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Abstract
Abductive Model-Based Diagnosis (MBD) pro-
vides an intuitive approach to fault identification by
reasoning on a description of the system to be diag-
nosed. Nevertheless, its computational complexity
hinders a vast adoption and thus motivates further
evaluation of efficient methods. In this paper, we
investigate the structural metrics inherent to models
and diagnosis problems generated on the basis of
Failure Mode Effect Analysis (FMEA). Proceeding
on the metrics developed, we investigate their po-
tential as classification features to identify the most
suitable diagnosis algorithm for a particular diag-
nosis problem. Evaluated on artificial and practi-
cal samples, our approach shows that the classifier
trained on the described metrics is able to indicate
the most efficient method in case of a specific diag-
nosis scenario.

1 Introduction
Growing complexity of technical systems complicates an ef-
fective as well as efficient fault identification, causing au-
tomated diagnosis to be of increasing interest from a theo-
retical as well as applied point of view. An extensive body
of research has concerned itself with model-based diagnosis
(MBD) [Reiter, 1987] which reasons on causes for observed
anomalies using a description of the system. The abductive
approach within this framework exploits a model of how fail-
ures manifest themselves within the system [Console et al.,
1991]. By relying on the concept of entailment, abductive
reasoning provides consistent root causes for failure indica-
tors in an intuitive way.

Abduction is not merely relevant in the field of diagnos-
tics, but has been applied to diverse fields such as planning
[Poole and Kanazawa, 1994] or ontology debugging [Lam-
brix et al., 2013]. Various approaches to compute abduc-
tive explanations have been developed over the last decades,
such as set covering [Patil et al., 1982; Guan and Jiang,
2013], abductive logic programming [Kakas et al., 1992;
Denecker and De Schreye, 1998], proof-tree completion
[McIlraith, 1998], or consequence finding [Marquis, 2000].
∗Authors are listed in alphabetical order.

Within this paper we address two methods: abductive
MBD and the parsimonious set covering theory. In the latter
a simple diagnosis problem comprises a set of causes, mani-
festations, and a causal associative network connecting these
disjoint sets. A diagnosis is defined as the disorders which
cover, i.e. explain, a given set of symptoms. The parsimo-
nious set covering approach has been formalized and later
extended to include Bayesian probabilities [Peng and Reg-
gia, 1990]. Several refinements to the basic theory have been
proposed such as the improvement of models with additional
knowledge or the inclusion of more complex covering rela-
tions [Baumeister and Seipel, 2002].

Abduction is a hard problem with an exponential number
of solutions in the worst case. Even though certain model rep-
resentations are tractable [Nordh and Zanuttini, 2008], com-
puting solutions for instances of reasonable size and com-
plexity remains a challenge. Therefore, in this paper we in-
vestigate the algorithm selection problem [Rice, 1975] for
abductive diagnosis. Algorithm selection addresses the is-
sue of choosing the best performing method for a particular
problem instance and advocates for the importance of struc-
tural properties of the problem space to determine the pre-
ferred approach [Smith-Miles, 2009]. It has been applied
for example in SAT solving [Xu et al., 2008], graph col-
oring problems [Musliu and Schwengerer, 2013], or tree-
decomposition [Morak et al., 2012]. Our problem space is
restricted to propositional Horn clause models generated from
Failure Mode Effect Analysis (FMEA), which is a failure as-
sessment available in practice. The formal descriptions of
these models present certain structural traits, which are used
as features in the algorithm selection process. Based on these
model attributes and a set of experiments, a machine learn-
ing classifier was trained to decide on the most run time ef-
ficient abductive reasoning algorithm for a distinct diagnosis
problem. We embedded the selection process within a meta-
algorithm, which generates the structural metrics for a given
diagnosis scenario, categorizes it on the previously trained
classifier and computes the diagnoses using the “best” algo-
rithm according to the prediction.

2 Abductive Diagnosis
Within this section we present two abductive diagnosis meth-
ods, namely abductive MBD building on propositional Horn
clauses and the simple set covering approach. We show that



these two formalizations in their restricted form can be inter-
changed.

