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Abstract

Pseudospectra associated with the generalized eigenvalue problems
have been widely investigated in recent years. This paper is organized
as follows. First, we prove for a class∈{Symmetric, Persymmetric,
Toeplitz, SymToeplitz, Hankel, PersymHankel, Circulant}, we have
the classed pseudospectrum of matrix is equal to the unclassed pseu-
dospectrum because of the departure from singularity. Second, we prove
the same results for classed pseudospectra of matrix polynomials.
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1 Introduction

In this paper, we are mainly concerned with the following linear classes {SY,
PS, TO, ST, HA, PSH, CI} stand for { symmetric, persymmetic , Toeplitz
matrices, symmetric Toeplitz , Hankel , persymmetric Hankel , Circulant}
matrices respectivly. S(S�) satnd for classed complex(real) matrices in

{SY, PS,TO, ST,HA, PSH, CI} (1)
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particularly, A ∈ S
SY(A ∈ S

SY
�

) this mean that A is the complex(real) sym-
metric matrix.

A ∈ SSY ⇔ ai,j = aj,i

A ∈ S
HE ⇔ A∗ = A

A ∈ SSHE ⇔ A∗ = −A

A ∈ SPS ⇔ AT = JAJ

A ∈ STO ⇔ ai,j = ai+1,j+1

A ∈ SST ⇔ ai,j = ai+1,j+1 = aj,i = aj+1,i+1

A ∈ SHA ⇔ ai−1,j+1 = ai,j

A ∈ SPSH ⇔ A ∈ SHAandAT = JAJ

A ∈ SCI ⇔ each row vector is rotated one element to the right relative to
the preceding row vector, where i, j = 1, 2, . . . , k and J is called ”flip-matrix”,
with ones on the anti-diagonal and zero everywhere.

Throughout the paper ‖.‖ denotes the ‖.‖2, for vectors and for matrices.
Let us consider A be a matrix in Cn×n. We denote its spectrum by Λ0(A). For
a real ε > 0, the pseudospectrum of matrix A is the set

Λε(A) = {z ∈ C : ∃E ∈ C
n×n, ‖E‖ ≤ ε, z ∈ Λ0(A + E)}

And the classed pseudospectrum of matrix A is the set

Λ�ε (A) = {z ∈ C : ∃E ∈ S, ‖E‖ ≤ ε, z ∈ Λ0(A + E)}
where S is in (1). We aim to charecterize Λ�ε (A) for all classes in (1). In
fact, S.M.Rump([5]) has proved Λ�ε (A) = Λε(A) without using the conception
of the departure from singularity and S.Graillat([1]) has proved it for S ∈
{Toep, Circ} becouse of the conception of the departure from singularity . We
recall lemma (3.1) and lemma (3.2) in [1] and we will go to show Λ�ε (A) = Λε(A)
becouse of the definition of the departure from singularity.

2 Definition of the departure from singularity

to prove ΛS
ε (A) = Λε(A)

Definition 2.1. [1] Given a nonsingular matrix A ∈ Cn×n the departure
from singularity is defined as

d(A) = min{‖E‖ : A + E singular, E ∈ C
n×n}.

Definition 2.2. [1] Given a nonsingular matrix A ∈ S the classed departure
from singularity is defined as

d�(A) = min{‖E‖ : A + E singular, E ∈ S}.
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Corollary 2.3. d(A) ≤ d�(A).

Lemma 2.4. Given ε > 0 and A ∈ Cn×n, the pseudospectrum satisfies

Λε(A) = {z ∈ C : d(A− zI) ≤ ε}.

Lemma 2.5. Given ε > 0, A ∈ S and S ∈ (1) except Hankelmatrices, the
classed pseudospectrum satisfies

Λ�ε (A) = {z ∈ C : d�(A− zI) ≤ ε}.

Proof. (→) Let z ∈ Λ�ε (A) there exists E ∈ S such that ‖E‖ ≤ ε and z ∈
Λ0(A + E). Thus A + E − zI is singular. Moreover, since zI ∈ S for z ∈ C

(because zI is SY, PS; (zI)T = J(zI)J , ST ⊆ {SY ∩ PS}, PSH ⊆ {SY ∩ PS},
TO and CI) we have

d�(A− zI) ≤ ε

(←), let z ∈ C such that d�(A − zI) ≤ ε, then there exists E ∈ S such that
A + E − zI is singular; that is, z ∈ Λ0(A + E), and

d�(A− zI) = ‖E‖ ≤ ε.

