BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 27, Number 4, Fall 1997

ON STRONGLY EXTREME POINTS IN **KÖTHE-BOCHNER SPACES**

SHUTAO CHEN AND BOR-LUH LIN

ABSTRACT. Let E(X) be a Köthe-Bochner space and f an element of the unit sphere of E(X). Then for f to be a strongly extreme point of the unit ball of E(X) it is necessary that $||f(t)||_X$ be a strongly extreme point of E and that $f(t)/||f(t)||_X$ be a strongly extreme point of X for μ almost everywhere $t \in \text{supp } f$. Furthermore, if E is order continuous, then the condition is also sufficient. If E is a nonorder continuous Orlicz space, then the unit ball of E(X) has no strongly extreme points which gives a negative answer to the question about the criteria for the denting points of Köthe-Bochner spaces raised by C. Castaing and R. Pluciennik.

1. Introduction. Let (T, Σ, μ) be a measure space with complete σ -finite measure μ and L^0 the space of all (equivalence classes of) μ -measurable real valued functions. For $f, g \in L^0, f \leq g$ means $f(t) \leq g(t)$ for μ almost everywhere $t \in T$.

A Banach subspace E of L^0 is said to be a Köthe function space, if

(i) for any $f,g \in L^0$, $|f| \leq |g|$ and $g \in E$ imply $f \in E$ and $||f||_E \le ||g||_E;$

(ii) supp $E = \bigcup \{ \text{supp } f : f \in E \} = T.$

A Köthe space E is said to be order continuous provided that $x_n \downarrow 0$ implies $||x_n|| \to 0$.

If E is a Köthe function space over (T, Σ, μ) and X is a Banach space, then by E(X) we denote the Köthe-Bochner Banach space of all (equivalence classes of) strongly measurable functions $f: T \to X$ such that $||f(\cdot)||_X \in E$ equipped with the norm $||f||_{E(X)} = |||f(\cdot)||_X ||_E$.

Received by the editors on March 7, 1996, and in revised form on November 20, 1996. 1991 AMS Mathematics Subject Classification. 46B20. Key words and phrases. Strongly extreme point, Köthe-Bochner space, Banach

lattice. The work of the first author was supported in part by the National Science Foundation of China.

S. CHEN AND B.-L. LIN

For any Banach space X, we denote by B(X) and S(X) the unit ball and the unit sphere of X, respectively.

A point $x \in S(X)$ is said to be a strongly extreme point of B(X) [$x \in$ str-ext B(X)] if, for every sequence $\{x_n\} \subset X$, $\lim_{n\to\infty} ||x_n \pm x||_X = 1$ implies $\lim_{n\to\infty} ||x_n||_X = 0$.

Let E(X) be a Köthe-Bochner space over (T, Σ, μ) . For each $f \in E(X)$, we denote

$$T_f = \bigg\{ t \in \operatorname{supp} f : \frac{f(t)}{\|f(t)\|_X} \in \operatorname{str-ext} B(X) \bigg\}.$$

H. Hudzik and M. Mastylo [5] proved the following

Theorem 1.1. Let E be a locally uniformly rotund Köthe function space over a measure space (T, Σ, μ) and X a Banach space.

a) If $f \in S(E(X))$ and $f(t)/||f(t)||_X \in \text{str-ext } B(X)$ for μ almost everywhere $t \in \text{supp } f$, then $f \in \text{str-ext } B(E(X))$;

b) if, in addition, X is a separable Banach space and $f \in \text{str-ext}$ B(E(X)), then $f(t)/||f(t)||_X \in \text{str-ext} B(X)$ for μ almost everywhere $t \in \text{supp } f$.

R. Pluciennik [7] shows that b) is true for any Köthe function space E and any Banach space X provided that T_f is measurable. It is also asked in [7] that whether a) is true without the locally uniform rotundity of E.

