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In this note we announce some new methods and results in the 
theory of nonnormal Hilbert space operators and nonself ad joint 
operator algebras. A main difficulty in the subject has been the ap­
parent absence of relations between, say, a nonself ad joint algebra of 
operators and its generated C*-algebra. For example, given full in­
formation about the norm-closed algebra P(T) generated by all 
polynomials in a given (nonnormal) operator T, what can one say 
about the C*-algebra C*(T) generated by T and the identity? While 
one cannot expect much of an answer in general, we will describe 
here a class of operators and operator algebras for which these rela­
tions are as simple as one could hope for. 

All C*-algebras are assumed to contain an identity (written as e)y 

L(H) denotes the algebra of all bounded operators on a Hilbert 
space H, and C*(S) stands for the C*-algebra generated by 5 and the 
identity where 5 is either an operator or a subset of a C*-algebra. An 
operator is irreducible if it commutes with no nontrivial projections. 

1. An extension theorem. Let 5 be a linear subspace of a C*-
algebra B, such that 5 contains the identity of B. A linear map <j> of 
5 into another C*-algebra is positive if <K#) = 0 for every positive ele­
ment x of 5 (note, however, that 5 may contain no positive elements 
other than scalars). A familiar theorem of M. Krein implies that if 
5 = 5*, then every scalar-valued positive linear map of 5 has a positive 
extension to B. We first describe a generalization of Krein's theorem 
to operator-valued maps which is basic for virtually all of the sequel. 
If Mn is the algebra of all complex nXn matrices, then B®Mn is the 
*-algebra of all nXn matrices over B. There is a unique C*-algebra 
norm on B® Mnf and S®Mn is a linear subspace of this C*-algebra. 
A linear map 0 of 5 into a C*-algebra B' induces, for every n^ 1, a 
linear map <t>n:S®Mn—>B'® Mn by applying <f> element by element to 
each matrix over 5. <f> is completely contractive or completely isometric 
according as each # n is contractive (||0n|| ^ 1 ) or isometric. 4> is com­
pletely positive if each # n is a positive linear map. 
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THEOREM 1. Let S be a closed self adjoint linear subspace of a C*-
algebra B, which contains the identity of B, and let H be a Hilbert space. 
Then every completely positive linear map of S into L(H) has a com­
pletely positive extension to B. 

I t is easily shown that a scalar-valued positive linear map of S is 
already completely positive; thus Theorem 1 generalizes Krein's 
theorem. We remark also that Theorem 1 is false if one deletes the 
adverb "completely," even when B is commutative. 

2. Boundary representations. Let S be a closed subspace of a 
C*-algebra B, such that e belongs to S. 5 need not be selfadjoint. 

DEFINITION. An irreducible representation w of B is called a bound-
ary representation for S if the only completely positive linear extension 
of T\S to B is T itself. 

When B = C(X) (for X a compact Hausdorff space), boundary 
representations correspond to points in the Choquet boundary of X 
relative to S. In the noncommutative cases, boundary representa­
tions occur in a variety of ways, as the following two examples show. 

EXAMPLE 1. Let T be an operator on a Hilbert space. sp(T) and 
W(T) will denote the spectrum of T and the numerical range of T, 
respectively. A character of a C*-algebra is a one-dimensional repre­
sentation (i.e., a complex homomorphism), necessarily irreducible. 
The following example seems to have independent interest. 

THEOREM 2. For every point X in $p(T)C\dW(T), there is a character 
7T of C*(T) such that T(T) =X. T is a boundary representation f or P{T). 

COROLLARY. If C*(T) has no characters, then the spectral radius of T 
is less than \\T\\. 

EXAMPLE 2. Let ^ be an inner function in H™ (of the unit disc), and 
let Z+ be the "zero set" of \// : Zf consists of all zeros of \// in the interior 
of the unit disc along with all boundary points X such that \p cannot 
be analytically continued from the interior to X. 5^ denotes the pro­
jection of the bilateral shift onto H2Q\//H2. S+ is an irreducible oper­
ator, so that the identity representation of C*(Sf) is irreducible. 

THEOREM 3. If Z+C\\\z\ = 1} has (linear) Lebesgue measure zero, 
then the identity representation is a boundary representation f or P(S^). 
If, on the other hand, Z^ contains the entire unit circle, then the identity 
representation is not a boundary representation f or P(S#). 

We remark that the proof of the first half of Theorem 3 utilizes 
machinery we have not discussed, and the result is a principal one in 
this theory. 
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The following theorem gives the key property of boundary repre­
sentations. 

THEOREM 4. Let S% be a linear subspace of a C*-algebra Bu i = l, 2, 
each containing the respective identity e*. Assume Bi = C*'(Si), and let<j> 
be a linear completely isometric map of Si on S2 such that (j>(ei) — e2. 
Then f or every boundary representation ir of Bifor Si there is a (unique) 
boundary representation ir' of B2for S2 such that 7r '0$=7r on Si. 

Theorem 4 has a number of general consequences, relating to 
"Silov boundaries," of which we mention only the following. 

COROLLARY. Let SiQBif i — \, 2, be as above. Assume that the inter­
section of the kernels of all boundary representations of Bifor 5» is 0. 

Then every completely isometric linear map of Si on S2i which preserves 
the identity y is implemented by a *-isomorphism of Bi on B2. 