Consequently z ∈ Λ�ε (A).

We have generalized some results for complex numbers which S.RUMP [6] has
demonstrated for real numbers.

Lemma 2.6. Let x, y ∈ Cn×1 be given such that ‖x‖ = ‖y‖ = 1. Then there

exists A ∈ {SSY, SPS} with y = Ax and ‖A‖ = 1.

Proof. For symmetric classed the Housholder reflection H along x+ y satisfies
H = HT , ‖H‖ = 1 and Hx = y. Let H be Householder reflection along
x + Jy and set A = JH then AT = JAJ is persymmetric, ‖A‖ = 1 and
Ax = JHx = JJy = y.

Definition 2.7. [6] For a nonsingular matrix A ∈ Cn×n and 0 �= x ∈ Cn×1

we define

ϕ(A, x) = sup{‖A−1Ex‖ : E ∈ C
n×n, ‖A‖ ≤ 1}

and

ϕ�(A, x) = sup{‖A−1Ex‖ : E ∈ S, ‖A‖ ≤ 1}.
Proposition 2.8. [6] For a nonsingular matrix A ∈ Cn×n and 0 �= x ∈

Cn×1 :

ϕ(A, x) = ‖A−1‖‖x‖
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Lemma 2.9. For a nonsingular matrix A ∈ Cn×n and 0 �= x ∈ Cn×1 :

ϕ�
∗
(A, x) = ϕ(A, x) = ‖A−1‖‖x‖ where S

∗ ∈ {SSY, SPS}.
Proof. From defnition (2.7) and Proposition (2.8) we have ϕ�

∗
(A, x) ≤ ϕ(A, x) =

‖A−1‖‖x‖, so it remains to show that ϕ�
∗
(A, x) ≥ ‖A−1‖‖x‖. Without loss of

generality, let ‖x‖ = 1 and let ‖A−1‖ = ‖A−1y‖ for ‖y‖ = 1. Thus by lemma

(2.6) there exists E ∈ {SSY, SPS} with ‖A−1‖ ≤ 1 and Ex = y; that is,

‖A−1‖ = ‖A−1Ex‖ ≤ ϕ�∗ ≤ ‖A−1‖.

Definition 2.10. The classed condition number for matrix A is defiend in
[6] as

κ�E(A) = lim
ε→0

sup{‖(A + ΔA)−1 − A−1‖
ε‖A−1‖ : ΔA ∈ S, ‖ΔA‖ ≤ ε‖E‖}.

And unclassed condition number is defined as

κE(A) = lim
ε→0

sup{‖(A + ΔA)−1 −A−1‖
ε‖A−1‖ : ΔA ∈ C

n×n, ‖ΔA‖ ≤ ε‖E‖}.

We want prove that for nonsingular matrix A ∈ S for S ∈ (1) except for
Hankel matrix

d(A) = d�(A)

Conseqently
Λ�ε (A) = Λε(A).

From theorem Ecatr and young[3, Theorem 6.5] the departure from singu-
larity on the 2-norm space equals the reciprocal of the norm of the inverse;
that is,

(κ(A))−1 = d(A) = ‖A−1‖−1

where norm of E in the definition(2.10)equals 1.

Theorem 2.11. Let nonsingular A ∈ S with S ∈ (1) be given, then

κ�(A) = ‖A−1‖ where ‖E‖ = 1.

Proof. we have

(A + ΔA)−1 − A−1 = −A−1ΔAA−1 + O(‖A‖2)
If we can show that

ω�(A) = sup{‖ − A−1ΔAA−1‖ : ΔA ∈ S, ‖ΔA‖ ≤ 1} ≥ ‖A−1‖
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then we have the result will be proved. Let x, y ∈ Cn×1, ‖x‖ = ‖y‖ = 1 be
given with A−1x = ‖A−1‖y. Then by definition(2.7)and lemma(2.9) we have

,for S ∈ {SSY, SPS}
ω�(A) ≥ sup{‖ − A−1ΔAA−1x‖ : ΔA ∈ S, ‖ΔA‖ ≤ 1}

= ‖A−1‖ϕ�(A, y)
= ‖A−1‖‖A−1‖.