In this paper we first prove that T_f is measurable for any element f of a Köthe-Bochner space, then present a necessary condition for $f \in \text{str-ext } B(E(X))$ and show that the condition is also sufficient if E is order continuous. Finally, we show that the unit ball of E(X) has no strongly extreme points if E is a nonorder continuous Orlicz space. Since a denting point of a subset of a Banach space must be a strongly extreme point of the subset, our last result yields a negative answer to the question risen recently by C. Castaing and R. Pluciennik in [1].

2. Main results.

Definition 2.1. We say that a Köthe function space *E* has *Lebesgue*

dominated convergence property if $x_n, y_n, y \in E, x_n(t) \to 0 \mu$ almost everywhere on T and $|x_n| \leq y_n \to y$ in E imply $x_n \to 0$ in E.

Lemma 2.1. A Köthe function space E over (T, Σ, μ) has Lebesgue dominated convergence property if and only if it is order continuous.

Proof. \Rightarrow . Trivial.

⇐. If the "if" part of the lemma is not true, then there exist x_n, y_n , $y \in E, x_n(t) \to 0$ µ-almost everywhere on T and $|x_n| \leq y_n \to y$ in E but $||x_n|| > \varepsilon$ for some $\varepsilon > 0$.

It is known, for example, cf. [6], that if $y_n \to y$ in E, then $\{y_n\}$ has a subsequence $\{y_{n_k}\}$ such that $|y_{n_k} - y| \leq \varepsilon_k x$ for some $x \in E$ and $\varepsilon_k \downarrow 0$. So $|x_{n_k}| \leq y_{n_k} \leq |y| + \varepsilon_1 x$.

Let $z_k = \bigvee_{i=k}^{\infty} |x_{n_i}|$. Then $|x_{n_k}| \leq z_k \leq |y| + \varepsilon_1 x$ implies $z_k \in E$. We claim that $z_k \downarrow 0 \mu$ almost everywhere on T. Indeed, if this fails, then $z_k(t) > \varepsilon'$ for some $\varepsilon' > 0$ on some $G \in \Sigma$ with $\mu G > 0$. Since T is σ -finite, we may assume $\mu G < \infty$. Therefore, there exists $H \subset G$ such that $\mu H < \mu G$ and that $x_{n_k}(t) \to 0$ uniformly on $G \setminus H$. But this implies $z_k(t) < \varepsilon'$ on $G \setminus H$ for all large k contradicting that $z_k(t) > \varepsilon'$ on G. Hence, $|x_{n_k}| \leq z_k \downarrow 0$ implies also a contradiction that $\varepsilon < ||x_{n_k}|| \leq ||z_k|| \to 0$ since E is order continuous.

Lemma 2.2 (cf. [6]). Let E be Köhle function space over a complete σ -finite measure space (T, Σ, μ) and $f_n \to f$ in E. Then $\{f_n\}$ has a subsequence convergent to $f \mu$ almost everywhere on T.

Theorem 2.1. Let E be a Köthe function space over (T, Σ, μ) and X a Banach space. Then for any $f \in E(X)$, the set

$$T_f = \{t \in \operatorname{supp} f : f(t) / \|f(t)\|_X \in \operatorname{str-ext} B(X)\}$$

 $is \ measurable.$

Proof. For each $t \in \text{supp } f$ and $n \in \mathbb{N} = \{1, 2, ...\}$, define

(2.1)
$$\varepsilon_n(t) = \sup\{\|y\|_X : \|f(t) \pm y\|_X < 1 + 1/n\}$$

where $\overline{f}(t) = f(t)/||f(t)||_X$. Then $1/n \leq \varepsilon_n(t) \leq 2 + 1/n$ and $\varepsilon_n(t) \downarrow \varepsilon(t)$ for some $\varepsilon(t) \geq 0$. Clearly

(2.2)
$$\varepsilon(t) \equiv \lim_{n} \varepsilon_n(t) = 0 \iff \overline{f}(t) \in \operatorname{str-ext} B(X).$$

Hence, it suffices to show that $\varepsilon(t)$ is a measurable function. Since T is σ -finite, if we are able to prove that $\varepsilon(t)$ is measurable on each subset of T with finite measure, then it is measurable on the whole space T. Due to this argument, without loss of generality, we may assume that T itself has finite measure.

