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On Strongly Pettis Integrable Functions
in Local/y Convex Spaces

N. D. CHAKRABORTY and SK. JAKER ALI

ABSTRACT. Sorne characterizations have been given for ¿he relative compactness
of dic range of ¿he indefinite Pettis integral of a function defined on a complete
finite measure space with values in a quasicomplete Hausdorff locally convex
space. It Itas been sliown tliat tlie indefinite Pettis integral has a relatively compact
range if tIte functions is measurable by serninorni. Separation property has been
defrned for a scalarly measurable function asid it Itas been proved that a function
with tuis property is integrable by seminorni.

For a bounded function another characterization has been given for the relative
cornpactness of the range of ¿lic indefinite Pettis integral. Dunford-Pettis-PhuIlips
theorem has been generalized ¿o locaiJy convex spaces and as a corollary of ibis
tbeorem sorne results which are valid for Banach spaces Itave been extended to lo-
cally convex spaces.

INTRODUCTION

TIte object of tItis paper is to study the relative cornpactness property
of tIte tange of tIte indefinite integral of a Pettis integrable function defined
on a complete finite measure space wi¿b values in a quasicomplete locally
convex space. It is wellknown tItat tIte range of ¿be indefinite Pettis inte-
gral is always weakly relatively compact. Now tIte question whether it is
relatively compact or not is a problem raised by B . J - Pettis rnany years
ago. The answer was given in te negative by a counterexaniple con-
structed by Fremlin and Talagrand in their famous paper [13]. Stegall
showed that tIte answer is affirma¿ive if sorne restriction is irnposed on tIte
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underlying measure space—namely tIte nicasure space is perfect. Thereafter,
niany autliors have studied ¿he problem and have given different types of
characterizations. Edgar[8] characterised this tItrough a linear operator
while Ernmanuele and Musial did die same in a recent paper [II] tlirough
a bilinear funccjonal associated with tIte function under consideration.
AII of tliese results were given in a Baruch space setting. It Itas also been
pointed in [6, p. 150] ¿bat the aboye probleni Itas an affirrnative answer
for BanacIt spaces witIt Oelfand-Phu]lips property and some examples of
¿bis class of spaces Itave been presented, one of tItern being Banach spaces
witIt weak* sequentially compact dual balís.

A. J. Pallares and O. Vera [23], [24] have made a detailed study of
tIte probleni and have generalized many of tIte aboye mentioned results to
a quasi-cornplete locally convex space. They defined a Pettis integrable
function to be strongly Pettis integrable if ¿be range of the indefinite Pettis
integral is relatively cornpact.

In this paper, we Itave studied strongly Pettis integrable functions and
¿beir connections widi some linear operators associated with them in a lo-
cally convex space.

In Section 1, we have considered tIte functions whicIt are not necess-
arily bounded and sorne equivalent conditions for the strong Pettis integra-
bility Itave been establisIted. Sorne of diese, however, can be found in [24]
tItough tIteir proof is somewhat different. It has been sliown tItat every Pet-
tis integrable function taking values in a Gelfand-Phillips space is strongly
Pettis integrable. Also we Itave proved that if a Pettis integrable function is
measurable by serninorm, tIten it is strongly Pettis integrable which is a
generalization of a well-known result in Banacli space [5, p. 224]. The
section Itas been closed widi a result similar to one of A. Ionescu Tulcea
[19].

In Section 2, tIte func¿ions have been assurned to be bounded. TIte as-
suniption enables us to introduce two new operators associated witli the
functions and tIteir strong Pettis integrability Itas been studied tlirough
these operators. The well-known tIteorem of Dunford-Pe¿tis-Phullips Itas
been generalized to a locally convex space where tIte representing function
is integrable by seminorm. As a corollary Wc have olitained Philips’ the-
orem and Itave also generalized two results of Geitz and Uhí [15] to
locally convex spaces.