2.1 Model-Based Diagnosis
In abductive MBD a system description holds information on
how failures affect system variables. On basis of the knowl-
edge and given an observable anomaly, the task is to search
for a set of causes, which together with the model logically
entail the observation. Furthermore, the explanations have
to be consistent with the underlying theory. Since abductive
inference is an intractable problem, research has focused on
logical subsets which allow to compute explanations in poly-
nomial time [Eiter and Gottlob, 1995]. Based on these find-
ings we focus on a propositional Horn clause formalization
[Friedrich et al., 1990].
Definition 1 (Knowledge base (KB)) A knowledge base
(KB) is a tuple (A,Hyp,Th) where A denotes the set of
propositional variables, Hyp ⊆ A the set of hypotheses, and
Th the set of Horn clause sentences over A.
A knowledge base provides the underlying model for our rea-
soning, where the set of hypotheses comprises the proposi-
tional variables constituting a cause or explanation. The re-
maining propositional variables. i.e. {A \Hyp}, are effects
or symptoms and the theory determines the relations between
hypotheses and effects.
Example 1: Hyp = {h1, h2, h3}, A = {h1, h2, h3, o1, o2, o3},
Th =

{
h1 → o1, h2 → o1, h2 → o2, h3 → o2, h3 → o3

}
An abduction problem considers a knowledge base KB

and a set of observations, i.e. current symptoms, for which
explanations should be computed.
Definition 2 (Propositional Horn Clause Abdu-
ction Problem (PHCAP)) Given a knowledge base
(A,Hyp,Th) and a set of observations Obs ⊆ A then the
tuple (A,Hyp,Th,Obs) forms a Propositional Horn Clause
Abduction Problem (PHCAP).
Definition 3 (Diagnosis; Solution of a PHCAP) Given a
PHCAP (A,Hyp,Th,Obs). A set ∆ ⊆ Hyp is a solution if and
only if ∆ ∪ Th |= Obs and ∆ ∪ Th 6|= ⊥. A solution ∆ is
parsimonious or minimal if and only if no set ∆′ ⊂ ∆ is a
solution.
A solution to the PHCAP is an abductive diagnosis, as it pro-
vides hypotheses consistently explaining the occurrence of an
observation.

Example 1 (cont): Let us assume we can observe o1 and
o3, i.e. Obs = {o1, o3}. The solution to the PHCAP, i.e. the
abductive diagnoses, are ∆1 = {h1, h3} and ∆2 = {h2, h3}.

An Assumption-Based Truth Maintenance Systems
(ATMS) [de Kleer, 1986] is able to compute abductive
explanations. Based on a directed graph, where propositional
variables are nodes and the edges are determined by the
theory, each node owns a label which stores the hypotheses
implying said node. Whenever a new clause is added to
the theory, the ATMS updates its nodes’ labels and further
maintains a consistent state. By adding a rule of the type
o1 ∧ . . . ∧ on → explain containing all elements of Obs on
the left hand side and a new variable on the right hand side,
the ATMS computes the abductive solution as the label of
explain.

2.2 Set Covering
Peng and Reggia [1990] developed the parsimonious set cov-
ering theory as a formal approach to abductive diagnosis rely-
ing on an associative network of causal connections between
disorders and manifestations. A simple diagnosis problem
is defined as a 4-tuple P =< D,M,C,M+ >, where D
is the set of disorders, M denotes the set of manifestations,
C describes the relations in the causation network and M+

comprises the current set of observations. Considering the
definitions of the previous subsection D refers to Hyp. Fur-
ther, the manifestations M , describe the remaining proposi-
tions not included within the hypotheses which are in fact the
effects. The causal relations C are given by the theory, i.e.
there exists a relation between a disorder di and a manifesta-
tion mj whenever there is a clause di → mj contained within
the theory. Since M+ provides the distinguished subset of
symptoms observed it corresponds to Obs. As the mapping
between a PHCAP and a set covering problem is straight-
forward, we will use the wording as defined in the previous
subsection, e.g. Hyp refers to the set of hypotheses, causes,
disorders, etc. For clarity we add one additional set missing
from the logic-based framework, i.e. M , which we define
as {A \ Hyp}. The simple set covering model is equivalent
to logic-based abduction with a theory restricted to definite
Horn clauses [McIlraith, 1998].

Example 1: (cont) Considering our example from before,
the diagnosis problem can be reduced to set covering: Hyp =
{h1, h2, h3}, M = {o1, o2, o3}, Obs = {o1, o3} and Th = {<
h1, o1 >,< h2, o1 >,< h2, o2 >,< h3, o2 >,< h3, o3 >}.