(2)

For normal A ∈ S, it is A−1x = λx with ‖x‖ = 1 and |λ| = ‖A−1‖. Hence
(2) is also proved for symmetric Topeplitz and circulant structures by using

ΔA = I. For A ∈ SPSH, AJ ∈ SST and JA−1x = λx with ‖x‖ = 1, and

|λ| = ‖JA−1‖ = ‖A−1‖ proves (2) by using ΔA = J ∈ SPSH. Let A be a
Hankel matriwx, A is especially(complex) symmetric. So a result by Takagi[2,
Corollary 4.4.4] implies A = UΣUT for nonnegative diagonal Σ and unitary
U. For x denoting the nth column of U we have Ax̄ = σmin(A)x, and therefore

A−1x = ‖A−1‖x̄. By Lemma(3.7)below, ∃ΔA ∈ SHA with ‖A−1‖ ≤ 1 and
ΔAx̄ = x, so that A−1ΔAA−1x = ‖A−1‖2x and we have the result. Finally,

for A ∈ STO then we have H = JA ∈ SHA, as above, we concule that there is

x and ΔH ∈ SHA with H−1ΔHH−1x = ‖H−1‖2x. Then ΔA = JΔH ∈ STO

with ‖A−1‖ ≤ 1 and y = Jx with ‖y‖ = ‖Jx‖ = 1 yields inequality(2)

Theorem 2.12. For nonsingular matrix A ∈ S we have

d�(A) = d(A) = (κ(A))−1 = (‖A−1‖)−1 = (κ�(A))−1 where S ∈ (1).

Proof. From theorem Ecatr and young[3, Theorem 6.5] we have the departure
from singularity on the 2-norm space equals the reciprocal of the norm of the
inverse; that is,

(κ(A))−1 = d(A) = ‖A−1‖−1

where norm of E in the definition(2.10)equals 1 and from Theorem(2.11) we
have

d�(A) = (κ�(A))−1 = (‖A−1‖)−1.

Hence it remais to show that d�(A) = d(A).
From Corollary(2.3) we have d�(A) ≥ d(A). If we show that (A+ΔA)x = 0

for some 0 �= x ∈ Cn×1 and ΔA ∈ S with ‖ΔA‖ = σmin(A). we obtain our

result. For A ∈ SSY, ∃λ ∈ C and 0 �= x ∈ Cn×1 such that Ax = λx and

|λ| = σmin(A). Suppose ΔA = −λI ∈ S
SY. Thus we conclue the proof of

matrix A ∈ {SSY, SST} because SST ⊆ SSY. For A ∈ SPS we have JA ∈ SSY

and JAx = λx for 0 �= x ∈ Cn×1 and |λ| = σmin(JA) = σmin(A). Therefore

det(J(A + ΔA)) = 0 = det(A + ΔA) for ΔA = −λJ. And because of SPSH ⊆
SPS this process above is true for A ∈ SPSH. For A ∈ {SHA, STO, SCI} see
proof of theorem[6, theorem 12.2].



182 M. F. Hama

From Theorem(2.12)and Lemma(2.4,2.5) we have

Λ�ε (A) = Λε(A)

where S ∈ (1).

3 Classed Pseudospectrum of matrix polyno-

mials

We prove an analogous results of [1, Theorem(2.1)] for the classed pseudospec-
trum of matrix polynomials.

The polynomial eigenvalue problem is to find the solutions x ∈ Cn×1 and
λ ∈ C of

P (λ)x = 0

where

P (λ) = λmAm + λm−1Am−1 + λm−2Am−2 + · · ·+ A0,

with Ak ∈ Cn×n, k = 0, 1, · · · , m. If x �= 0 then λ is called an eigenvalue
and x the corresponding eigenvector. The set of eigenvalues of P is denoted
by Λ0(P ). We assume that P has only finit eigenvalue( that is, Am is non
singular matrix[4]). Concerning notation we denote by x̄ ∈ Cn×1 the conjugate
of x ∈ Cn×1.
Let us define