NOTATIONS AND TERMINOLOGIES

Throughout ¿Itis paper (fi, X, pi) stands for a coniplete finite measure
space. X is a locally convex Hausdorff topological vector space assumed lo
be quasi-cornple¿e, in sItort, a locally convex space, witIt its topology .17.
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By á$(X) we mean a fundamental collection of continuous seniinonns on
X which determines the topology Y. X’ denotes the topological dual of
X. If tIte topology of X (resp. X’) is understood, it will be always
sumed to be tIte original topology .17 (resp. strong topology fi(X’, X)).
Por pEáY(X), Vi, represents tIte set {xEX:p(x)~I> in X and for x0EX
asid ciz~0, we write

Ui,(x0, e)={xEX:p(x—x0)-Ce}

For a subset A of X, A” denotes tIte polar of A in X ‘ - The transpose of
a continuous linear operator T is denoted by T*.

Por dic termilogies and properties used in tIte sequel concerning a lo-
cally convex space we refer to [18].

1. STRONG PETTIS INTEGRARIILITY

1. Defin¡tions. A function f:fl—*X is said to be scalar/y measurable
(resp. sca/arly integrable) Iffor each x’EX’ tite scalar function x ‘y’ is
measurable (in pi-almos everywitere) (resp. x ‘fEL, (u)).

Tite function y’ is said to be Pettis integrable <1’ it is scalarly integrable
ami for each EEX, titere exists an xEEX sucit titat

x’(xj= fx’fdpi

E

for alí x’EX’ and XE is called tite Petás integral of y’ over E atad is de-
noted by

xE—P—Jfd/Á -

E

Iii ¿bis case we obtain a countably additive, p-continuous vector
measure m1:X—*X defined by

m1(E)=P— IfdM
E

for EEl and it is said to be induced by y’.
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Tue function y’ is said to be stronggly Pettis integrable if it is Pettis in-
tegrable and die range of tIte induced vector measure ni1, namely tIte set

m1(2)= {P— Jfdpi:EE27}~

E

is relatively compact in X [24]

For a scalarly integrable function y’:IiI—*X we define the linear operator
Ti-: X’—*L1Q¿) by

T/x’) = x ‘y’

for x’ EX’. It is easy to see diat y’ is Pettis integrable if and only if Tf
is weak* to weak continuous and if and only if 0y’ is Pettis integrable
for eacIt 0EL=(u). So, whenever fis Pettis integrable we can define tIte
linear operator

4(0)=P— J’0fd~
fa

for 06L,,Q4. It can be shown tItat I~ is continuous and

77 I~ and

17= -

For a scalarly integrable function y’: Q—* X we define die bilinear func-
tional Q1 on X’ XL,4u) by

Q1(x’, 0)=Jx’(0Ddu
fi

forx’EX’ and 0EL,4u) [11].

It is easy to verify tItat y’ is Pectis integrable if and only if ¿he bilinear
functional Q1 is separately continuous widi respect to tIte product ¿opology
weak* >< weak* of X’XL,4u).

Also we note ¿bat
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Q,(x’. 0)=<0, T1(x’)>x’Q(0))

for alí x’EX’ and 0EL«(u).

A subset A of a locally convex space X is said to be lirnited ~f

hm supIx~xj 0
xCA

for eacit weak* nulí sequence {x~ } ita X’ -

A locally convex space X is said to be a Oe/y’and-Phillips space witen-

ever limited subsets of X are relatively compact.

2. Lemma. Tite range of tite induced vector measure of a Pettis in-

tegrable futaction y’: fi—~X is a limited subset of X.

Proof. itt {x } be a weak* nulí sequence in X’ - Since y’ is Pettis in-
tegrable, it can be proved, by aix application of Vitali’s convergence ¿be-
orem, tItat ¿he linear operator TpX’—*L¿u) is weak* to Ii-ib sequen¿ially
continuous. Hence tIte sequence {T1x~}, ¿bat is, {x,’,y’} converges in II HL1 to
zero in L1(a); in otIter words,

Now

sup ¡x,9n/E)¡=sup Ixjdpi
Ecl Ecl 1

E

~ supj x~idpi
E

<ix,fid>u
o

=11411k
asid Itence

himsupj4rn1(E)~ 0
“ Ecl
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wliicIt sItows tliat ¿he set m/.Z) is a lirnited subset of X and tIte lenima is
proved.

3. Corollary. ¡y’ X is a Oely’and-Fitil/ips space, titen every Pettis in-
tegrable function y’: fl—*X is strongly Pettis integrable.

