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ON STRONGLY EXTREME POINTS IN
KÖTHE-BOCHNER SPACES

SHUTAO CHEN AND BOR-LUH LIN

ABSTRACT. Let E(X) be a Köthe-Bochner space and f
an element of the unit sphere of E(X). Then for f to be a
strongly extreme point of the unit ball of E(X) it is necessary
that ‖f(t)‖X be a strongly extreme point of E and that
f(t)/‖f(t)‖X be a strongly extreme point of X for µ almost
everywhere t ∈ supp f . Furthermore, if E is order continuous,
then the condition is also sufficient. If E is a nonorder
continuous Orlicz space, then the unit ball of E(X) has no
strongly extreme points which gives a negative answer to the
question about the criteria for the denting points of Köthe-
Bochner spaces raised by C. Castaing and R. Pluciennik.

1. Introduction. Let (T, Σ, µ) be a measure space with complete
σ-finite measure µ and L0 the space of all (equivalence classes of)
µ-measurable real valued functions. For f, g ∈ L0, f ≤ g means
f(t) ≤ g(t) for µ almost everywhere t ∈ T .

A Banach subspace E of L0 is said to be a Köthe function space, if

(i) for any f, g ∈ L0, |f | ≤ |g| and g ∈ E imply f ∈ E and
‖f‖E ≤ ‖g‖E ;

(ii) supp E = ∪{supp f : f ∈ E} = T .

A Köthe space E is said to be order continuous provided that xn ↓ 0
implies ‖xn‖ → 0.

If E is a Köthe function space over (T, Σ, µ) and X is a Banach
space, then by E(X) we denote the Köthe-Bochner Banach space of all
(equivalence classes of) strongly measurable functions f : T → X such
that ‖f(·)‖X ∈ E equipped with the norm ‖f‖E(X) = ‖‖f(·)‖X‖E .
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For any Banach space X, we denote by B(X) and S(X) the unit ball
and the unit sphere of X, respectively.

A point x ∈ S(X) is said to be a strongly extreme point of B(X) [x ∈
str-extB(X)] if, for every sequence {xn} ⊂ X, limn→∞ ‖xn ± x‖X = 1
implies limn→∞ ‖xn‖X = 0.

Let E(X) be a Köthe-Bochner space over (T, Σ, µ). For each f ∈
E(X), we denote

Tf =
{

t ∈ supp f :
f(t)

‖f(t)‖X
∈ str-extB(X)

}
.

H. Hudzik and M. Mastylo [5] proved the following

Theorem 1.1. Let E be a locally uniformly rotund Köthe function
space over a measure space (T, Σ, µ) and X a Banach space.

a) If f ∈ S(E(X)) and f(t)/‖f(t)‖X ∈ str-extB(X) for µ almost
everywhere t ∈ supp f , then f ∈ str-extB(E(X));

b) if, in addition, X is a separable Banach space and f ∈ str-ext
B(E(X)), then f(t)/‖f(t)‖X ∈ str-extB(X) for µ almost everywhere
t ∈ supp f .

R. Pluciennik [7] shows that b) is true for any Köthe function space
E and any Banach space X provided that Tf is measurable. It is
also asked in [7] that whether a) is true without the locally uniform
rotundity of E.

In this paper we first prove that Tf is measurable for any element
f of a Köthe-Bochner space, then present a necessary condition for
f ∈ str-extB(E(X)) and show that the condition is also sufficient if E
is order continuous. Finally, we show that the unit ball of E(X) has
no strongly extreme points if E is a nonorder continuous Orlicz space.
Since a denting point of a subset of a Banach space must be a strongly
extreme point of the subset, our last result yields a negative answer to
the question risen recently by C. Castaing and R. Pluciennik in [1].

2. Main results.

Definition 2.1. We say that a Köthe function space E has Lebesgue
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dominated convergence property if xn, yn, y ∈ E, xn(t) → 0 µ almost
everywhere on T and |xn| ≤ yn → y in E imply xn → 0 in E.

Lemma 2.1. A Köthe function space E over (T, Σ, µ) has Lebesgue
dominated convergence property if and only if it is order continuous.

Proof. ⇒. Trivial.

⇐. If the “if” part of the lemma is not true, then there exist xn, yn,
y ∈ E, xn(t) → 0 µ-almost everywhere on T and |xn| ≤ yn → y in E
but ‖xn‖ > ε for some ε > 0.

It is known, for example, cf. [6], that if yn → y in E, then {yn} has
a subsequence {ynk

} such that |ynk
− y| ≤ εkx for some x ∈ E and

εk ↓ 0. So |xnk
| ≤ ynk

≤ |y| + ε1x.

Let zk = ∨∞
i=k|xni

|. Then |xnk
| ≤ zk ≤ |y| + ε1x implies zk ∈ E.

