0
774840343681	$508213 \cdot 1524637$	0	0	0	0
842638521121	$529981 \cdot 1589941$	0	0	0	0
851402588401	$412651 \cdot 2063251$	0	0	0	0
853196213761	$349121 \cdot 2443841$	0	0	0	0
863370140641	$536461 \cdot 1609381$	0	0	0	0
908201935681	$550213 \cdot 1650637$	0	0	0	0
966299321527	$491503 \cdot 1966009$	0	0	0	0
997031384161	$576493 \cdot 1729477$	0	0	0	0
			0		

It is easy to see that we only need to consider triplets with $p_{1} \leq 1361$, $p_{2} \leq 6427, p_{3} \leq 36269$. In phase 2 we took $b=3$. So we obtained 178 quadruples $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ which satisfy $3^{p_{1} p_{2} p_{3} p_{4}-1} \equiv 1 \bmod p_{1} p_{2} p_{3}$, but no $\operatorname{spsp}\left(\nu, p_{1} p_{2} p_{3} p_{4}\right)$ was detected.
(c) $t=3$.

Here, phase 1 yields 42233 feasible pairs $\left(p_{1}, p_{2}\right)$, where p_{1}, p_{2} could be restricted to $p_{1} \leq 15139, p_{2} \leq 516991$. In phase 2 we took $b=2$ and found 261
triplets $\left(p_{1}, p_{2}, p_{3}\right)$ with $2^{p_{1} p_{2} p_{3}-1} \equiv 1 \bmod p_{1} p_{2}$, only one $\operatorname{spsp}\left(\nu, p_{1} p_{2} p_{3}\right)$ with $p_{1} p_{2} p_{3}<g_{1}$ was detected. This integer is

$$
\tilde{n}=2152302898747=6763 \cdot 10627 \cdot 29947 .
$$

Now, it is easy to verify that

$$
g_{1}=3474749660383=1303 \cdot 16927 \cdot 157543
$$

is a strong pseudoprime to the bases $2,3,5,7,11,13$, which means that $\psi_{5} \leq \tilde{n}$ and $\psi_{6} \leq g_{1}$.
(d) $t=2$.

At first we compute for all primes $p<\sqrt{g_{1}}$ (that is $p<1864068$) the value λ_{p} as defined above. We further define $\mu_{p}=(p-1) / \lambda_{p}$ and τ_{k} to be the number of primes p with $13 \leq p<1864068$ and $\mu_{p}=k$. It turns out that

$$
\tau_{k}=0 \text { for } k \geq 6, \quad \tau_{5}=7, \quad \tau_{4}=47, \quad \tau_{3}=242, \quad \tau_{1}+\tau_{2}=139238
$$

This means that for nearly all p our search for primes q with $\operatorname{spsp}(\nu, p q)$ is restricted to

$$
q=1+k \cdot \frac{p-1}{2} \quad \text { with } 3 \leq k \leq \frac{2 g_{1}}{p(p-1)} .
$$

For small values of p this search is very time-consuming (for instance if $p<$ 10000 then the number of k-values to be checked is >69000). Therefore, we used another procedure to perform this job when $p<10000$. For each such p we calculated

$$
h=\operatorname{gcd}\left(2^{p-1}-1,3^{p-1}-1,5^{p-1}-1\right)
$$

and factored h (this is easy, since h usually has many small prime factors). When h has a factor $q>p$, then we tested $p q$ for strong pseudoprimality to the bases $2,3,5,7,11$.

Since no pair $p q<g_{1}$ with $\operatorname{spsp}(\nu, p q)$ was detected, we have the results $\psi_{5}=2152302898747$ and $\psi_{6}=3474749660383$.
(SC2). Let $\nu=(2,3,5,7,11,13,17)$.
(a) $t \geq 5$.

Analogous to the case ($\mathbf{S C 1}$) we compute for each $p \leq 797$ the values $f_{p, 1}, \ldots, f_{p, 4}$ and obtain

$$
\min p \cdot \prod_{k=1}^{4} f_{p, k}=131 \cdot \prod_{k=1}^{4} f_{131, k}>g_{2}
$$

so that no $\operatorname{spsp}(\nu, n)$ exists with $n \leq g_{2}$ and which has more than 4 factors.
(b) $t=4$.

When $t=4$, phase 1 of the algorithm yields 1902 feasible triplets $\left(p_{1}, p_{2}, p_{3}\right)$. In phase 2 we took $b=2$. So we obtained 231 quadruples $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ which satisfy $2^{p_{1} p_{2} p_{3} p_{4}-1} \equiv 1 \bmod p_{1} p_{2} p_{3}$, but no $\operatorname{spsp}\left(\nu, p_{1} p_{2} p_{3} p_{4}\right)$ was detected.
(c) $t=3$.

Here, phase 1 yields 154953 feasible pairs $\left(p_{1}, p_{2}\right)$. In phase 2 we put $b=$ 2 and found 265 triplets $\left(p_{1}, p_{2}, p_{3}\right)$ with $2^{p_{1} p_{2} p_{3}-1} \equiv 1 \bmod p_{1} p_{2}$, but no $\operatorname{spsp}\left(\nu, p_{1} p_{2} p_{3}\right)$ with $p_{1} p_{2} p_{3}<g_{2}$ was detected.
(d) $t=2$.