Note. If X is a BanacIt space witIt a weak1’ sequentially compact dual
balI, then every limited subset of X is relatively conipact [4, p. 238,
Ex.4(ii)] asid hence every Pettis integrable function taking values in X is
strongly Pettis integrable.

TIte corresponding result for a locally convex space has been proved in
Corollary 5(b).

We now give some characterizations for strong Pet¿is integrability of y’
in terms of die operators 7} and I~, and ¿be bilinear functional Q

1 as Itas
been done in [8], [24], [23] and [11].

4. Theorem. Let y’: fi—*X be a Pettis integrable fuaction. Theta tite
y’o/lowing conditiotas are equivalent:

(1) y’ is strongly Pettis integrable.
(2) For eacit pEá/(X), tite restriction of T1 to V is weak* to non

continuous.
(3) E’or each pE.~7(X), tite restriction of Q1 so X RL(A,) is wetik* X

weak* continuous, where BL(U) is tite closed unU balí of L(u).
(4) For each pE .Y(X), tite set {x ‘y’:x’ E V } is non compact ita

L(pi).
(5) For each pE .~Á(X), every sequence {x } in V itas a subsequence

{4} such that {x,,f> converges pi-a/rnost everywhere.
(6) Tite restriction of 4 so BL~) is weak* so .17 continuous.

(7) 1~ is compact.

Proof. (1)=~d2). Let pE.=(X) and {x,} be a net in V converging
¿o x in tIte weal& topology. Since is equicontinuous in X’ and m1(S)

is relatively compact in X, tIte net {x3 converges uniformly on rn1(Z) to
0. Now
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LT1(x1)—Tí(x’)~¡1= (x’0—x’)mj(fi) ~ 4 sup {I(xt—x’)m1(E)l:EEX}.

Consequently,

limIIT/xfl—T/x’)lLí=0

wliicli gives (2).

(2)ztd3). Let pEY(X) and {&4} be a net m V7 converging to x’ in
to0tIte weak# topology of X’ and let {0~} be a net in BL~) converging

in tIte weakM< topology of L4u). Then,

Since Tjx’)sL,(u), we Itave

a.
and (3) follows.

(3) ~- (4). Let pEJ(X) and {x} be a net lii V7 and le¿ {x~}
element x’ E y;.subnet converging in tIte weak* topology of X’ to an

for eacli fi,

E~= {w E fi: (4 —x’ 4(w) ?zO}

so tliat E~ E 2 and

fi\E~={wEfi:(x,—x’)f(w)<0} -

We now put

TIten it is easy Lo see ¿bat 0gERL~,) and

(4 — x’ ) 1k = 1 J((4— x’) (1))0Au -

fi

be a
Let,

itt {0~} be a weak~-convergen¿ subnet of {09 witli limit 0EBL~s.
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Now

1(4 —x’)(f)j[ = J ((4—x’)fl0Áu 1
o

Not {4}, being a subnet of {$}, converges to x’ in tIte weak* topo-
logy and so we have

hl (4 — x ‘vi = O

wIticli shows that ¿be set {x ‘f:x’ E V,~ } is non compact in L1 (u).

(4)=a-(5). Trivial.

(5) ~ (4). Let p E ,íY(X). Let {x } be a sequence in 1-7. TIten tItere
exisís a subsequence {4~} such ¿bat tIte sequence {45f} converges y-al-
most everywhere. Also tIte sequence {xty’} is uniformly integrable
[3, Lemma 1] or [22, p. 162]. Therefore an applicaíion of Vitali’s conver-
gence theoTem implies thai

Ixty’—x’flIi--*0
wIticIt gives (4).

(4)~(6). Let {0a} be a weak~-convergent net in BL~, witli limit 0-
Now for p&Y(X),

pQ(00)—4(0))= sup l<0j0, x’f>~
-5 C~Vp

asid B¿«,) being equicontinuous, 0~ converges uniforrnly to 0 on tIte com-
pact set {x’y’:x’EV[} and Itence

in ¿be .T-topology of X and tIte result follows.

