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On Strongly Pettis Integrable Functions
in Locally Convex Spaces

N. D. CHAKRABORTY and SK. JAKER ALI

ABSTRACT. Some characterizations have been given for the relative compactness
of the range of the indefinite Pettis integral of a function defined on a complete
finite measure space with values in a quasicomplete Hausdorff locally convex
space. It has been shown that the indefinite Pettis integral has a relatively compact
range if the functions is measurable by seminorm. Separation property has been
defined for a scalarly measurable function and it has been proved that a function
with this property is integrable by seminorm.

For a bounded function another characterization has been given for the relative
compactness of the range of the indefinite Pettis integral. Dunford-Pettis-Phillips
theorem has been generalized to locally convex spaces and as a corollary of this
theorem some results which are valid for Banach spaces have been extended to lo-
cally convex spaces.

INTRODUCTION

The object of this paper is to study the relative compactness property
of the range of the indefinite integral of a Pettis integrable function defined
on a complete finite measure space with values in a quasicomplete locally
convex space. It is wellknown that the range of the indefinite Pettis inte-
gral is always weakly relatively compact. Now the question whether it is
relatively compact or not is a problem raised by B.J.Pettis many years
ago. The answer was given in the negative by a counterexample con-
structed by Fremlin and Talagrand in their famous paper [13]. Stegall
showed that the answer is affirmative if some restriction is imposed on the
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underlying measure space—namely the measure space is perfect. Thereafter,
many authors have studied the problem and have given different types of
characterizations. Edgar[8] characterised this through a linear operator
while Emmanuele and Musial did the same in a recent paper[11] through
a bilinear functional associated with the function under consideration.
All of these results were given in a Banach space setting. It has also been
pointed in [6, p. 150] that the above problem has an affirmative answer
for Banach spaces with Gelfand-Phillips property and some examples of
this class of spaces have been presented, one of them being Banach spaces
with weak* sequentially compact dual balls.

A. J. Pailares and G. Vera [23], [24] have made a detailed study of
the problem and have generalized many of the above mentioned results to
a quasi-complete locally convex space. They defined a Pettis integrable
function to be strongly Pettis integrable if the range of the indefinite Pettis
integral is relatively compact,

In this paper, we have studied strongly Pettis integrable functions and
their connections with some linear operators associated with them in a lo-
cally convex space.

In Section 1, we have considered the functions which are not necess-
arily bounded and some equivalent conditions for the strong Pettis integra-
bility have been established. Some of these, however, can be found in [24]
though their proof is somewhat different. It has been shown that every Pet-
tis integrable function taking values in a Gelfand-Phillips space is strongly
Pettis integrable. Also we have proved that if a Pettis integrable function is
measurable by seminorm, then it is strongly Pettis integrable which is a
generalization of a well-known result in Banach space {5, p. 224]. The
section has been closed with a result similar to one of A.lonescu Tulcea
[19].

In Section 2, the functions have been assumed to be bounded. The as-
sumption enables us to introduce two new operators associated with the
functions and their strong Pettis integrability has been studied through
these operators. The well-known theorem of Dunford-Pettis-Phillips has
been generalized to a locally convex space where the representing function
is integrable by seminorm. As a corollary we have obtained Phillips’ the-
orem and have also generalized (wo results of Geitz and Uhl [15] to
locally convex spaces.

NOTATIONS AND TERMINOLOGIES

Throughout this paper ({2, X, ) stands for a complete finite measure
space. X is a locally convex Hausdorff topological vector space assumed to
be quasi-complete, in short, a locally convex space, with its topology .7
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By &(X) we mean a fundamental collection of continuous seminorms on
X which determines the topology .. X' denotes the topological dual of
X. If the topology of X (resp. X') is understood, it will be always as-
sumed to be the original topology .7 (resp. strong topology S(X', X)).
For pe Z7(X), V, represents the set {xEX:p(x)<1} in X and for x,€X
and £>0, we write

U,(xg, £)={xEX:p(x—x,)<e}

For a subset A of X, A® denotes the polar of A in X'. The transpose of
a continuous linear operator T is denoted by T*.

For the termilogies and properties used in the sequel concemning a lo-
cally convex space we refer to [18].

