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ON SUBFIELDS OF GK AND GENERALIZED GK
FUNCTION FIELDS

YUSUF DANISMAN AND MEHMET OZDEMIR

ABSTRACT. In this article, we show that many of the genera that Giulietti
and Fanali obtained from subfields of the GK curve can be obtained by
using similar techniques used by Garcia, Stichtenoth and Xing. In the
meantime, we obtain some new genera from the subfields of GK and
generalized GK function fields.

1. Introduction

Let F/K be an algebraic function field of genus g with constant field K
where K is a finite field and N(F) be the number of rational places of F'. By
Hasse-Weil Theorem [13, Theorem 5.2.3], the number of rational places of F/K
is bounded by

(1) | N(F) = (IK[+ 1) |< 2V/[K]g.

A function field is called maximal if its number of rational places attains the
upper bound in the above inequality. Obviously, maximal function fields which
are not rational can only exist over finite fields of square cardinality. The most
well-known example of a maximal function field is the Hermitian function field
H = F,2(z,y), where F2 is the finite field with ¢® elements. H is defined by
the equation

(2) 2l + = yitt
and, H has the genus

a(g—1)
(3) —,

which is the maximum possible genus of all maximal function fields over Fg.
In fact, H is the unique maximal function field, up to isomorphism, with this
genus [10].
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One of the interesting questions about maximal function fields is their genus
spectrum. In fact, the main problem is to describe the following set:

M(g?®) :=={g > 0| there exists a maximal function field F'/F,> with genus g}.

In this regard, it is important to find new maximal function fields of various
genera over a fixed finite field. One of the main tools in describing a new
maximal function field of different genus is to consider the subfields of a given
maximal function field. The automorphism group of a maximal function field is
of special interest due to its importance for finding the corresponding subfields
as Serre’s result states that every subfield of a maximal function field is maximal
[9]. The Hermitian function field has a large automorphism group with respect
to its genus [11, 12], so it is an important source of generating new maximal
function fields. Indeed, all known examples of maximal function fields had
been shown to be subfields of the Hermitian function field before a new maximal
function field, the GK function field, was constructed by Giulietti-Korchmaros.
The GK function field is defined over e with the following defining equations:

4) x? =yttt
3
(5) Y’ —y =2

The GK function field is not a subfield of the Hermitian function field for
g > 2 [7], and it is later generalized to a family of maximal function fields, the
generalized GK function field [5]. For any odd integer n > 3, the generalized
GK function fields C,, are the family of function fields defined over IF2» by the
following equations:

(6) 2 4z = yrt,
(7) Yy = T

The equation ([5]) also defines a maximal function field [1]. So, C, can be
considered as the compositum of two maximal function field. The member of
C,, for n = 3 obviously coincides with the GK function field. The genus g(Cy,)
and the number of rational places N(C,) of C,, are given as

— D@ +q" =)
2

It is not known yet whether the members of this family for n > 5 are subfields

of the Hermitian function field or not. However, it is known that Hermitian

function field is not Galois cover of them [3].

A large class of subfields of the Hermitian function field was described in [6]
by considering the fixed fields of certain subgroups of the automorphism group
of the Hermitian function field. Later, these results were improved in [2].

The automorphism group of the GK function field and the generalized GK
function field are also known [7, 8]. Some subfields of the GK function field are
described in [4], and some new genera are obtained by a strong group-theoretic

8) gCo) ="

, NCn) =¢" P ="+ "2 4+ 1.
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arguments. Here, we construct some subgroups of GK and generalized GK
function field with similar techniques that were used in [2, 6], and we get some
new genera as well as many of the genera that were obtained in [4].

In the next section, we describe automorphism group of the GK and the
generalized GK function fields. As mentioned above, we henceforth denote the
GK function field by C3 and the finite field F2» by K unless stated otherwise
in the sequel. In Sections 3 and 4, we compute the genera of the fixed fields of
certain subgroups, where K is a field of odd characteristic.

2. Automorphisms of C,,

Let G be the automorphism group of C,, and P, be the common pole of =z,
y, and z in C,,. Then, for n > 3 the group

9) G(Px) = {0 € G| 0(Ps) = P},

consists of the automorphisms of the following form [8]:

(10)  o(@) =7" Mz £y +a, aly) =7y + B, olz) =7z,

where 7 is a (¢" + 1)(¢ — 1)-th root of unity, m = %, and 3 € Fp2 with

a? + o = B2+, Hence, the order of G(Ps) is ¢*(q — 1)(¢" + 1).
Each automorphism in G(P,) can be represented by a triple [v, 8, «], and
the group structure of G(Px) is as follows:

1, Brsn] - [z, By 2] = 172,78 B1 + B2, 78 e + 58361 + @),
id = [1,0,0],
[’75 6) Oé]il = [7713 _’yimﬁa ’yi(qn+1)aq]'
The map w : C3 — Cs defined by
(11) wie) ==, wz) =2
X

is an automorphism of the GK function field C3. By [8], we have
(i) G = G(Px) for n > 5,
(ii) G = (w,G(Px)) for n = 3.