Choose simple functions $f_n(t) = \sum_i a_i^n \chi_{E^n}(t)$ such that $f_n \to f$ in E(X). By Lemma 2.2, we may assume $\|\bar{f}(t) - f_n(t)\|_X \to 0 \mu$ almost everywhere on T (passing to a subsequence if necessary) and such that the partition $\{E_i^{n+1}\}_i$ of supp f is finer than $\{E_i^n\}_i$ for every $i \in \mathbf{N}$. Whence by our assumption $\mu T < \infty$, for each $k \in \mathbf{N}$, there exists $T_k \in \Sigma$ with $\mu T_k < 1/k$ such that $\|\bar{f}(t) - f_n(t)\|_X \to 0$ uniformly on $T \setminus T_k$. If we are able to prove that $\varepsilon(t)$ is measurable on each $T \setminus T_k$, then it is measurable on $\cup_{k=1}^{\infty} (T \setminus T_k)$, whence it is measurable on the whole T since $\mu T_k < 1/k \to 0$ and T is complete. Hence, by this argument, without loss of generality, we may assume

(2.3)
$$\|\bar{f}(t) - f_n(t)\|_X < \frac{1}{3n}$$

for all $t \in \text{supp } f$. Then for any $t, s \in E_i^n$, since $f_n(t) = f_n(s)$, by (2.3),

(2.4)
$$\|\bar{f}(t) - \bar{f}(s)\|_X \le \|\bar{f}(t) - f_n(t)\|_X + \|f_n(s) - \bar{f}(s)\|_X < \frac{2}{3n}.$$

Pick arbitrarily $t_i^n \in E_i^n;$ then, by (2.1), there exists $y_i^n \in X$ such that

(2.5)
$$||y_i^n||_X > \left(1 - \frac{1}{n}\right) \varepsilon_n(t_i^n); \quad ||\bar{f}(t_i^n) \pm y_i^n||_X < 1 + \frac{1}{n}.$$

Define

(2.6)
$$\varepsilon'_n(t) = \sum_i \|y_i^n\|_X \chi_{E_i^n}(t); \qquad g_n(t) = \sum_i y_i^n \chi_{E_i^n}(t).$$

Then, by (2.1) and (2.5),

(2.7)
$$\varepsilon_n(t_i^n) \ge \varepsilon'_n(t_i^n) = \|y_i^n\|_X \ge (1 - 1/n)\varepsilon_n(t_i^n).$$

For any $t\in {\rm supp}\,f,\,t\in E_i^{3n}\subseteq E_j^n$ for some $i,j\in{\bf N}.$ By (2.1), we may find $y\in X$ such that

(2.8)
$$||y||_X > \left(1 - \frac{1}{n}\right) \varepsilon_{3n}(t); \quad ||\bar{f}(t) \pm y||_X < 1 + \frac{1}{3n}.$$

Then, by (2.8) and (2.4),

$$1 + \frac{1}{3n} > \|\bar{f}(t) \pm y\|_X$$

$$\geq \|\bar{f}(t_i^{3n}) \pm y\|_X - \|\bar{f}(t_i^{3n}) - \bar{f}(t)\|_X$$

$$\geq \|\bar{f}(t_i^{3n}) \pm y\|_X - \frac{2}{3n},$$

i.e.,

$$\|\bar{f}(t_i^{3n}) \pm y\|_X \le 1 + 1/n.$$

Therefore, (2.8), (2.1), (2.7), (2.6) and $t \in E_i^{3n} \subseteq E_j^n$ imply

(2.9)
$$\begin{pmatrix} 1-\frac{1}{n} \end{pmatrix} \varepsilon_{3n}(t) < \|y\|_X \le \varepsilon_n(t_i^{3n}) \\ \le \frac{n}{n-1} \varepsilon'_n(t_i^{3n}) = \frac{n}{n-1} \|y_j^n\|_X \\ = \frac{n}{n-1} \varepsilon'_n(t).$$