(6)~.(’fl. it is an imniediate consequence of ¿he fact thai ~ is a
neiglibourItood of zero for the - U topology as wel¡ as a weak* conipact
set iii L,,(u).
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(7)=a~(h). It follows trivially from ¿be fact tItat tIte set {L:EEX} is
contained in &,.Úo-

Remark. If X is complete, tIten Gro¿bendieck’s completeness tlieoreni
enables us to replace Pettis integrability by scalar integrability in order to
prove tIte equivalences of tIte conditions(í), (2) asid (3) in tIte aboye tIte-
orem.

5. Coroflary. (a) A sca/arly integrable y’unction y’:fi—~X is strong/y
Fertis integrable íf atad only iy’0y’ is strongly Pettis integrable y’or every
0EL0(pi).

(b) ¡y’ each equicontinuous set in X’ is weak* sequentially relatively
conipact, titen every Penis integrable funcrion with values in X is strongly
Penis integrable -

(c) ¡y’for a Pettis integrable funcrion y’: fi—~X, tite operator 7} is com-
pacr, then y’ is strongly Pettis integrable -
¡y’ X is metrizable, tite converse is also trise.

Proof. (a) asid (b) are obvious ftom Tueorem 4.

(c) Tue first part is triviah.

Conversely, it is given ¿bat 4 is compact. Since 4* = 7}, tIte result
follows froni [9, p. 669, Corollary 9.6.3].

Wc now consider ¿be functions whicIt are measurable by serninon.
Por dxc definitions and properties of strong measurability and rneasurability
by seminorm and strong integrability and integrability by seminorm of a
function witIt values in a locally convex space we refer to [1].

It is well known [27, p. 65] diat if a function y’:fi—*X is scalarly inte-
grable, then for each pE.Y(X),

¡3(f)= sup Jjx’f Idu<oc.
PO

Ibe non-negative function ¡3 is cahhed a Pettis seniinorm over the space
of alí scalarly integrable functions widi values in X.
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6. Tbeorem. Ifa Pettis integrable futaction f:fl—*X is measurable by
seminorm, titen for each p E2(X) titere exisis a sequence {f~ } of simple
y’unctions sucit titat

Proof. Let pEY(X) and e>0. It is sufficient to prove tliat ¿here

exists a simple function f6:fi—*X such ¿bat

p(f~-f)<e.

Since y’ is measurable by seminorm, widiout any loss of generality, we
may assunie that f(fi) is separable for p [1,p. 84, TIteorem2.2] so tItat
tItere exists a countable p-dense subset {x,, x2, - - .} in f(fi).

itt

(Ifpi (fi) = 0, ¿ben ¿be result is trivial).

TIten the collection

covers y’(fi). Let

A~= {wEQ:y’(w)EUi,(x~,q)}.

It is easy to verify that A~EX for cadi ta. itt

E, =A,

and
E~=A~\ UA,,forn>1

¡00

and let us define tIte function g,:fi—*X by

gr(w) =x~

if <o EE~ - It is obvious that g~ is measurable by seminon and countably-
valued. Also for eacIt wEfi
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p(y’(w)—g,(w))-Cq

so that

x

for alí x’EV.

Now

x’gr(o.Oj ~ x’(gr(w)—f(w))~ + jx’f(w)~

<q + Ix’f(aOI
for alt wEfi andx’EV% Hence forEEZ

x’gjdpi~~pi(E)+ Jix’.nd1u.

So,

sup J
E

E

sup
x’EV’‘o

~2M(fr+P(Z~tD.

Putting

¿(E)=supfIx’g~Idpi,

E

we Itave

¿(E) ~ c/3+P(xEf).

Since y’ is Pettis
grable [22, p. 162].

integrable, tIte family {x’f:x’ EV,~} is uniformly inte-
Hence we can find a a>0 sucli tliat

x ‘(x~fl~dy

for CFI with pi(E)’ca.
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Now

fl= 1

So diere exists a positive integer Ala such tliat

X
~N,,+ 1

ittting

Ea= U E,,
nN,+ 1

we Itave

fi(E0) -ca

and Itence

¿(E,,)<2e/3.

Finally, we define y’8:fi—.X by

y’,(<ú½x~, ifwEE,, and n~N0

=0, elsewliere.