ΔP (λ) = λmΔAm + λm−1ΔAm−1 + λm−2ΔAm−2 + · · ·+ ΔA0

where ΔAk ∈ C. We define the pseudospectra of P = P (λ) as the set

Λε(P ) = {λ ∈ C : (P (λ) + ΔP (λ))x = 0 for some
x �= 0, ‖Ak‖ ≤ αkε, k = 0, . . . , m andαk ≥ 0}

Lemma 3.1. [1] Λε(P ) = {λ ∈ C : d(P (λ)) ≤ ε.p(|λ|)} where p(λ) =
m∑

k=0

λkx
k

Definition 3.2. [1] Let consider S ∈ (1), we define the classed pseudospec-
tra of P as

Λ�ε (P ) = {λ ∈ C : (P (λ) + ΔP (λ))x = 0 for some x �= 0, ΔAk ∈ S

, ‖ΔAk‖ ≤ αkε, k = 0, . . . , m andαk ≥ 0}

Lemma 3.3. For S ∈ (1) we have Λ�ε (P ) = {λ ∈ C : d�(P (λ)) ≤ ε.p(|λ|)}
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Proof. (→) Let λ ∈ Λ�ε (P ) there exists ΔP (λ) ∈ S such that ΔAk ∈ S,
‖ΔAk‖ ≤ αkε, k = 0, 1, . . . , m and P (λ) + ΔP (λ) is singular. Thus we have

d�(P (λ)) ≤ ‖ΔP (λ)‖.
And

‖ΔP (λ)‖ ≤
m∑

k=0

|λ|kαkε = εp(|λ|).

Thus we have
d�(P (λ)) ≤ εp(|λ|).

(←), let λ ∈ C such that d�(P (λ)) ≤ εp(|λ|), that is, there exists E ∈ S such
that d�(P (λ)) = ‖E‖ ≤ εp(|λ|) and P (λ) + E is singular. We define for each
k = 0, 1, . . . , m

ΔAk = sign(λk)αkp(|λ|)−1E ∈ S

such that ‖ΔAk‖ ≤ αkε, where the sign of the complex λ is defined[1] as

sign(λ) = {
λ̄

|λ| , λ �= 0

0, λ = 0.

Thus

ΔP (λ) =

m∑

k=0

λkΔAk = {
m∑

k=0

λksign(λk)αkp(|λ|)−1E} = E.

Hence λ ∈ Λ�ε (P )

Lemma 3.4. [4] Λε(P ) = {λ ∈ C : ‖P (λ)−1‖ ≥ ε.p(|λ|)}
Lemma 3.5. Let S ∈ (1). Suppose for λ ∈ Λε(P ) and s = d(Pλ), there

existe ΔP ∈ S and 0 �= x ∈ Cn×1 with ‖ΔP (λ)‖ ≤ 1 and Px = sΔPx. Then
λ ∈ Λ�ε (P )

Proof. Let λ ∈ Λε(P ) and s = d(P (λ)). If λ ∈ Λ0(P ) then the zero matrix
which is in S does the job. If λ /∈ Λ0(P ) this means that P (λ) is nonsingular,
and we have d(P (λ)) = ‖P (λ)−1‖−1 ≤ ε.p(|λ|), define E = −sΔP then E ∈ S,
‖E‖ = sε.p(|λ|) and (P +E)x = 0 Suppose that ΔAk = sign(λk)αkp(|λ|)−1E ∈
S, ‖ΔAk‖ ≤ αkε and

m∑

k=0

λkΔAk = {
m∑

k=0

λksign(λk)αkp(|λ|)−1E} = E

Thus λ ∈ C such that

(P (λ) +
m∑

k=0

λkΔAk)x = 0

for some x �= 0, ΔAk ∈ S and ‖ΔAk‖ ≤ αkε.
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Lemma 3.6. For P (λ) ∈ S
SY ∩ S

PS and λ ∈ Λ0(A) there exists an eigen-
vector x to λ with x = αJx and α ∈ {−1, 1}. If P (λ) is real, x can be chosen
real.

Lemma 3.7. Let x ∈ Cn×1 be given. Then there exists H ∈ SHA with
Hx = x̄ and ‖H‖ = 1. If x is real H can be chosen real so that Hx = x.