1. STRONG PETTIS INTEGRABILITY

1. Definitions. A function f:Q}— X is said to be scalarly measurable
(resp. scalarly integrable) if for each x' €X' the scalar function x'f is
measurable (in u-almost everywhere) (resp. x'fEL (1))

The function f is said to be Pettis integrable if it is scalarly integrable
and for each E€ X, there exists an x,€X such that

x'(xg)=JX'fd#

E

Jor all x'€X’ and x; is called the Pettis integral of f over E and is de-
noted by

XE=P— de# .
E

In this case we obtain a countably additive, g-continuous vector
measure m;:Z— X defined by

mJAEYy=P— de,u

E

for EEX and it is said to be induced by f.
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The function f is said to be stronggly Pettis integrable if it is Pettis in-
tegrable and the range of the induced vector measure m;, namely the set

myZ)= {P— [fdu:EEZ},
E
is relatively compact in X [24].

For a scalarly integrable function f:Q—X we define the linear operator
T,: X'—>L (u) by

Tx')=x'f

for x'€X’. It is easy to see that f is Pettis integrable if and only if T,
is weak* to weak continuous and if and only if @f is Pettis integrable
for each @ EL.(u). So, whenever f is Pettis integrable we can define the
linear operator

I:L.()—X by

1(@)y=P- j@fdﬂ

o
for @EL..(u). It can be shown that /, is continuous and
T¥=1I and
I¥=r,.
For a scalarly integrable function f:{)—X we define the bilinear func-

tional Q, on X' X L. (u) by

g,x’, @)= Jx' (Bf)du

1)

for x’€X" and @EL_ (u) [11].

It is casy to verify that f is Pettis integrable if and only if the bilinear
functional Q, is separately continuous with respect to the product topology
weak* X weak* of X' XL, ().

Also we note that
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Q;x", P)=<0, T,x")>=x"(I(D))
for all x'€X’ and @EL,, ().
A subset A of a locally convex space X is said to be limited if
lim sup|x,x{=0
T xCA
for each weak* null sequence {x,} in X'.

A locally convex space X is said to be a Gelfand-Phillips space when-
ever limited subsets of X are relatively compact.

2. Lemma. The range of the induced vector measure of a Pettis in-
tegrable function f:Q—X is a limited subset of X.

Proof. Let {x,} be a weak* null sequence in X'. Since f is Pettis in-

tegrable, it can be proved, by an application of Vitali’s convergence the-
orem, that the linear operator T,:X'—L,(u) is weak* to ||-||, sequentially
continuous. Hence the sequence {Tx,}, that is, {x,f} converges in |||, to

zero in L,(u); in other words,

timjx./], =0.
Now
sup |x;mAE)| = sup Ijx;fdﬂl
ESX EEX E
ﬂ-supj | xof | dp
EEX
E
< f |x.fldu
[1]
=[x Al
and hence

limsup | x, m(E)}=0
" EeX



246 N. D. Chakraborty and Sk. Jaker Ali

which shows that the set m/(X) is a limited subset of X and the lemma is
proved.

3. Corollary. If X is a Gelfand-Phillips space, then every Pettis in-
tegrable function f:Q—X is strongly Pettis integrable.

Note. If X is a Banach space with a weak* sequentially compact dual
ball, then every limited subset of X is relatively compact [4, p. 238,
Ex.4(ii)] and hence every Pettis integrable function taking values in X is
strongly Pettis integrable,

The corresponding result for a locally convex space has been proved in
Corollary 5(b).

We now give some characterizations for strong Pettis integrability of f
in terms of the operators T, and /, and the bilinear functional Q, as has
been done in [8], [24], [23] and [11].

4. Theorem. Let f:Q0—X be a Pettis integrable function. Then the
Jollowing conditions are equivalent:

(1) fis strongly Pettis integrable.
(2) For each p&.5°(X), the restriction of T, 10 V. is weak* 10 norm

CONLINUOUS.
(3) For each p€ Z°(X), the restriction of Q,t0 V, X B, _, is weak* X
weak* continuous, where B, _, is the closed unit ball of L.(1).
(4) For each p€Z(X), the set {x'f:x' €V} is norm compact in

L, (w)-
(5) For each pE€ Z%(X), every sequence {x,} in V. has a subsequence

{x. .} such that {x, f} converges u-almost everywhere.
(6) The restriction of 1, to B, _,, is weak* to .5~ continuous.
(7) 1, is compact.

Proof. (1)=(2). Let pE57(X) and {x.} be a net in V converging
to x' in the weak* topology. Since V} is equicontinuous in X’ and m/(ZX)
is relatively compact in X, the net {x,} converges uniformly on m/(Z) to
x'. Now
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I7,0e) = Ty )l =[G l— xYm (@) < 4 sup {|W'o—x")m (E)|:EEZ}.
Consequently,
Tim||T(x) ~ T0x ")}, =0
which gives (2).