This corollary implies that certain subspaces (and subalgebras) of 
C*-algebras completely determine the structure of the C*-algebra 
they generate. I t can be shown that the hypotheses are satisfied if 
there are enough unitary elements in the closure of Si+Si* to gen­
erate Bi as a C*-algebra, i = 1, 2. 

3. Some applications. We describe three applications of the pre­
ceding in the theory of nonnormal operators on Hubert space. Let T 
be a nonscalar simple algebraic operator (i.e., C*(T) is simple and T 
satisfies a polynomial equation p(T)—Q). Assume | | r | | = l , and let 
p(z) = (z — ai)ni(z — a2)

n2 • • • (z — ak)nk be the minimum polynomial 
of T. The corollary of Theorem 2 implies that |a t[ < 1 , l^i^k, and 
so the Blaschke product BT which has p as its numerator is in H°°. T 
is called maximal if | | i?(r) | | = 1 for every proper Blaschke divisor B 
of BT. Thus, if p(z) = s n , then T is maximal iff | | r | | = • • • = | | r w - 1 | | 
= 1. In general, simple algebraic operators can generate complicated 
C*-algebras; for example, there are operators T having cube zero for 
which C*(T) is an (antiliminal) U H F algebra. Nevertheless, we have 

THEOREM 5. If T is a maximal simple algebraic operator, then 
C*(T) is ^-isomorphic with Mn, n being the order of the minimum 
polynomial of T. An irreducible maximal simple algebraic operator is 
finite-dimensionalj and two such are unitarily equivalent if, and only if, 
they have the same minimum polynomial. 

The second application is similar to the preceding, for operators 
having an "infinite" minimum polynomial. Let T be an arbitrary 
contraction, and let A be the norm-closure (in C(T), T being the unit 
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circle) of the polynomials in eiB. Because the unit disc is a spectral 
set for T, we have ||/>(2^)|| û\\p\\ for every polynomial pÇzA, and thus 
there is a unique contractive homomorphism <j> of A such that <j>(p) 
= p(T) for every polynomial p. Assume t h a t ^ has nonzero kernel. 
Then ker <f> has the form yf/'AK, where K is a closed set in T of Lebesgue 
measure zero, \[/ is an inner function for which Z^HTCüT, and AK 
denotes all functions in A which vanish on K. \[/ is called the minimum 
function for T. The minimum function is undefined if ker <j> = 0. 

For each n^ 1, <j> induces a (contractive) homomorphism <t>n of the 
Banach algebra A ® Mn ( C C{ T) ® Mn), whose kernel is \f/ • A K ® Mn : T 
is called maximal if the canonical homomorphism of A®Mn/\//'AK 
®Mn induced by <j>n is isometric, for every n^ 1. I t can be seen that 
this usage of the term is in harmony with the foregoing. 

Let \p be an inner function such that Z^C\T is of measure zero. 
Then S+ is an example of a maximal operator which has \f/ as its 
minimum function. Moreover, S# is irreducible and S^Sf—S^Sf* 
has finite rank. 

THEOREM 6. Let T\ and Ti be irreducible operators such that both 
commutators 7\*7\ —7\-7\* are compact. Assume that both operators 
possess minimum functions and are maximal. Then 7\ and T2 are uni-
tarily equivalent if, and only if, their minimum functions are propor­
tional. 

Our third application is to the Volterra operator V, defined on 
L2(0, 1) by Vf(x)=fx

0f(t)dt,fEL2(0, 1). F i s well known to be com­
pact and irreducible. If Co, G, • • • , Ck are nXn matrices, then 
p(z) = Co+Ci£+ • • • +CkZk defines an Afn-valued polynomial; we 
define p(T) for an operator T£L(H) by p{T) = Cç>®I+d®T+ 
• • • +Ck® Tk, regarded as an operator on Cn®H. 

THEOREM 7. Let T be an irreducible operator for which T*T— TT* is 
compact. Suppose \\p(T)\\ =\\p(V)\\ for every matrix-valued polynomial 
p. Then T is unitarily equivalent to V. 

The norm condition | | ^ ( r ) | | = | | ^ (F) | | is assumed to hold for every 
Af«-valued polynomial p, and every n^l. I t can be shown that the 
condition for n — \ already implies | | ^ ( r ) | | g | | ^ (F ) | | for n>l, but we 
do not know if the opposite inequality is also redundant for n> 1. 

Two counterexamples are noteworthy. First, there exist (three-
dimensional) operators S and T for which | |^(5)| | = | | ^ ( r ) | | holds for 
all scalar-valued polynomials p, but not for all matrix-valued poly­
nomials; put differently, not every isometric representation of a sub-
algebra of a C*-algebra is completely contractive, even when the 
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subalgebra is singly-generated. Second, while a characterization like 
Theorem 7 holds for operators other than V, it is of limited generality. 
For example, if \f/\ and ^2 are inner functions such that Z^x and Z^2 

both contain the entire unit circle, then S^4 is irreducible and 
S+^Sf. — Sf.Sf.* is compact, U^OS^)!! =||£(S*,)|| is valid for every 
matrix-valued polynomial p, but these two operators are not uni-
tarily equivalent if $1 and $2 are not proportional. The second state­
ment of Theorem 3 explains why the proof of Theorem 7 breaks down 
for these examples. 

Finally, we remark that Theorems 6 and 7 remain valid when the 
hypothesis T*T—TT* compact is replaced with the weaker condi­
tion: the commutator ideal in C*(T) is a minimal (closed, two-sided) 
ideal. Full details and further developments will appear elsewhere. 
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