Tuen f is evidently a simple funetion and measurable by semi-non and

¡3(fr—nJ x’(f—g9jdpi+sup
PO

Cn~(Q)+supJix’gJd~

=e13+¿(E)<e

x’EV’
PO

and dic theorem is proved.
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7. Theoreni. ¡y’ a Pettis integrable function y’:fI—*X is measurable by
seminorrn, in particular strongly measurable, titen it is strongly Pettis in-
tegrable.

Proof. itt pE.Y(X). Tuen by die aboye dxeorem tbere
quence 1], } of simple functións such diat

Now, forEEZ,

p(Jf~dpi—rnj(E))~supfx’~n--n ‘4’
E E

~P(f”-fl.

merefore,

P(>Ifndpim/E))
E

converges to zero uniformly for EE2’. An appeal
Theorem 9] implies diat y’ is strongly Pettis integrable -

to [h7, p. 22,

8. Corollary. A Pettis integrable function y’: f1—~X is strongly Pettis

integrable in eacit of tite y’ollowing cases:

(i) y’ is integrable by serninorrn, in particular strongly integrable -

(u) y’ is weakly equivalent to a function g :fl—X which is measurable
by serninorrn.

(iii) X is separable by serninorrn.

(iv) X is a local/y convex Suslin space.

9. Definition. A sca/arly measurable y’unction y’:fl—*X is said to
itave tite separation properzy over a set KCX’ <f tite y’amily {x’y’:x’ EK}

exists a se-
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of scalar-valued measurable functions itas tite separation property, tital is,
whenever 4, 4 EK aníS 4y’=xj pi-alrnost everywhere, titen x~y’(w) =

4y’(w)for alí wEfl [19].

TIte following tIteorem is analogous to a result of A. Ionescu Tulcea
[19, p. 177, Tueorem3] asid it can be proved in a similar manner.

10. Theorem. Let y’:fl—*X be a scalarly measurable function. Titen
it is measurable by seminorrn if atad only <ffor every p E .9(X) titere exisis
a set £ili,E2’ with y(lil\O4=O sucit titat tite restriction oy’y’ to fI~ itas tite
separation property over V.

Remark. WitIt tIte Itelp of the aboye theoreni and a result of
A.Ionescu Tulcea [19] or S.S.KIturana [20], an alternative proof of
TIteorem 7 can be given as follows:

itt y’ be Pettis integrable and measurable by seniinorm and let, for
pE2(X), fi,, be as in ¿be aboye tIteorem. itt

g,, =fx~
and

H,,= {x’fx’ EV9

Clearly

H,,={x’gi,:x’EV}

asid it Itas tIte separation property. Also it is convex and compact for tIte
topology of pointwise convergence. Hence by [19,p. 171, Theorem 1] or
[20, p. 388, Theorem 1], Hi, is sequentially compact for tIte topology of
pointwise convergence and die proof is complete by TIteorem 4.

11. Corolhary. 1y’ a scalarly measurable y’unction f:f1—*X itas tite
separation proper¡y over eacit equicontinuous set in X’, titen y’ is measur-
able by seminorm atid itence, <f y’ is Fettis integrable, titen it is strong/y
Pettis integrable.

Proof. It follows inimediately from TIteorem 10 and TIteorem 7.
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2. ROUNDED FUNCTIONS

Wc now consider a funetion ffl—*X which is bounded. In this
case, f is scalarly integrable whenever it is scalarly measurable.
Moreover, x ‘fE L~. (te) for each x’EX’. Consequcntly a linear operator
u1: X’ LÁu) can be defined by

U1(X’) x’f

for x’ EX’and it can be proved that fis Peifis integrable if and only if u1
is weal& to weak~’ continucus and if and only if 01 is Pettis integrable for
every 0 EL1 (u). Thus wbcnever f is bounded and Pettis integrable we can
define anothcr linear operator vpL1 (u)—*X by

v/0)=P— Jofdu¿
o

for 0EL1(u). It can be proved that y,. is continuous and the restriction of
to L.4u) coincides with ihe operator 4.
Let us first give the following corol¡ary of Thcorem 4.

12. Corollary. Let f:fl—*X be a baunded Pettis integrable funclion.
¡ffor each pEáfl’X) ihe set {x’f:x’ ev;} is weakly precompact in L~(,u),
then f is strongly Pettis integrable.