On the other hand, by (2.5) and (2.4) we have

$$\begin{split} \|\bar{f}(t) \pm y_i^{3n}\|_X &\leq \|\bar{f}(t) - \bar{f}(t_i^{3n})\|_X + \|\bar{f}(t_i^{3n}) \pm y_i^{3n}\|_X \\ &\leq \frac{2}{3n} + 1 + \frac{1}{3n} \\ &= 1 + \frac{1}{n}, \end{split}$$

which implies, by (2.1),

(2.10)
$$\varepsilon'_{3n}(t) = \|y_i^{3n}\|_X \le \varepsilon_n(t).$$

(2.9) and (2.10) show that

$$\varepsilon(t) = \lim_{n} \varepsilon_n(t) = \lim \varepsilon'_n(t),$$

which is measurable since, by (2.6), each $\varepsilon'_n(t)$ is measurable.

Corollary 2.1. If $f \in \text{str-ext } B(E(X))$, then for μ almost everywhere $t \in \text{supp } f$, $f(t)/||f(t)||_X \in \text{str-ext } B(X)$.

Theorem 2.2. Let E(X) be a Köthe-Bochner space, $f \in S(E(X))$. (i) If $f \in \text{str-ext } B(E(X))$, then (a) for μ almost everywhere $t \in \text{supp } f$, $f(t)/\|f(t)\|_X \in \text{str-ext } B(X)$; (b) $\|f(\cdot)\|_X \in \text{str-ext } B(E)$.

(ii) If E is order continuous, then (a) and (b) in (i) imply $f \in \text{str-ext } B(E(X))$.

Proof. (i) (a) follows immediately from Corollary 2.1. (b) Suppose $\varphi_n \in E$ satisfying

$$|| || f(\cdot) ||_X \pm \varphi_n(\cdot) ||_E \longrightarrow 1.$$

Define

$$g_n(t) = \begin{cases} \varphi_n(t)f(t)/\|f(t)\|_X & t \in \operatorname{supp} f, \\ \varphi_n(t)e & \text{otherwise,} \end{cases}$$

where $e \in X$ and $||e||_X = 1$. Then $g_n \in E(X)$ and

$$\|f \pm g_n\|_{E(X)} = \| \|f(t) \pm g_n(t)\|_X\|_E$$

= $\| \|f(t)\|_X \pm \varphi_n(t)\|_E \longrightarrow 1.$

Since $f \in \text{str-ext } B(E(X))$, we have $\|\varphi_n(\cdot)\|_E = \|g_n\|_{E(X)} \to 0$. This shows that $\|f(\cdot)\|_X \in \text{str-ext } B(E)$.

(ii) Assume that E is order continuous. Let $f \in S(E(X))$ satisfy (a) and (b) in (i). For any $g_n \in E(X)$ satisfying

$$||f \pm g_n||_{E(X)} \longrightarrow 1,$$

we define

$$\|\varphi_n(t) = \|f(t) + g_n(t)\|_X - \|f(t)\|_X.$$

Then

(2.11)
$$||| || f(t) ||_X + \varphi_n(t) ||_E = || f + g_n ||_{E(X)} \longrightarrow 1$$

and

(2.12)
$$\begin{aligned} \| \|f(t)\|_X - \varphi_n(t)\|_E &= \| \|2f(t)\|_X \\ &- \|f(t) + g_n(t)\|_X\|_E \\ &\leq \| \|f(t) - g_n(t)\|_X\|_E \\ &= \|f - g_n\|_{E(X)} \longrightarrow 1. \end{aligned}$$

By (2.13), (2.14) and (b), we deduce that $\varphi_n \to 0$ in E, i.e., $||f(\cdot) + g_n(\cdot)||_X \to ||f(\cdot)||_X$ in E. Similarly, we can prove $||f(\cdot) - g_n(\cdot)||_X \to ||f(\cdot)||_X$ in E.