(2)=(3). Let p€.Z%(X) and {x.} be a net in V; converging to x’ in
the weak* topology of X' and let {&,} be a net in B, , converging to @
in the weak* topology of L. («). Then,

Q) (xiy Bp)— Qix’", D) =|<Dp, T, (x)>— <D, T, (x')>]
<|<@s, Ty (xh=x")> |+ <B,— @, T, (x")>]|
<[iT &= x)ll+[ <@, =2, T, (x")>].
Since T, (x')eL,(u), we have
imQ, (s, D) =0, (x", D)
and (3) follows.

(3) = (4). Let p€.2°(X) and {x.} be a net in V_ and let {x;} be a
subnet converging in the weak* topology of X’ to an element x"€V,. Let,
for each 3,

E;={w€: (x;—x")f(w)=0}
so that Eg; € X and
ONE;={w€Q: (x;—x")f(w)<0} .
We now put
Bp= X, Anep
Then it is easy to see that U, €S8, ., and

los—x =1 | ry=x 0 .

[+

Let {@,} be a weak™-convergent subnet of {{,} with limit @EB, ;.
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Now

=0l =1 | (et =573,

[1]

=0 —x", 0,)

Not {x,}, being a subnet of {x;}, converges to x’ in the weak* topo-
logy and so we have

tim(|e; —x)f], =0
which shows that the set {x'f:x’' €V} is norm compact in L, (u).
(4)=>(5). Trivial.

(5)=@4). Let pEZ(X). Let {x,} be a sequence in V,. Then there
exists a subsequence {x, } such that the sequence {x, f} converges y-al-
most everywhere. Also the sequence {x, f} is uniformly integrable

[3, Lemmal] or [22, p. 162]. Therefore an application of Vitali’s conver-
gence theorem implies that

||x1:,,f_x’f||l_)0
which gives (4).

(4)=>(6). Let {@,} be a weak*-convergent net in B, ,, with limit @.
Now for pE€ Z%(X),

P (B)—L(D)=sup | <@, — B, x'f>|

eV,

and B,_,, being equicontinuous, @, converges uniformly to @ on the com-
pact set {x'fix'EV.} and hence

If(ga)_)]f(g)
in the .9 -topology of X and the result follows.

(6)y==(7). 1t is an immediate consequence of the fact that B, , is a

neighbourhood of zero for the ||-||. topology as well as a weak* compact
set in L, (1)
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(7y=>(1). It follows trivially from the fact that the set {y.:EE€ZX} is
contained in B, ..

Remark. If X is complete, then Grothendieck’s completeness theorem
enables us to replace Pettis integrability by scalar integrability in order to
prove the equivalences of the conditions(1), (2) and (3) in the above the-
orem.

5. Corollary. (a) A scalarly integrable function f:Q0—X is strongly
Pettis integrable if and only if Of is strongly Pettis integrable for every
DEL.(1).

(b) If each equicontinuous set in X' is weak* sequentially relatively
compact, then every Pettis integrable function with values in X is strongly
Pettis integrable.

(c) If for a Pettis integrable function f:Q1—X, the operator T, is com-
pact, then f is strongly Pettis integrable.
If X is metrizable, the converse is also true.

Proof. (a) and (b) are obvious from Theorem 4.
{c} The first part is trivial.

Conversely, it is given that I, is compact. Since [*=T,, the result
follows from [9, p. 669, Corollary 9.6.3].

We now consider the functions which are measurable by seminorm.
For the definitions and properties of strong measurability and measurability
by seminorm and strong integrability and integrability by seminorm of a
function with values in a locally convex space we refer to [1].

It is well known [27, p. 65] that if a function f:2— X is scalarly inte-
grable, then for each p € Z°(X),

p(f)=sup Jlx’fld#<°°-
xEVE
P
The non-negative function p is called a Pettis seminorm over the space
of all scalarly integrable functions with values in X.
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6. Theorem. If a Pettis integrable function f:Q}— X is measurable by
seminorm, then for each p €% (X) there exists a sequence {f,} of simple
Sfunctions such that

plf,i—f)—0.

Proof. Let pE5%(X) and £>0. It is sufficient to prove that there
exists a simple function f,:2—X such that

pf.—H<e.