In order to define a solution to a diagnosis problem
within this framework, we define for every hypothesis the set
effects(hi) = {mj | < hi,mj >∈ Th}, i.e. the set of ob-
jects directly caused by hi, and respectively for each effect,
i.e. mj , the set causes(mj) = {hi| < hi,mj >∈ Th}, i.e.
the set of objects which can directly cause mj [Peng and Reg-
gia, 1990]. Thus, for any subset of disorders HypI , we can
determine the objects directly caused by it as

effects(HypI) =
⋃

hi∈HypI

effects(hi)

Along similar lines, we can observe that

causes(MJ) =
⋃

mj∈MJ

causes(mj)

Example 1 (Cont): For example causes(o1) = {h1, h2} and
effects({h1, h2}) = {o1, o2}.
Definition 4 (Cover) A set HypI ⊆ Hyp is said to cover
MJ ⊆ M if MJ ⊆ effects(HypI) and there exists no
Hyp′I ⊂ HypI with MJ ⊆ effects(Hyp′I).
A cover relation exists between a disorder and a manifesta-
tion whenever the latter is causally inferred from the former
and is subset minimal. While minimality is not a necessary
condition for a cover in the original definition, we enforce this
parsimonious criteria as we are only interested in minimal di-
agnoses [Peng and Reggia, 1990].
Definition 5 (Set Cover Diagnosis) Given a diagnosis prob-
lem P . A set ∆ ⊆ Hyp is said to be a diagnosis iff ∆ covers
Obs.



Example 1 (Cont): In case we have the same observations
as before, i.e. o1 and o3, we can obtain the set cover-
ing diagnoses by determining the disorder sets HypI where
effects(HypI) cover Obs, which are effects({h1, h3}) =
{o1, o2, o3} and effects({h2, h3}) = {o1, o2, o3}. Hence, the
diagnoses are ∆1 = {h1, h3} and ∆2 = {h2, h3}.

As it has been shown previously, set covering is equivalent
to the hitting set (HS) problem [Karp, 1972]. Let S be a col-
lection of sets, then a set h ⊆

⋃
si∈S si is a hitting set for S

such that ∀si ∈ S : h ∩ si 6= ∅ [Greiner et al., 1989]. Since a
cover states that a certain disorder causally infers a manifesta-
tion, we can utilize the set causes(mj) as previously defined
as a similar cover indicator. For each manifestation the set
causes(mj) contains the information on all disorder causing
mj . By computing the hitting set of causes(mj) we derive a
disjunction of all disorders included, i.e. each disorder con-
stitutes a possible solution. In case we obtain a set of observ-
able manifestations m1, . . . ,mn ∈ Obs, the hitting sets of all
causes(mj) ∈ Obs comprises the diagnoses. This is appar-
ent, as to account for all current manifestations one disorder
causing each manifestation has to be present within a single
solution. Again we focus on parsimonious solutions, there-
fore we are solely interested in subset minimal hitting sets
(MHS) [Peng and Reggia, 1990].

Definition 6 (Abductive Hitting Set Diagnosis) Given a di-
agnosis problem P . A set ∆ ⊆ Hyp is said to be a min-
imal diagnosis iff ∆ is a MHS of S, where ∀mj ∈ Obs :
causes(mj) ∈ S.

Example 1 (Cont): The causes sets for the current manifes-
tations are causes(o1) = {h1, h2} and causes(o3) = {h3},
thus causes(o1) ∈ S and causes(o3) ∈ S. The MHS of S
correspond to ∆1 and ∆2.

3 Structural Analysis
Since developing suitable system models for MBD is a te-
dious task, there are approaches taking advantage of knowl-
edge available to automatically generate system descriptions
[Sterling et al., 2014]. A recent technique utilizes the infor-
mation captured within FMEAs as the basis of their abduc-
tion models [Wotawa, 2014]. FMEA is of increasing inter-
est as a systematic assessment of reliability on a component
level [Catelani et al., 2010]. It encapsulates possible faults
as well as the way they reveal themselves in different system
variables [Hawkins and Woollons, 1998]. Therefore, it pro-
vides information on causal relations between failures and
their symptoms, which in turn can be used as a knowledge
base in an abductive diagnosis context [Wotawa, 2014].