Since $\{g_n\}$ is arbitrarily given, by Lemma 2.2, passing to a subsequence if necessary, we may assume

(2.13)
$$||f(t) \pm g_n(t)||_X \longrightarrow ||f(t)||_X$$

for μ almost everywhere $t \in \text{supp } f$. Therefore, for μ almost everywhere $t \in \text{supp } f$, we have

$$\left\|\frac{f(t)}{\|f(t)\|_X} \pm \frac{g_n(t)}{\|f(t)\|_X}\right\|_X \longrightarrow 1.$$

By condition (a), for μ almost everywhere, $t \in \text{supp } f$, $g_n(t) \to 0$ in X. But this is also true for μ almost everywhere $t \in T \setminus (\text{supp } f)$ according to (2.15). Thus, $g_n(t) \to 0$ for μ almost everywhere $t \in T$. Since

$$\|2g_n(\cdot)\|_X \le \|g_n(\cdot) - f(\cdot)\|_X + \|g_n(\cdot) + f(\cdot)\|_X \longrightarrow 2\|f(\cdot)\|_X,$$

by Lemma 2.1, we find that $g_n \to 0$ in E(X) and, thus, $f \in \text{str-ext } B(E(X))$.

Corollary 2.2. If E is a nonorder continuous Orlicz space, then B(E(X)) has no strongly extreme points.

Proof. By [2], B(E) has no strongly extreme points if E is not order continuous. Therefore, B(E(X)) has no strongly extreme points by Theorem 2.2.

Remark. C. Castaing and R. Pluciennik proved in [1] that

(a) For a given locally uniformly rotund Köthe function space E over a measure space (T, Σ, μ) and a Banach space X, if $f \in S(E(X))$ is such that f(t)/||f(t)|| is a denting point of B(X) for μ almost everywhere $t \in \text{supp } f$, then f is a denting point of B(E(X)).

(b) If, in addition, X is separable, then for each denting point f of B(E(X)), f(t)/||f(t)|| is a denting point of B(X) for μ almost everywhere $t \in \text{supp } f$.

Then they asked a question about whether the above two results still hold without requiring that E be locally uniformly rotund. From our Corollary 2.2, if E is a nonorder continuous Orlicz space, then B(E(X))has no strongly extreme points and, of course, it has no denting points. This answers their question negatively.

REFERENCES

1. C. Castaing and R. Pluciennik, *Denting points in Köthe-Bochner spaces*, Set Valued Analysis 2 (1994), 439–458.

2. Yunan Cui and Tingfu Wang, Strongly extreme points in Orlicz spaces, Pure Appl. Math. 7 (1987), 335–340.

3. B.V. Godun, Bor-Luh Lin and S.L. Troyanski, On the strongly extreme points of convex bodies in separable Banach spaces, Proc. Amer. Math. Soc. **114** (1992), 673–675.

4. Zhibao Hu, Strongly extreme points and the Radon-Nikodym property, Proc. Amer. Math. Soc. **118** (1993), 1167–1171.

5. H. Hudzik and M. Mastylo, *Strongly extreme points in Köthe-Bochner spaces*, Rocky Mountain J. Math. **23** (1993), 899–909.

6. L.V. Kantorovic and G.P. Akilov, *Functional analysis*, Second edition, Pergamon Press, New York, 1982.

7. R. Pluciennik, On characterization of strongly extreme points in Köthe-Bochner spaces, to appear.

8. M.A. Smith, Strongly extreme points in $L^p(\mu, X)$, Rocky Mountain J. Math. 16 (1986), 1–5.

KÖTHE-BOCHNER SPACES

Department of Mathematics, University of Iowa, Iowa City, IA 52242 Department of Mathematics, University of Iowa, Iowa City, IA 52242