Proof. Let pE~?(X) and {4} be mi arbitrary sequence in V’,. Now
dic set

HJ{x’fx’EV»

is bounded and wcakly precompact in L~(,u). Since dic identity map

is boundcd, {x~} has a subsequence {Xk} such that {xhf} converges p-al-
most everywhere [25, p. 528, Theorem 1]. Hence dic corollary follows
from Theorem 4.

Let us recail that a linear operator defined on a locafly convex space
into another such space is said to be a Dunford-Pettis operator if it is con-
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tinuous and transforms wea¡dy relatively compact sets into relatively com-

pact sets [14, p. 326].

13. Theorein. For a bounded Penis integrable function f: fX—~X, ¡he
following statements are equivalent:

(1) The res¡ricition of the operator U
1 to each equicontinuous set is

weak* ¡o Mackey, that is, a(X’, X) ¡o Y(L~(y), L,(p)), con-
tinuous.

(2) g~ is a Dunford-Pe¡tis operator.

(3) The restriction of y1 ¡o L~ (u) is compact.

(4) f is s¡rongly Pe¡tis integrable.

(5) 01 is srrongly Petús integrable for every 0EL/y).

Proof. (1)c~(2). Let {~4} be an arbitrary equicontinuous net in X’
converging to an eiement x’ EX’ in the weak* topology and let H be a
weakly relatively compact set in L1 (u). Wc note that

<Uf(XJ, 0>=x~(vf (0))

for each a and for each 0CH. Consequently the net {u1 (x~)} converges
uniformly on H te u1 (x’) it and on¡y if the net {.4} converges unifornily
to x en v/H). Hence the equivalence is obtained by [21, p. 148, Problem
A].

(2) (3). It follows from the fact that the unu bali of L,, (u) is weakiy
relatively compact in L1 (u).

(3)=~<2). It Y,, is the Banach space associated with each pE~9(X) and
gr,, is the canonical projection of X into X,,, then it is easy to verify tliat
wbenever VI satisfies condition (3), tbe restriction of the operator

te LcÁ,u) defines a compact operator from L4u) te 1<,, wbere
f,,=n,, of: fl—*X,, which is ciear¡y Pettis integrable. Hence by [25,
p. 530] y,. is a Dunford-Pettis operator and, therefore, the result foilows
from the fact that a subset K in X is relatively compact iff n,,(K) is reía-
tively compact in X,, for eacbpeY(X).
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(3)c~(4). Since the restriction of y
1 to L,~(u) coincides with the

operator 4, the equivalence follows from Theorem 4.

(4).c*~(5). It follows froni Theorem 4.

Now we are ready to extend a theorem of Dunford-Pettis-Pbillips type to
general locally convex spaces. In [26] E. Saab has extended the same for a
particular class of locally convex spaces, called (BM)-spaces [10].

14. Theorem. If T:L1(y)—*X is a weakly compact linear operator,
ilien ¡Itere existí a funchon f:f?—*X which u integrable by seminorm with
essentially weakly relatively compac¡ ronge such that

T<’0) = J0fdu¡
o

for oíl 0EL,(u).

Proal. Let us define the vector measure G:Z—*X by

G(E) = T(x5)

for HEZ. Since

{Xs ¡ ¡4E):EEZ, 4u(E)>O}

is a bounded subset of L1 (u) and T is weakly compact, G has a weakiy
relatively compact average range in X. Hence by [2, p. 245] we can find a
function f:fl—*X wbich is integrable by seminorm with its range contained
y-almost everywhere in the average range of G such that

G(E)= Jfd,u
E

AS
for EEX. Wc now show that f is the required function.

To do this, we note that for each simple function Q EL, (u)

TOP)=JlPfd~.
1~I
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For an arbitrary function 0 EL, (u), there exists a sequence {0, } of

simple functions in L,(u) such that

and T being continuous

T(03—* T(0)

in X. Since f is integrable by seminorm with essentially bounded range, Of

is integrable by seminorm and
íirnj’ 0~fd,u=J’0fdu

fi fi

which implies that

T(0)=JOfdu
A~1

and the proof of the theorem is complete.

As an immediate consequence of the aboye theorem we bave the fol-

lowing corollary.