3.1 FMEA-Based Model Development
On basis of the relation between causes and effects recorded
in the FMEA, a mapping function creates a propositional
KB as described in the previous section, comprising a set of
variables, hypotheses, and a propositional Horn clause the-
ory [Wotawa, 2014]. Example 2 shows an FMEA with three
component-based faults and their effects. In the KB each
component-fault mode pair is represented by a propositional
variable mode(C,M), where C is the component and M is

Component Fault Mode Effect
Fan Corrosion P turbine
Fan TMF T cabinet, P turbine

IGBT HCF T cabinet, T nacelle

Table 1: Simplified FMEA

the fault mode. These propositional variables form the set
Hyp of the KB, while the set of variables A encompasses
all of these hypotheses as well as propositional variables rep-
resenting the recorded effects. In order to create a Horn the-
ory Th, the mapping function generates for each row in the
FMEA a set of clauses. Each clause is an implications from
the hypothesis, i.e. the component-fault mode pair, to one
single effect variable. Thus, for example, for the second row
of Table 1 two clauses are generated. The theory then is the
union over all developed Horn clauses.

Example 2: For the example given in Table 1 we derive the
following set of hypotheses, variables and Horn clauses:

Hyp =

{
mode(Fan,Corrosion),

mode(Fan, TMF ),mode(IGBT,HCF )

}

A =
{

mode(Fan,Corrosion), T cabinet, P turbine, . . .
}

Th =


mode(Fan,Corrosion)→ P turbine,

mode(Fan, TMF )→ P turbine,
mode(Fan, TMF )→ T cabinet,
mode(IGBT,HCF )→ T cabinet,
mode(IGBT,HCF )→ T nacelle


For a detailed discussion on how to obtain the KB from

FMEAs we refer to the paper by Wotawa [2014].

3.2 Structural Metrics
In this section we present the structural metrics extracted
from the models and utilized as attributes in classification.
Analyzing the structure of the Horn theory, we can observe
that the models constructed on basis of FMEAs with the map-
ping function presented by Wotawa [2014] are bijunctive def-
inite Horn clauses, i.e. each clause is an implication from
a single proposition representing a hypothesis to a single ef-
fect variable [Wotawa, 2014]. Hence, we can easily represent
the theory as an acyclic directed graph (DAG) with a forward
structure from causes to effects. Which in fact is the same
structure as the problems in the simple set covering theory
where hypotheses and manifestations are disjoint sets.

Based on the theory, we can easily represent the model as
a hypergraph H = (V,E), where V is the set of vertices and
E denotes the set of hyperedges with ∀e ∈ E : e ⊆ V . Con-
cerning our models the node set comprises all propositional
variables, while hyperedges are determined by the theory; for
each clause there exists a hyperedge containing the proposi-
tional variables of the clause, i.e. ∀a ∈ A : a ∈ V and
∀c ∈ Th :

⋃
l∈c |l| ∈ E where || is a function mapping lit-

erals to the underlying propositions ignoring negations, i.e.,
|¬p| = p and |p| = p for all p ∈ A. Furthermore, we can
assign a label to each vertex within a hyperedge e, as follows:
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Figure 1: DAG (left) and hypergraph (right) representation of
Example 1.

label(v) =

 {v} if v ∈ Hyp⋃
x∈E∧x 6=v

label(x) otherwise

Obviously, in case we examine the vertices representing man-
ifestations, the labels correspond to the causes-sets, since
both contain the hypotheses inducing the corresponding man-
ifestation. Hence, we can utilize the label of the current ob-
servations in computing the abductive diagnoses by means of
hitting sets. Note, that we choose this representation to be
able to handle intermediate effects, i.e. manifestations lead-
ing to additional symptoms, which are not represented in the
simple set covering theory. In this paper, however, we focus
on the simple structure as inherent to models created from
FMEAs.

Figure 1 shows the hypergraph built for Example 1. On
top of the DAG and hypergraph representation of the mod-
els, we can extract certain metrics relating to the underlying
structure. An intuitive measure is the number of causes in the
model, since abductive reasoning is exponential in the size
of Hyp. Furthermore, basic quantities include the number of
effects and relations occurring in the model.