We claim that zk ↓ 0 µ almost everywhere on T . Indeed, if this
fails, then zk(t) > ε′ for some ε′ > 0 on some G ∈ Σ with µG > 0.
Since T is σ-finite, we may assume µG < ∞. Therefore, there exists
H ⊂ G such that µH < µG and that xnk

(t) → 0 uniformly on G\H.
But this implies zk(t) < ε′ on G\H for all large k contradicting that
zk(t) > ε′ on G. Hence, |xnk

| ≤ zk ↓ 0 implies also a contradiction that
ε < ‖xnk

‖ ≤ ‖zk‖ → 0 since E is order continuous.

Lemma 2.2 (cf. [6]). Let E be Köhle function space over a complete
σ-finite measure space (T, Σ, µ) and fn → f in E. Then {fn} has a
subsequence convergent to f µ almost everywhere on T .

Theorem 2.1. Let E be a Köthe function space over (T, Σ, µ) and
X a Banach space. Then for any f ∈ E(X), the set

Tf = {t ∈ supp f : f(t)/‖f(t)‖X ∈ str-extB(X)}

is measurable.

Proof. For each t ∈ supp f and n ∈ N = {1, 2, . . . }, define

(2.1) εn(t) = sup{‖y‖X : ‖f̄(t) ± y‖X < 1 + 1/n}
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where f̄(t) = f(t)/‖f(t)‖X . Then 1/n ≤ εn(t) ≤ 2 + 1/n and
εn(t) ↓ ε(t) for some ε(t) ≥ 0. Clearly

(2.2) ε(t) ≡ lim
n

εn(t) = 0 ⇐⇒ f̄(t) ∈ str-extB(X).

Hence, it suffices to show that ε(t) is a measurable function. Since T is
σ-finite, if we are able to prove that ε(t) is measurable on each subset
of T with finite measure, then it is measurable on the whole space T .
Due to this argument, without loss of generality, we may assume that
T itself has finite measure.

Choose simple functions fn(t) =
∑

i an
i
χEn(t) such that fn → f in

E(X). By Lemma 2.2, we may assume ‖f̄(t) − fn(t)‖X → 0 µ almost
everywhere on T (passing to a subsequence if necessary) and such that
the partition {En+1

i }i of supp f is finer than {En
i }i for every i ∈ N.

Whence by our assumption µT < ∞, for each k ∈ N, there exists
Tk ∈ Σ with µTk < 1/k such that ‖f̄(t) − fn(t)‖X → 0 uniformly on
T\Tk. If we are able to prove that ε(t) is measurable on each T\Tk,
then it is measurable on ∪∞

k=1(T\Tk), whence it is measurable on the
whole T since µTk < 1/k → 0 and T is complete. Hence, by this
argument, without loss of generality, we may assume

(2.3) ‖f̄(t) − fn(t)‖X <
1
3n

for all t ∈ supp f . Then for any t, s ∈ En
i , since fn(t) = fn(s), by (2.3),

(2.4) ‖f̄(t) − f̄(s)‖X ≤ ‖f̄(t) − fn(t)‖X + ‖fn(s) − f̄(s)‖X <
2
3n

.

Pick arbitrarily tni ∈ En
i ; then, by (2.1), there exists yn

i ∈ X such
that

(2.5) ‖yn
i ‖X >

(
1 − 1

n

)
εn(tni ); ‖f̄(tni ) ± yn

i ‖X < 1 +
1
n

.

Define

(2.6) ε′n(t) =
∑

i

‖yn
i ‖XχEn

i
(t); gn(t) =

∑
i

yn
i
χEn

i
(t).



KÖTHE-BOCHNER SPACES 1059

Then, by (2.1) and (2.5),

(2.7) εn(tni ) ≥ ε′n(tni ) = ‖yn
i ‖X ≥ (1 − 1/n)εn(tni ).

For any t ∈ supp f , t ∈ E3n
i ⊆ En

j for some i, j ∈ N. By (2.1), we may
find y ∈ X such that

(2.8) ‖y‖X >

(
1 − 1

n

)
ε3n(t); ‖f̄(t) ± y‖X < 1 +

1
3n

.

Then, by (2.8) and (2.4),

1 +
1
3n

> ‖f̄(t) ± y‖X

≥ ‖f̄(t3n
i ) ± y‖X − ‖f̄(t3n

i ) − f̄(t)‖X

≥ ‖f̄(t3n
i ) ± y‖X − 2

3n
,

i.e.,
‖f̄(t3n

i ) ± y‖X ≤ 1 + 1/n.

Therefore, (2.8), (2.1), (2.7), (2.6) and t ∈ E3n
i ⊆ En

j imply

(2.9)

(
1 − 1

n

)
ε3n(t) < ‖y‖X ≤ εn(t3n

i )

≤ n

n − 1
ε′n(t3n

i ) =
n

n − 1
‖yn

j ‖X

=
n

n − 1
ε′n(t).