Since f is measurable by seminorm, without any loss of generality, we
may assume that f(}) is separable for p [1, p. 84, Theorem2.2] so that
there exists a countable p-dense subset {x,, x,, ...} in f({)).

Let

p=¢e/3u(d), if u()#0.

(If{Q)=0, then the result is trivial).

Then the collection

{U,x,, m:n=1,2, ...}
covers f()). Let
A,={0EQ:f(MEU,x,, m}.
It is easy to verify that A,€2 for each n. Let
E,=A,
and
E,=4,\ U4, for n>1
and let us define the function g,:}—X by

g (w)=x,

if wEE,. It is obvious that g, is measurable by seminorm and countably-
valued. Also for each w €}
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p{f(@)—g(w)<n
so that
|x" (flw) — g.(@)| <7
for all x'€V;.
Now

|x’ g (@) < |x' (g (@) —f@))] +1x' fw)]|
<n+|x'fle)]
for all €} and x"'€V;. Hence for EEX

J|x'8c|d#$ﬂﬂ(5)+ Jlx’fldﬂ-

E E
So,
sup J |x'g,|du<nu(E)+ sup Jlx’(xsﬂldﬂ
x'EV]y .t’EV;n
snu() +p(xh .
Putting
A(E)= sup Jlx'geldu.
x'GV:
E
we have

AE) = e/34+p(x:.

Since f is Pettis integrable, the family {x'f:x"€V}} is uniformly inte-
grable {22, p. 162]. Hence we can find a >0 such that

P(xef)<el3

for EEX with u(E)<ag.
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Now
w(@=SuE,).

So there exists a positive integer N, such that

Y wE)<o.
n=N+1
Letting
we have
HE)<o
and hence
A(E,)<<2¢e/3.

Finally, we define f,:{}—X by
fw)=x,, if wEE, and n<N,
=0, elsewhere.

Then f, is evidently a simple function and measurable by semi-norm and

p(f,—f)<sup Jlx’(f—gs)ld#+ sup Jlx’(gf—fs)ld,u

X'EVgn x'EV;n

< () + sup Jlx’ggldﬂ
I’EV;

]

=e/3+A(E)<e

and the theorem is proved.
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7. Theorem. If a Pettis integrable function f:{}— X is measurable by
seminorm, in particular strongly measurable, then it is strongly Pettis in-
tegrable.

Proof. Let p€5*(X). Then by the above theorem there exists a se-
quence {f,} of simple functions such that

p(f,—f)—0.
Now, for EEX,
p(Jﬁ.dﬂ—mf (E))S sup J|X'(frf)|a!u
4 v
=pf,.—N.
Therefore,

p(Jﬁdu—mf(E))

E

converges to zero uniformly for EEZX. An appeal to [17, p. 22,
Theorem 9] implies that f is strongly Pettis integrable.

8. Corollary. A Peris integrable function f:Q—X is strongly Pettis
integrable in each of the following cases:
(i) f is integrable by seminorm, in particular strongly integrable.

(ii) f is weakly equivalent to a function g:Q-— X which is measurable
by seminorm.

(iii) X is separable by seminorm.
(iv) X is a locally convex Suslin space.

9. Definition. A scalarly measurable function f:Q—X is said to
have the separation property over a set KCX' if the family {x'f:x' €K}
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of scalar-valued measurable functions has the separation property, that is,
whenever x;, x,€EK and x;f=x,f u-almost everywhere, then xf(w)=

xflw) for all wEQ [19].

The following theorem is analogous to a result of A.lonescu Tulcea
(19, p. 177, Theorem3] and it can be proved in a similar manner.

10. Theorem. Let f:Q0—X be a scalarly measurable function. Then
it is measurable by seminorm if and only if for every p€.Z7(X) there exists
a set €3 with u(QNQ,)=0 such that the restriction of f to (), has the
separation property over V.

Remark. With the help of the above theorem and a result of
A.lonescu Tulcea [19] or S.S.Khurana [20], an alternative proof of
Theorem 7 can be given as follows:

Let f be Pettis integrable and measurable by seminorm and let, for
pELF(X), {2, be as in the above theorem. Let

& =F%o,
and
H,= {x'f;x’ EV;}.
Clearly
H,={x'g, x' €V}
and it has the separation property. Also it is convex and compact for the
topology of pointwise convergence. Hence by [19, p. 171, Theorem 1] or

(20, p. 388, Theorem 1], H, is sequentially compact for the topology of
pointwise convergence and the proof is complete by Theorem 4.