We compute $\lambda_{p}=\operatorname{lcm}\left(2, l_{2}(p), \ldots, l_{17}(p)\right)$ for each $p<18481073$. We define
τ_{k} to be the number of primes p with $19 \leq p<18481073$ and $\mu_{p}=k$. It turns out that

$$
\tau_{k}=0 \text { for } k \geq 6, \quad \tau_{5}=1, \quad \tau_{4}=15, \quad \tau_{3}=207, \quad \tau_{1}+\tau_{2}=1179824
$$

Again, for nearly all p our search for primes q with $\operatorname{spsp}(\nu, p q)$ is restricted to

$$
q=1+k \cdot \frac{p-1}{2} \quad \text { with } 3 \leq k \leq \frac{2 g_{2}}{p(p-1)}
$$

Here we factored

$$
h=\operatorname{gcd}\left(2^{p-1}-1,3^{p-1}-1,5^{p-1}-1\right)
$$

for all $p<120000$. It turned out that there is no $\operatorname{spsp}(\nu, p q)$ for $p q<g_{2}$, but $g_{2}=10670053 \cdot 32010157$ itself is a strong pseudoprime to the bases $2,3,5,7,11,13,17,19$. This means that $\psi_{7}=\psi_{8}=g_{2}$.

4. UPPER BOUNDS FOR $\psi_{9}, \psi_{10}, \psi_{11}$

In order to find upper bounds for $\psi_{9}, \psi_{10}, \psi_{11}$, we started an extensive search for numbers of the forms

$$
\begin{array}{ll}
p(2 p-1) & \text { with } p, 2 p-1 \text { prime } \\
p(3 p-2) & \text { with } p, 3 p-2 \text { prime } \tag{H2}
\end{array}
$$

which are strong pseudoprimes to the bases $2,3,5,7,11,13,17,19,23$. In the case of (H1) we used Proposition 4: $\left(\frac{2 p-1}{b}\right)=1$ for $b=3,5,7,11$ and $p \equiv 1 \bmod 4$ yield together 15 residue classes mod 4620:

$$
\begin{aligned}
p \equiv & 1,181,421,481,841,1321,1741,1861,2161,2521,3121, \\
& 3781,3841,3961,4381 \bmod 4620 .
\end{aligned}
$$

It turns out that for $p=4540612081$ the number

$$
n=p(2 p-1)=41234316135705689041
$$

is an $\operatorname{spsp}(\nu, n)$ for $\nu=(2,3,5,7,11,13,17,19,23)$. This n yields the upper bound for ψ_{9} stated in $\S 1$.

In the case of (H2) we solve the system

$$
\begin{gathered}
p \equiv 13 \quad \bmod 24 \\
\left(\frac{b}{p}\right)=\left(\frac{b}{3 p-2}\right)=-1 \quad \text { for } b=5,7,11,13,17,19,23
\end{gathered}
$$

and obtain 400 residue classes $\bmod 892371480$. For each p in these classes we test strong pseudoprimality to the bases $2,3,5,7,11,13,17,19,23,29,31$. So we find

$$
\begin{array}{ll}
\operatorname{spsp}((2, \ldots, 29), p(3 p-2)) & \text { for } p=22754930352733 \\
\operatorname{spsp}((2, \ldots, 31), p(3 p-2)) & \text { for } p=137716125329053 .
\end{array}
$$

These two numbers yield the upper bounds for ψ_{10}, ψ_{11} stated in $\S 1$.

5. Other bases than the first primes

If we use only the first k primes as bases, then ψ_{k} is the limit up to which primality tests are correct by performing k strong primality tests. When we
take instead k arbitrary primes as bases, it is evident that the above 'correctness limit' may be increased considerably. But generally these bases are very large and not easy to find. We give a short survey on the magnitude of the correctness limit for up to 3 bases, when these are chosen conveniently.

Let $\nu=\left(b_{1}, \ldots, b_{w}\right), b_{i}$ prime for $i=1, \ldots, w$, and define

$$
\chi_{\nu}=\min \{n \mid \operatorname{spsp}(\nu, n)\}
$$

Then we find for $w=1$

$$
\max _{b<1000000} \chi_{b}=\chi_{377687}=5329
$$

whereas $\chi_{2}=2047$. For $w=2$ we find

$$
\max _{b_{1}, b_{2}<100} \chi_{\left(b_{1}, b_{2}\right)}=\chi_{(31,73)}=9080191
$$

whereas $\chi_{(2,3)}=1373653$. We further computed

$$
\max _{b<300000} \chi_{(2, b)}=\chi_{(2,299417)}=19471033 .
$$

For $w=3$ we find

$$
\max _{b_{1}, b_{2}, b_{3}<100} \chi_{\left(b_{1}, b_{2}, b_{3}\right)}=\chi_{(2,7,61)}=4759123141,
$$

whereas $\chi_{(2,3,5)}=25326001$. For $w=4$ we have

$$
\max _{b<5000000} \chi_{(2,3,5, b)}=\chi_{(2,3,5,4086253)}=736775510329 .
$$

Recently, I found $\chi_{(2,13,23,1662803)}>10^{12}$, meaning that up to 10^{12} only four strong pseudoprimality tests are necessary for proving primality.

Remark. All computations have been performed on an IBM 3081 at Heidelberg Scientific Center.

Acknowledgment

I thank the referee for his valuable suggestions in the improvement of this paper. With respect to Table 1, I should mention Richard Schroeppel's computing all strong pseudoprimes up to 10^{11} to the bases 2,3 , and 5 , which was based on an output of Richard Pinch, who computed all odd base-2 pseudoprimes up to this limit.

Bibliography

1. J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, Computers in Number Theory, Academic Press, London, 1971, pp. 213-222.
2. R. D. Jenks and R. F. Sutor, $A X I O M$, The Scientific Computation System, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
3. C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr., The pseudoprimes to $25 \cdot 10^{9}$, Math. Comp. 35 (1980), 1003-1026.

IBM Scientific Center Heidelberg, Tiergartenstr. 15, 6900 Heidelberg, Germany

[^0]: Received by the editor May 23, 1990 and, in revised form, October 28, 1991 and August 14, 1992.

 1991 Mathematics Subject Classification. Primary 11A15.