Lemma 3.8. Let x ∈ Cn×1 with x = αJx and α ∈ {−1, 1} be given. Then

there exists a symmetric Toeplitz matrix T ∈ SST with Tx = x̄ and ‖T‖ = 1.
If x is real T can be chosen real with ‖T‖ = 1.

Lemma 3.9. Let P (λ) ∈ C
n×n and s = d(Pλ) then:

1. P (Λ) ∈ SSY =⇒ ∃0 �= x ∈ Cn×1 : P (λ)x = sx̄.

2. P (Λ) ∈ SPS =⇒ ∃0 �= x ∈ Cn×1 : P (λ)x = sJx̄.

3. P (Λ) ∈ SSY ∩ SPS =⇒ ∃0 �= x ∈ Cn×1 : P (λ)x = sx̄, x = αJx and
α ∈ {−1, 1}.

Theorem 3.10. Let ε > 0. If P (λ) ∈ S for each S ∈ (1) then

Λ�ε (P ) = Λε(P ) (3)

Proof. We nkown that Λ�ε (P ) ≤ Λε(P ). We have to prove that if λ ∈ Λε(P )
then λ ∈ Λ�ε (P ). If λ ∈ Λ0(P ) then λ ∈ Λ�0(P ) which is contained in Λ�ε (P ).

If λ /∈ Λ�ε (P ) that is P (λ) is nonsingular. Let P (λ) ∈ SSY, by lemma
(3.9.1)∃0 �= x ∈ Cn×1 such that P (λ)x = sx̄ and by lemme(3.7)there is

ΔP (λ) ∈ S
HA ⊆ S

SY with ΔP (λ)x = x̄ and ‖ΔP (λ)‖ = 1. Hence P (λ)x =

sx̄ = sΔP (λ)x and lemma(3.5) proves Λ�ε (P ) = Λε(P ). Now SHA ⊆ SSY and

ΔP (λ) ∈ S
HA proves Λ�ε (P ) = Λε(P ).

Let P (λ) ∈ SPS, by lemma(3.9.2)∃0 �= x ∈ Cn×1 with P (λ)x = sJx̄.By

lemme(3.7)there is H ∈ SHA with Hx = x̄ and ‖H‖ = 1. Then ΔP (λ) =

JH ∈ STO ⊆ SPS, ‖ΔP (λ)‖ = 1 and P (λ)x = sJx̄ = sJHx = sΔP (λ)x

and by lemma(3.5) we obtain Λ�ε (P ) = Λε(P ). Futhermore, STO ⊆ SPS, so

ΔP (λ) ∈ STO and consequently we have Λ�ε (P ) = Λε(P ).

Let P (λ) ∈ SST ⊆ SSY∩SPS so by lemma(3.9.3)∃0 �= x ∈ Cn×1 such that

P (λ)x = sx̄, x = αJx and α2 = 1. Now by lemme(3.8)there is ΔP (λ) ∈ S
ST

with ΔP (λ)x = x̄ and ‖ΔP (λ)‖ = 1. Therefore, P (λ)x = sx̄ = sΔP (λ)x and
by lemma(3.5) we have Λ�ε (P ) = Λε(P ).

Let P (λ) ∈ SPSH ⊆ SSY ∩ SPS so by lemma(3.9.3)∃0 �= x ∈ Cn×1 with

P (λ)x = sx̄, x = αJx and α2 = 1 and by lemme(3.8)there is H ∈ SST with

Hx = x̄ and ‖H‖ = 1. Then ΔP (λ) = αHJ ∈ SPSH implies ‖ΔP (λ)‖ = 1
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with P (λ)x = sx̄ = sHαJx = sΔP (λ)x and by lemma(3.5) we obtain Λ�ε (P ) =
Λε(P ).

Finally, Let P (λ) ∈ SCI implies P (λ) is normal. So there is ∃0 �= x ∈ Cn×1

with P (λ)x = sβx, ‖β‖ = 1. Then ΔP (λ) = βI ∈ SCI, ‖ΔP (λ)‖ = 1
andP (λ)x = sβx = sΔP (λ)x finish this part and the proof.