11. Corollary. [f a scalarly measurable function f:Q--X has the
separation property over each equicontinuous set in X', then f is measur-
able by seminorm and hence, if f is Pettis integrable, then it is strongly
Pettis integrable.

Proof. It follows immediately from Theorem 10 and Theorem 7.
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2. BOUNDED FUNCTIONS

We now consider a function f:{]—X which is bounded. In this
case, f is scalarly integrable whenever it is scalarly measurable.
Moreover, x'fEL. (u) for each x'€X’'. Consequently a linear operator
u,: X' — L, (u) can be defined by

ulx")y=x'f

for x' €X'and it can be proved that f is Pettis integrable if and only if
is weak* to weak* continuous and if and only if @f is Pettis integrable for
every @€ L,(u). Thus whenever f is bounded and Pettis integrable we can
define another linear operator v,:L,(u)—X by

v(@D)=P— J@fdﬂ

for @EL,(u). It can be proved that v, is continuous and the restriction of
v to L. (u) coincides with the operator 7.
Let us first give the following corollary of Theorem 4.

12. Corollary. Let f:Q}—X be a bounded Pettis integrable function.
If for each pE5*(X) the set {x'f:x'€EV,} is weakly precompact in L.(u),

then [ is strongly Pettis integrable.

Proof. Let pE57(X) and {x,} be an arbitrary sequence in V,. Now
the set

H={x'f:x"€V}}
is bounded and weakly precompact in L,{¢). Since the identity map
i:L. ()= L., (1)

is bounded, {x,} has a subsequence {x,} such that {x, f} converges u-al-

most everywhere [25, p. 528, Theorem 1]. Hence the corollary follows
from Theorem 4.

Let us recall that a linear operator defined on a locally convex space
into another such space is said to be a Dunford-Pettis operator if it is con-
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tinuous and transforms weakly relatively compact sets into relatively com-
pact sets [14, p. 326].

13. Theorem. For a bounded Perttis integrable function f:(0—X, the
Jfollowing statements are equivalent:

(1) The restriction of the operator u, to each equicontfinuous set is
weak* to Mackey, that is, o(X', X) to .F (L.(n), L,(u)), con-
tinuous.

(2) v, is a Dunford-Pettis operator.
(3) The restriction of v, to L,(u) is compact.
(4) f is strongly Pettis integrable.

(5) @f is strongly Pettis integrable for every @ €L (1)

Proof, (l}<>(2). Let {x!} be an arbitrary equicontinuous net in X'
converging to an element x"€X’ in the weak™ topology and let H be a
weakly relatively compact set in L, (). We note that

<up (xy), D> =x,(v,(D))

for each a and for each @EH . Consequently the net {u, (x,)} converges
uniformly on H to u, (x’) if and only if the net {x;} converges uniformly

to x" on v(H). Hence the equivalence is obtained by {21, p. 148, Problem
Al.

(2)=-(3). It follows from the fact that the unit ball of L, (u) is weakly
relatively compact in L, ().

(3)=(2). If X, is the Banach space associated with each p &€ .5°(X) and
7, is the canonical projection of X into X,, then it is easy to verify that
whenever v, satisfies condition (3), the restriction of the operator
v, :L()— X, to L_(u) defines a compact operator from L. {(u) to X, where
f,=m,0 f: Qd—X, which is clearly Pettis integrable. Hence by [25,
p- 530] vy, is a Dunford-Pettis operator and, therefore, the result follows

from the fact that a subset X in X is relatively compact iff 7,(K) is rela-
tively compact in X, for each pE€.55(X).
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(3)<>(4). Since the restriction of v, to L.(u) coincides with the
operator ,, the equivalence follows from Theorem 4.

(4)<>(5). It follows from Theorem 4.

Now we are ready to extend a theorem of Dunford-Pettis-Phillips type to
general locally convex spaces. In [26} E.Saab has extended the same for a
particular class of locally convex spaces, called (BM)-spaces [10].

14. Theorem. If T:L (u)—X is a weakly compact linear operator,
then there exists a function f:Q0—X which is integrable by seminorm with
essentially weakly relatively compact range such that

T(Q)= J@fdu

{1

for all DEL,(u).

Proof. Let us define the vector measure G:X¥— X by
GE)=T(x)
for EEX. Since

{xz / H(EY:EEZ, w(E)>0}

is a bounded subset of L,(u) and T is weakly compact, G has a weakly
relatively compact average range in X. Hence by [2, p. 245] we can find a
function f:(}— X which is integrable by seminorm with its range contained
u-almost everywhere in the average range of G such that

G(E)Y= defu

E
i

for E éE . We now show that f is the required function.