On the other hand, by (2.5) and (2.4) we have

‖f̄(t) ± y3n
i ‖X ≤ ‖f̄(t) − f̄(t3n

i )‖X + ‖f̄(t3n
i ) ± y3n

i ‖X

≤ 2
3n

+ 1 +
1
3n

= 1 +
1
n

,

which implies, by (2.1),

(2.10) ε′3n(t) = ‖y3n
i ‖X ≤ εn(t).
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(2.9) and (2.10) show that

ε(t) = lim
n

εn(t) = lim ε′n(t),

which is measurable since, by (2.6), each ε′n(t) is measurable.

Corollary 2.1. If f ∈ str-extB(E(X)), then for µ almost every-
where t ∈ supp f , f(t)/‖f(t)‖X ∈ str-extB(X).

Theorem 2.2. Let E(X) be a Köthe-Bochner space, f ∈ S(E(X)).

(i) If f ∈ str-extB(E(X)), then

(a) for µ almost everywhere t ∈ supp f , f(t)/‖f(t)‖X ∈ str-extB(X);

(b) ‖f(·)‖X ∈ str-extB(E).

(ii) If E is order continuous, then (a) and (b) in (i) imply f ∈
str-extB(E(X)).

Proof. (i) (a) follows immediately from Corollary 2.1.

(b) Suppose ϕn ∈ E satisfying

‖ ‖f(·)‖X ± ϕn(·)‖E −→ 1.

Define

gn(t) =
{

ϕn(t)f(t)/‖f(t)‖X t ∈ supp f ,
ϕn(t)e otherwise,

where e ∈ X and ‖e‖X = 1. Then gn ∈ E(X) and

‖f ± gn‖E(X) = ‖ ‖f(t) ± gn(t)‖X‖E

= ‖ ‖f(t)‖X ± ϕn(t)‖E −→ 1.

Since f ∈ str-extB(E(X)), we have ‖ϕn(·)‖E = ‖gn‖E(X) → 0. This
shows that ‖f(·)‖X ∈ str-extB(E).

(ii) Assume that E is order continuous. Let f ∈ S(E(X)) satisfy (a)
and (b) in (i). For any gn ∈ E(X) satisfying

‖f ± gn‖E(X) −→ 1,
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we define
‖ϕn(t) = ‖f(t) + gn(t)‖X − ‖f(t)‖X .

Then

(2.11) ‖ ‖f(t)‖X + ϕn(t)‖E = ‖f + gn‖E(X) −→ 1

and

(2.12)

‖ ‖f(t)‖X − ϕn(t)‖E = ‖ ‖2f(t)‖X

− ‖f(t) + gn(t)‖X‖E

≤ ‖‖f(t) − gn(t)‖X‖E

= ‖f − gn‖E(X) −→ 1.

By (2.13), (2.14) and (b), we deduce that ϕn → 0 in E, i.e., ‖f(·) +
gn(·)‖X → ‖f(·)‖X in E. Similarly, we can prove ‖f(·) − gn(·)‖X →
‖f(·)‖X in E.

Since {gn} is arbitrarily given, by Lemma 2.2, passing to a subse-
quence if necessary, we may assume

(2.13) ‖f(t) ± gn(t)‖X −→ ‖f(t)‖X

for µ almost everywhere t ∈ supp f . Therefore, for µ almost everywhere
t ∈ supp f , we have

∥∥∥∥ f(t)
‖f(t)‖X

± gn(t)
‖f(t)‖X

∥∥∥∥
X

−→ 1.

By condition (a), for µ almost everywhere, t ∈ supp f , gn(t) → 0 in X.
But this is also true for µ almost everywhere t ∈ T\(supp f) according
to (2.15). Thus, gn(t) → 0 for µ almost everywhere t ∈ T . Since

‖2gn(·)‖X ≤ ‖gn(·) − f(·)‖X + ‖gn(·) + f(·)‖X −→ 2‖f(·)‖X ,

by Lemma 2.1, we find that gn → 0 in E(X) and, thus, f ∈
str-extB(E(X)).

Corollary 2.2. If E is a nonorder continuous Orlicz space, then
B(E(X)) has no strongly extreme points.
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Proof. By [2], B(E) has no strongly extreme points if E is not order
continuous. Therefore, B(E(X)) has no strongly extreme points by
Theorem 2.2.

Remark. C. Castaing and R. Pluciennik proved in [1] that

(a) For a given locally uniformly rotund Köthe function space E over
a measure space (T, Σ, µ) and a Banach space X, if f ∈ S(E(X)) is such
that f(t)/‖f(t)‖ is a denting point of B(X) for µ almost everywhere
t ∈ supp f , then f is a denting point of B(E(X)).

(b) If, in addition, X is separable, then for each denting point f
of B(E(X)), f(t)/‖f(t)‖ is a denting point of B(X) for µ almost
everywhere t ∈ supp f .

Then they asked a question about whether the above two results still
hold without requiring that E be locally uniformly rotund. From our
Corollary 2.2, if E is a nonorder continuous Orlicz space, then B(E(X))
has no strongly extreme points and, of course, it has no denting points.
This answers their question negatively.
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