Outdegree and Indegree Considering the directed
graph determined by the theory we can compute the out-
degree of each hypothesis node, i.e. the number of effects
caused by said node, as well as the indegree of each ef-
fect, i.e. the number of hypotheses implying said manifes-
tation. Using the set covering formalization we can define
outdegree(hi) = |effects(hi)| and similarly indegree(mj) =
|causes(mj)|. Collected over the entire model, these mea-
sures provide an intuitive metric of the basic magnitude of
the theory and the connectedness of the graph.

Covering and Overlap We can easily determine a cov-
ering metric for any given pair of hypotheses by building the
ratio between common manifestations and the total number
of manifestations caused by the hypotheses:

covering(hi, hj) =
|effects(hi) ∩ effects(hj)|
|effects(hi) ∪ effects(hj)|

In a similar manner, we define the overlap of two effects as
their shared causes in relation to all their causes:

overlap(oi, oj) =
|causes(oi) ∩ causes(oj)|
|causes(oi) ∪ causes(oj)|

In case there is a unique hypothesis explaining an observa-
tion, this is referred to as a pathognomonic effect [Peng and

Reggia, 1990]. Whenever a pathognomonic symptom is in-
volved, we cannot compute an overlap relation, as there can-
not be any shared hypotheses.

Independent Diagnosis Subproblem Independent diag-
nosis subproblems occur whenever the directed graph or hy-
pergraph are not connected, i.e. there exist subproblems
within the model which have disjoint hypotheses and effect
sets. Note that if all effects are pathognomonic, then each
cause-effect relation represents its own diagnosis subprob-
lem and thus the diagnosis model is orthogonal. Imagine the
clause h2 → o2 missing from the theory of Example 1. In
this case we would have two independent diagnosis subprob-
lems, namely one including h1, h2 and o1 and the other one
is h3, o2 and o3.

Path Length Another measure of connectedness within
the model is the path length on the hypergraph. In particular,
we measure the length of paths between nodes representing
hypotheses. Note, that for a model there are possibly several
hypergraphs depending on the number of independent diag-
nosis subproblems, thus we disregard paths between nodes
belonging to different diagnosis subproblems.

Observation Dependent Metrics Since not only the
topology of the model is of interest, but also the structure of
the current diagnosis problem, we measure the effect cover-
ing among the elements of Obs and determine the number of
diagnosis subproblems involved, in case several exist.

4 Algorithm Selection and Meta-Approach
Since abductive reasoning belongs to the NP-hard problems,
a research area of interest is to discover efficient methods to
compute explanations. Thus, we investigate the feasibility to
utilize the metrics defined in the previous section to train a
classifier able to select the most time efficient approach for a
particular diagnosis scenario. The general idea of the meta-
algorithm based on algorithm selection is straightforward; we
train a classifier on a distinct training set and whenever the
diagnosis process is triggered by a detected anomaly, we re-
trieve the trained classifier, collect the metrics of the partic-
ular PHCAP and create the attributes for classification based
on the measures. By providing these features to the machine
learning algorithm, we in turn retrieve a predicted best algo-
rithm for this scenario. Subsequently, we can instantiate the
diagnosis engine with the corresponding abduction method as
well as diagnosis problem and compute the abductive expla-
nations. Algorithm 1 describes our meta-approach.

Algorithm 1 MetAB
procedure METAB (A,Hyp, Th,Obs)

modelweka ← retrieveModel()
f []← retrieveMetrics(A,Hyp, Th,Obs)
algorithm← classify(f,modelweka)
∆− Set← diagnose(algorithm,A,Hyp, Th,Obs)
return ∆− Set

end procedure

To evaluate the feasibility of the meta-technique we con-
ducted experiments on two different data sets which we will