To do this, we note that for each simple function Y €L, (u)

T(y)= IWfdu -

[1



258 N. D. Chakraborty and Sk. Jaker Ali

For an arbitrary function @EL, (), there exists a sequence {@,} of
simple functions in L,{(x) such that

12,—ol—0
and T being continuous

T(®,)—T(D)

in X. Since f is integrable by seminorm with essentially bounded range, @f
is integrable by seminorm and

1i;nj @, fdu= J@fd#

4] n

which implies that

r@)= J@fd#

(Y]

and the proof of the theorem is complete.

As an immediate consequence of the above theorem we have the fol-
lowing corollary.

15. Corollary. If for a bounded Pettis integrable function f:{l—X,
the operator v, is weakly compact, then f is weakly equivalent to a function
£:Q— X which is integrable by seminorm with essentially weakly relatively
compact range. In particular, f is strongly Pettis integrable.

16. Corollary. Let f:Q}—X be a bounded Pettis integrable function.
If for each pE€ Z#(X), the set {x'f:x"€V;} is weakly relatively compact in
L.(u), then f is weakly equivalent to a function g:§}—X which is inte-
grable by seminorm. Consequently, f is strongly Pettis integrable.

Proof. Since f is bounded and Pettis integrable, the operator v, is
continuous. Also it should be noted that

[
Vf uf.
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According to the hypothesis, u, transforms equicontinuous subsets of X’
into weakly relatively compact subsets of L_(ux). So by [16, p. 95,
Corollary 1}, v, transforms bounded subsets of L () into weakly relatively
compact subsets of X. Thus v, is weakly compact and the corollary follows
from the previous one.

Remark. The above corollary is a partial generalization of a result of
Geitz and Uhl [15, p. 76, Theorem 2],

17. Corollary. For a bounded scalarly integrable function f:{Q}—X,
the conclusions of the above coroliary hold in each of the following cases:

{a) the operator u, is weak* to weak continuous.

(b) f is Perttis integrable or X is complete, and for each p€.7(X) the
restriction of u, to V, is weak* to weak continuous.

Next we generalize Phillips’ theorem [7, p. 671, Theorem 5.1] to lo-
cally convex spaces. For a similar result we refer to [20, p. 39, Theorem
2].

18. Lemma. Let ¥ and Z be two Hausdorff locally convex spaces
and let 5| be the topology of Z and Y' be the dual of Y. If a linear op-
erator T:Y'>Z is Mackey to .7 \(that is, . (Y', Y) to 57|) continuous,
then it is weak* to weak continuous.

Proof. Trivial.

19, Corollary: If a scalarly measurable function f: Q—X has a
weakly relatively compact range, then it is Pettis integrable and is weakly
equivalent to a function which is integrable by seminorm and hence f is
strongly Pertis integrable.

Proof. Let A be the closed absolutely convex hull of the range of f.
Then X being quasicomplete, A is a balanced convex weakly compact set
in X and hence A’ is a neighbourhood of zero in X’ for the Mackey topo-
logy .7 (X', X). Now for x' EA°, we have
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[l (x")]| 51

which shows that u, is Mackey to norm continuous and hence by the above
lemma, it is weak* to weak continuous and the result follows from Co-
rollary 17.

We finish with the following corollary which generalizes another result
of Geitz and Uhl (15, p. 78, Theorem 4].

20. Corollary. Let X be complete and f:Q}—X a bounded scalarly
measurable function. If for each p € Z%(X), the set {x'f:x" €V} is weakly

relatively compact in B(}, X), the space of all scalar valued bounded X-
measurable functions on ) equipped with the supnorm, then f is weakly
equivalent to a function which is integrable by seminorm and consequently
f is strongly Pettis integrable.

Proof. Let p€5%(X) and {x,} be a weak*-convergent net in V;. The
set

H,={x'f:x'€V}}

is weakly relatively compact in B({}, X) and f being bounded, H, is uni-
formly bounded. Hence, by [12, p. 78 and p. 80] the pointwise topology
and the weak topology of B(f}, X) coincide on H,. Since the net {x, f}

converges weakly in B({}, X) and since

(La@)'CBE, 2)'

{x. f} converges weakly in L. (#). This implies that the restriction of u,
to V, is weak* to weak continuous and the corollary follows from
Corollary 17.
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