15. Corollary. Iffor a bounded Pe¡¡is integrable funcrion f:fI—*X,
¡he operator y,~ is weakly compon’, tIten f is weakly equivalent to a funclion
g fi-.. X which is integrable by seminorm with essentially weakly relatively
compact range. ¡ti particular. f is strongly Penis integrable.

16. Corollary. Le¡ f:fl—*X be a bounded Pettis integrable funchon.
Jffor each pE.Y(X), ¡he set {x’f:x’ 6v» is weakly rela¡ively compon’ in
L,/y), tIten f is weakly equivolen¡ ¡o a futiction g:12—*X which is inte-
grable by seminorm. Consequently, f is strongly Peitis integrable.

Proof. Since f is bounded and Pettis integrable, the operator VI is

continuous. Also it should be noted that

vf = u1.
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According to the hypothesis, u1 transforms equicontinuous subsets of X’
into weakly relatively compact subsets of LÁs¿). So hy [16, p. 95,
Corollary 1], y1 transforms bounded subsets of L1 (u) into weakly relatively
compact subsets of X. mus y,. is weakly compact and the corollary follows
from the previous one.

Remark. The aboye corollary is a partial generalization of a result of
Oeitz and Ubí [15, p. ‘76, Theorem 2].

17. Coroliary. For a bounded scalarly integrable futiction f: fl—~X,

¡he conclusiotis of ¡he aboye corolla,y hold in each of ¡he following cases.

(a) ¡he operator u1 is weak* ¡o weak con¡inuous.

(b) f is Pet¡is integrable or X is complete, atid for each pE JÑX) ¡he

restriction of u1 ¡o V is weak* ¡o weak continuous.
Next we generalize PhIlips’ theorem [7, p. 671, Theorem 5.1] to lo-

cally convex spaces. For a similar result we refer to [20, p. 39, Theorem
2].

18. Lemnia. La Y atid 2 be two Hausdorff local/y convex spaces
and ler .7 be ¡he ¡opology of Z and Y’ be ¡he dual of Y. Ifa linear op-

T:Y’—*Z is Mackey ¡o J7(tha¡ is, .Y(Y’, Y) ¡o 37) continuous,
tIten it is weak* ¡o weak con¡inuous.

Proof. Trivial.

19. Corollary: Jf o scalarly measurable futiction f: fl—*X has a
weokly relotively compac¡ ronge, tIten i¡ is Petris integrable atid is weakly
equivalen¡ ¡o a func¡ion which is in¡egrable by seminorm and hence f is
s¡rongly Pe¡tis integrable.

Proof. Let A be the closed absolutely convex hulí of te range of f.
Then X being quasicomplete, A is a balanced convex weakly compact set
in X and bence A

0 is a neighbourbood of zero in X’ fiar te Mackey topo-
logy Y(X’, X). Now forxEAr, we have
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~ (x’)M..~ 1

wbich shows that u1 is Mackey to nonn continuous and hence by ¡he aboye
¡emma, it is weak* to weak continuous and the result fol¡ows from Co-
rollary 17.

Wc finisb with dic following coro¡lary which generalizes ano¡her result
of Oeitz and UhI [15, p. 78, Theorem 4].

20. Corollary. La X be comple¡e ami fi fi—*X a bounded scalarly
meosurable func¡ion. Iffor each p E iY(X), ¡he set {x ‘f:x’ E v;} is weakly
rela¡ively compact iii B (fi, 2’), ¡he space of oíl scalar valued bounded 2’-
measurable func¡ions on fi equipped with tIte supnorm, tIten f is weakly
equivalent ¡o a function which is integrable by seminorm and consequen¡ly
f is s¡rongly Pe¡tis integrable.

Proof. Let p E 9(X) and {.4} be a weak*~convergent net in 11$ The
set

H,,={x’f:x’EV}

is weakly relatively compact in fi (fi, 2’) and f being bounded, H~ is uni-
formly bounded. Hence, by [12, p. 78 and p. 80] the pointwise topology
and dic weak topology of fi (fi, 1) coincide on H,,. Since the net {x¿ fi
converges weak¡y in fi (fi, 1) and since

(L,.,(u))’C(B(fi, 2’))’

{x~ f} converges weakly in L,., (ji). mis implies that the restriction of u1
to V is weak* to weak continuous and the corol¡ary fot¡ows from
Coro¡lary17.
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