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Summary In this paper a novel parameterization method for structural optimization of composite laminate shell structures is presented.
The method is based on ideas from multi-phase topology optimization where the material stiffness (or density) is computed as a
weighted sum of candidate materials. Examples illustrate the potential of the method to solve the problem of proper choice of material,
stacking sequence and fiber orientation simultaneously for maximum stiffness or lowest eigenfrequency design.

INTRODUCTION

The use of fiber reinforced polymers in structural design hasgained an ever increasing popularity due to their superior
mechanical properties and this work focuses on optimal design of composite laminate shell structures. These structures
consist of fiber reinforced polymers stacked in a number of layers and bonded together by a resin, and the design problem
is to determine the stacking sequence by proper choice of material and fiber orientation of each layer in order to obtain the
desired structural performance. For complicated geometries this is a very challenging design problem that calls for use of
sophisticated structural optimization tools.
The major problem when solving such design optimization problems is the non-convexity of the design space, i.e. the
risk of ending up with a local optimum solution is high. Several different approaches have been proposed to circumvent
this difficulty, and the remedy has typically been to either formulate an optimality criteria method [1, 2], to formulate
an equivalent convex problem by introducing lamination parameters [3, 4], or to use gradient based methods, e.g. [5],
for example by smoothing the non-convex design space by customizing the optimizer [6]. However, for general shell
problems the optimality criteria approaches or the lamination parameter approach have not yet been successfully applied
and the customization approach is a highly specialized one,which does not impose convexity.

THE DISCRETE MATERIAL OPTIMIZATION APPROACH

The design parameterization method suggested in this work is denoted Discrete Material Optimization (DMO), and it is
a gradient based technique that can be used for efficient design of general composite laminate shell structures, see [7, 8].
The approach developed is to formulate the optimization problem using a parameterization that allows us to do gradient
based optimization on real-life problems while reducing the risk of obtaining a local optimum solution. To this end we
will use the mixed materials strategy suggested by Sigmund and co-workers [9, 10] for multi-phase topology optimization,
where the total material stiffness is computed as a weightedsum of candidate materials.
In the present context this means that the stiffness of each layer of the composite will be computed from a weighted sum
of a finite number of “plausible” constitutive matrices, each representing a given lay-up of the layer. Consequently, the
design variables are no longer the fiber angles or layer thicknesses but the scaling factors (or weighting functions) on each
constitutive matrix in the weighted sum. For example, we could choose a stiff orthotropic material oriented at three angles
θ1 = 0◦, θ2 = 45◦ andθ3 = 90◦ and a soft isotropic material, thereby obtaining a problem having four design variables
per layer. The objective of the optimization is then to drivethe influence of all but one of these constitutive matrices to
zero for each ply by driving all but one weight function to zero. As such, the methodology is very similar to that used in
topology optimization. This is further emphasized by the fact that penalization is used on the design variables to make
intermediate values un-economical. As in topology optimization the parameterization of the DMO formulation is invoked
at the finite element level. The element constitutive matrix, C

e, in general may be expressed as a sum over the element
number of plausible material configurations,ne:
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where each “plausible” material is characterized by a constitutive matrixCi. Several new parameterization schemes have
been developed, and an example of weighting functionswi is given by
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Herexe
i represents the element design variables,0 ≤ xe

i ≤ 1, andp is a penalization power. In case of a mass constraint
or eigenfrequency optimization, it is necessary that the sum of the weighting functions equals one. This is not the case for
the weighting functions given by Eq. 2, but it can be obtainedby normalizing eachwi by
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wi.



In the examples considered here the design objective is chosen to be a global quantity such as maximum stiffness or lowest
eigenfrequency with constraints on the total mass. However, the method is currently being extended to local criteria and
geometrically nonlinear structural behavior. Analyticaldesign sensitivity analysis is used and the optimization problem is
solved using the Method of Moving Asymptotes [11].
The parameterization is aimed at obtaining practically applicable solutions by choosing the candidate fiber angles to
standard integer values (e.g. 0, 45, 90, etc.). The design variables may be associated with each finite element of the model
or the number of design variables may be reduced by introducing patches, covering larger areas of the structure. This is a
valid approach for practical design problems since laminates are typically made using fiber mats covering larger areas.
Several design optimization results are presented in Figs.1 and 2.

a) b) c) d)

Figure 1. Results from material design of clamped square plate. a) Material directions in minimum compliance design of 1-layer plate
with uniform pressure and 4 DMO design variables per element associated with an orthotropic material oriented at0

◦,±45
◦, and90

◦,
respectively. b) Material directions in maximum lowest eigenfrequencydesign of 1-layer plate with the same parameterization as in a).
c) Material directions in top layer in minimum compliance design of 4-layer plate with uniform pressure and 5 DMO design variables
per layer in each element associated with an orthotropic stiff material oriented at0◦, ±45

◦, and90
◦, respectively, and a soft isotropic

core material, thereby allowing the formation of areas with sandwich structures. The mass constraint allows for2/3 of the stiff material.
After the optimization there is no soft material in the top and bottom layers. d) Distribution of core material in layer 2 and 3 in the
example described under c).
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Figure 2. Model for maximum stiffness design of the load carrying main spar froma wind turbine blade. Optimization is performed
using 9600 shell finite elements, and the total number of DMO variables varies from 4312 to 153600 for the test cases studied. Results
will be presented at the ICTAM 2004 conference.
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