Actual
Predicted Boolean ATMS BHSTree HST HSDAG Total

Boolean 186/20 22/0 25/4 0/1 0/1 233/26
ATMS 35/0 32/0 12/0 0/0 0/0 79/0

BHSTree 16/2 6/0 90/6 0/0 0/0 112/8
HST 0/0 0/0 0/1 0/0 0/0 0/1

HSDAG 0/3 0/0 0/0 0/0 0/4 0/7
Total 237/25 60/0 127/11 0/1 0/5 424/42

Table 2: Confusion Matrix for the test sets (FMEA / artificial)

explain in detail in the upcoming subsection. For the machine
learning part of our meta-algorithm we employed the Waikato
Environment for Knowledge Analysis (WEKA) library [Hall
et al., 2009], which provides a vast number of classifica-
tion methods. The abductive reasoning algorithms forming
our prediction categories are an ATMS as well as several HS
algorithms, namely the Binary Hitting Set Tree (BHSTree)
[Lin and Jiang, 2003], HSDAG [Reiter, 1987], HST [Wotawa,
2001] and the Boolean approach [Lin and Jiang, 2003]. To
collect runtime data for the training and test set for classifi-
cation, we exploited a Java implementation of an ATMS as
well as a Java implementation1 of BHSTree and Python im-
plementations [Quaritsch and Pill, 2014]2 of the remaining
HS methods.

4.1 Data
Our data for classification originate from two separate
sources; on the one hand a small corpus of FMEAs and on the
other hand generated artificial examples. The former com-
prises publicly available as well as internally used FMEAs
recording fault knowledge from diverse domains. We au-
tomatically mapped these failure assessments to abductive
knowledge bases, which we can use for logic-based as well
as set covering abduction. All in all we conducted experi-
ments on twelve FMEAs with various numbers of hypotheses
(4 ≤ |Hyp| ≤ 32), effects (5 ≤ |M | ≤ 30) and clauses
(12 ≤ |Th| ≤ 105). For each experiment we randomly
chose the number of observations as well as the manifesta-
tions themselves from the effects available within the model.
A total of 2120 experiments where conducted on the FMEA
sample set.

In case of the artificial portion of our classification data,
we produced examples with a varying number of hypothe-
ses (10 ≤ |Hyp| ≤ 500), effects (4 ≤ |M | ≤ 13001) and
clauses (100 ≤ |Th| ≤ 13500). Furthermore, we chose the
effect overlap randomly as well as the out degree of the dis-
orders. Due to the implementation of the artificial example
generator, we do not observe several independent diagnosis
subproblems within these models. We collected the data on
252 experiments with |Obs| ranging from 1 to 25. Clearly,
the majority of these models is larger in size than the FMEA
examples and thus computationally more expensive.

With each experiment run we collected the following 27
metrics in accordance to the previous section: the number
of hypotheses, number of effects, number of clauses, outde-

1http://www.ist.tugraz.at/modremas/index.html
2http://modiaforted.ist.tugraz.at/downloads/pymbd.zip

FMEA AI

Classification Method Multilayer
Perceptron

Multinomial Logistic
Regression

|Training Set| 1696 210
|Test Set | 424 42

Total Test Time 5ms < 1 ms
Correctly Classified Instances 308 (72.64 %) 30 ( 71.43 %)

Incorrectly Classified Instances 116 (27.36 %) 12 ( 28.57 %)
Mean absolute error 0.17 0.17

Table 3: Classification Statistics

gree of hypotheses (average, maximum, standard deviation),
indegree of effects (average, maximum, standard deviation),
hypothesis covering for each pair of hypotheses of the en-
tire model (average, maximum, standard deviation), effect
overlap for each pair of manifestations (average, maximum,
standard deviation), path length between hypotheses on basis
of the hypergraph (average, maximum, standard deviation),
number of independent diagnosis subproblems and based on
the current observations the size of Obs, the indegree of the
current observation nodes (average, maximum, standard de-
viation), the effect overlap (average, maximum, standard de-
viation) and number of independent diagnosis problems. All
these metrics build our feature vector for the classification.
The variable to be predicted is the algorithm, i.e. ATMS, BH-
STree, HSDAG, HST, or Boolean, which would be the most
efficient on the current diagnosis problem.

Each experiment data series was split into a training set
comprising 80% of the data and a test set of 20%. Dividing
the data, we made sure to split it in such a way that the test set
comprises models of various sizes. Before selecting the clas-
sification method, we performed cross validation on several
classification algorithms available in WEKA on the training
data. Based on the accuracy obtained we decided to use a
multilayer perceptron as the classifier for the FMEA-based
models and multinomial logistic regression for the artificial
examples.