Remark 3.11. 1. When we siad that there is (for example)ΔP (λ) ∈
SHA with ΔP (λ)x = x̄, ‖ΔP (λ)‖ = 1, in fact there is H ∈ SHA such

that H = ΔP (λ) and for finding ΔAk ∈ SHA for each k = 0, 1, . . . , m
we define

ΔAk = sign(λk)αkp(|λ|)−1H

such that ‖ΔAk‖ ≤ αkε. Thus

H = ΔP (λ) =
m∑

k=0

λkΔAk = {
m∑

k=0

sign(λk)αkp(|λ|)−1H}.

2. We can prove that theorem(3.10) by applying theorem(2.12)because we
have proved if λ ∈ Λ0(P ) then λ ∈ Λ�0(P ) which is contained in Λ�ε (P ) but
if λ /∈ Λ�ε (P ) that is P (λ) is nonsingular and we can apply Theorem(2.12)
and Lemma(3.1, 3.3).

Remark 3.12. To prove lemma(2.5), lemma3.3 and Theorem (2.11) for
complex classed in (1) we used the same proof line of lemma[1, Lemma 3.2],
lemma[1, lemma 5.2] and Lemma[6, Lemma (11.1),(11.2)] respectively.

4 Pseudospectrum of matrix polynomials with

backward error

A nuatural of the normwise backward error of an approximate eigenpair (x, λ)
of P (λ)x = 0 is

η(x, λ) = min{ε : (P (λ) + ΔP (λ))x = 0,
‖ΔAk‖ ≤ εαk, k = 0, 1, . . . , m}, (4)

and the backward error for an approximate eigenvalue λ is given by

η(λ) = min
x �=0

η(x, λ). (5)

Remark 4.1. A polynomial eigenvalue problem is in (1) when all matrices
Ak are in (1).
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Lemma 4.2. [4] The normwise backward error η(x, λ) is given for x �= 0
by

η(x, λ) =
‖r‖

p(|λ|)‖x‖ , (6)

where r = P (λ)x and p(x) =
∑m

k=0 αkx
k. If λ is not an eigenvalue of P then

η(λ) =
1

p(|λ|)‖P (λ)−1‖ . (7)

Now, the normwise backward error of an approximate eigenpair (x, λ) of
classed polynomial eigenvalue problems are

η�(x, λ) = min{ε : (P (λ) + ΔP (λ))x = 0, ΔAk ∈ S,
‖ΔAk‖ ≤ εαk, k = 0, 1, . . . , m}, (8)

and the backward error for an approximate eigenvalue λ is given by

η�(λ) = min
x �=0

η�(x, λ). (9)

Corollary 4.3. We have η�(x, λ) ≥ η(x, λ).

Proposition 4.4. If P is Hermitian matrix polynomial and λ ∈ R then

ηHE(x, λ) = η(x, λ)

And consequently, ηHE(λ) = η(λ)

Proof. Let r = P (λ)x such that ‖x‖ = 1, we are looking for a Hermitian

matrix ΔP (λ) such that ηHE(λ) =
‖r‖

p(|λ|) . We take ΔP (λ) = ‖r‖I.

Let ΔAk be Hermitian matrices defined by

ΔAk = sign(λk)αkp(|λ|)−1‖r‖I (10)

such that ‖ΔAk‖ ≤ αkε for i, j = 1, . . . , k. Using the equality in Lemma(4.2),
we get

‖ΔP (λ)‖ = ‖r‖ ≤ η(x, λ)p(‖λ‖)−1

From equation(10) we deduce ηHE(x̃, λ̃) ≤ η(x̃, λ̃). Consequently, from corol-

lary (4.3) we have ηHE(x̃, λ̃) = η(x̃, λ̃).

Proposition 4.5. If P is in SSHE and λ ∈ R then

ηSHE(x, λ) = η(x, λ)

And consequently, ηSHE(λ) = η(λ)
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Proof. By taking ΔP (λ) = ‖r‖√−1I we will finish ours proof.

Proposition 4.6. [4] The pseudospectrum can be expressed in term of the
backward error of λ as

Λε(P ) = {λ ∈ C : η(λ) ≤ ε}. (11)

Corollary 4.7. If P ∈ S = {SHE, SSHE} and λ ∈ R then

Λ�ε (P ) = Λε(P ) ∩R.

Corollary 4.8.

Λε(P ) = {λ ∈ C : d(P (λ)) ≤ ε.p(|λ|)}
= {λ ∈ C : η(λ) ≤ ε}.
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