4.2 Evaluation Results
As can be seen in Table 3 the classification based on the met-
rics reaches a satisfactory success rate on the FMEA-based
as well as artificial examples. The confusion matrix in Table
2 shows the number of correctly and wrongly classified in-
stances. The rows represent the actual number of instances,
i.e. the number of samples the corresponding algorithm was
the most efficient, while the columns show the predicted out-
come. For example, the cell in the first row in column three
states “25/4”, meaning that for the FMEA-based samples 25
times the classifier predicted BHSTree to be the most effi-
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Figure 2: Cumulative runtime for the test sets

cient approach when in fact the Boolean algorithm was the
fastest. For the artificial samples 4 examples where wrongly
classified as BHSTree instead of the Boolean approach.

Note that for the FMEA samples HST and HSDAG were
never predicted or actually measured to be the best perform-
ing algorithm, the same holds for the ATMS in the artificial
examples. Further, we can see that the Boolean approach was
the most efficient, followed by BHSTree on both test sets.
The confusion matrix further shows that the neural network
had difficulties in classifying instances where the ATMS suc-
ceeded, as it categorizes it in nearly 41% incorrectly and the
same holds for the HSDAG in the artificial examples. Yet,
whenever the classifier categorizes the problem incorrectly,
the suggested algorithm is the second or third most efficient.

To discover whether our meta-approach provides an effi-
ciency improvement, we compared computation time on both
test sets for all methods, i.e. our meta-algorithm and each
abductive reasoning technique. The runtime for the meta-
algorithm is determined by first, the computation of the met-
rics, second the time it takes to create the feature vector, sup-
ply it to the classifier and predicting the best algorithm and
third the diagnosis time of the suggested procedure. Figure 2
shows the cumulative runtime for the test data with the x-axis
representing samples from the test set. As can be seen from
the figure, our meta-algorithm is not able to outperform on
average (2.22 ms) all direct diagnosis methods (Boolean ap-
proach 0.48 ms, BHSTree 1.36 ms, HSDAG 1.09 ms, ATMS
3.14 ms, HST 2643.17ms) for the FMEA-based examples.
The reason being that the mean time to collect the metrics of
the PHCAP requires 1.71 ms on the tested examples, which is
close the actual diagnosis time of these problems. In case of
the artificial examples our approach performs well, i.e. on av-
erage the meta-algorithm is the most efficient. Due to the size
of these samples, the computation of the properties only de-
mands a fraction of the actual diagnosis run time. On average
our algorithm requires 72674.36 ms and is 99.9% faster than
the ATMS and BHSTree, 71.53 % faster then HST, 56.58%
faster than the HSDAG and 2.77% faster than the Boolean

approach.

5 Conclusion and Future Work
Computation time of abductive diagnosis depends primarily
on the underlying model. Thus, we investigated algorithm se-
lection, as a form to predict the best performing method based
on the structural properties of problem instances. We ex-
plore metrics inherent to the structure of FMEA-based mod-
els, which form the feature vector for a classifier as part of
a meta-approach. Evaluated on a test set, the metrics led to
a satisfactory selection of the best algorithm for a particu-
lar diagnosis problem. In case of the FMEA-based samples
our meta-algorithm was restrained by the time necessary to
construct the feature vector and thus could not outperform all
abduction methods. Our approach shows its value when op-
erating on larger problem instances, where it performs well
and in fact is the most efficient in comparison.

Despite the satisfactory classification results, there are cer-
tain metrics worth investigating such as treewidth based on
the decomposition of the hypergraph as well as different at-
tribute combinations to determine the metrics most suited.
Regarding the restricted representation class, we plan on ex-
panding our approach to more expressive models.
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Febres, Umbreen Sabir, and Marcus M Keane. From mod-
elica models to fault diagnosis in air handling units. In
10th International Modelica Conference, 2014.

[Wotawa, 2001] Franz Wotawa. A variant of reiter’s hitting-
set algorithm. Information Processing Letters, 79(1):45–
51, 2001.

[Wotawa, 2014] Franz Wotawa. Failure mode and effect
analysis for abductive diagnosis. In Proc. Intl. Work-
shop on Defeasible and Ampliative Reasoning (DARe-14),
2014.

[Xu et al., 2008] Lin Xu, Frank Hutter, Holger H Hoos, and
Kevin Leyton-Brown. Satzilla: portfolio-based algorithm
selection for sat. Journal of Artificial Intelligence Re-
search, pages 565–606, 2008.