3. Genus computation for the fixed fields of the subgroups of
G(Pso)

In this section, we show how to compute the genera of the fixed fields of the
subgroups of G(Px), where K is a field of odd characteristic.

Lemma 3.1. The fized field of G(Ps,) is K (2(4=D@"+1) for n > 3.

Proof. Since (@~ D@"+1) = 1 we have (2@~ D@ "+1)) = (yz)le=D@"+1) —
2@+ for any o € G(Ps). Besides, it can be seen from the defining
equations of C, that |C, : K (24~ D@ V)| = |K(2,y,2) : K(y,2)| - |K(y,2) :
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K(2)| = q¢*(q—1)(¢" +1) = ¢3(q — 1)(¢" + 1), which is equal to cardinality of
|G(Ps)|. Hence, it follows that K (z(2=1(@"+1) is the fixed field of G(Py,). O

Lemma 3.2. Let § = 2=Vt Then, for n > 3 the ramified places of
K(0) in the extension C,/K(0) are (§ = 00) and (0 = 0).

Proof. Let Ry be the unique place of H lying below P,,. Let A denote the set
of automorphisms of H and

(12) A(Rw) ={0 € A| 0(Rx) = Roo}-
By [8], we have
(13) A(Rw) ={olu | 0 € G(Px)}-

So, the fixed field of the group A(Rs) in H is the same as the fixed field of
G(Ps) in Cp,. The only ramified places of K(6) in the extension H/K () are
(0 = 0) and (6 = o00), and all the places lying above (6 = 0) in H are the
places Ry for x = a € F2 and y = b with a? + a = b7"! [6]. The fact that all
these places with R, in H are the only places of H that are ramified in C,,/H
completes our proof. O

All the ramified places of C,, except for Py are tamely ramified in the ex-
tension C,, /K (0) as all the places of H except for Ro, in H/K () are tamely

ramified and |C,, : H| = %. The number of these places is ¢, and each of

these places is uniquely determined by some values a, b € 2 with a?4-a = patt,
We will denote these places by P,o. Let U be a subgroup of G(Ps) and CY
its fixed field. By Hurwitz Genus Formula, we have

(14) (- D@ +¢" —¢*) —2=|U[(29(C;)) — 2) + deg Diff (C,,\C})).-

We need to compute deg Diff(C,,\CY). We have,

(15)  degDiff(C,\C)) = d(Pxo) + Y d(Paso)

aE]qu

=d(Pso) + Y [e(Paro) — 1]

aGJFq2

=d(Px)+ Y {o €U —{Id}: 0(Par0) = Paro}|

aGJFq2
=d(Px)+ Y. N(o),
oceU—{Id}
where N (o) = |[{(a,b) : a? + a = b9, 0(Papo) = Paro}|-

Since P, is totally ramified in the extension C,/CY we have

(16) d(P)= Y wvplo(r) = 7],

1#o0€U
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where 7 is a prime element for P,,. Since 7 = 2 s a prime element of P,
we have

CH 41 y=1, B#0
(17) vp(0(T) =T) = 94" +2 y=18=0

1 else.
Lemma 3.3. Let 0 = [y,8,a] € G(Px). Then

¢ if y"=1a=0, =0

¢ if AL AT =1, a= 2
1

0

v
if AT £
otherwise.
Proof. We have
o(Pavo) = Paro & o(z —a), o(y —b), o(2) € Pavo
Y e+ "B +a—a, Y™y + B —b, 72 € Papo
Y @ —a) + 97 Ta+ "By — b) + 4B + o —a,
Y™y —b) + "o+ S —b € Papo
s AT Ha 4 "B+ a—a, Yo+ B —b € P
e K 1o+ +a =0, ™ —1b+ 5 =0.

e

We now need to do computations case by case.

Case 1: If Y =1 = g = 0, then a = 0. Since, there is no condition on a
and b we get N (o) = ¢>.

Case 2: If Y™ #1 and v7 t! =1, then b = f%. Hence —y™p1 B4

ym—1
a=0and o= ”:fil So, we get N (o) = ¢ as there is no condition on a.
Case 3: If v¢"*t1 £ 1, then b = *vmﬁ_l and a = 7%. So, we get
N(o) =1. O

3.1. Example 1: A subgroup of G(Px)

We will now construct a certain type of subgroups of G(Ps ). Before this,
we fix the following notations.

q = p" for some prime number p and positive integer h,
_ g"+1

q+17
t is a divisor of (¢ — 1)(¢™ + 1),

d=ged(t,¢" +1),
s=min{r >1:p" =1 mod (%)},
up and ug are integers with 0 < uq,ue < h, slu; and s|us.

Lemma 3.4. s CTF,.
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Proof. (¢—1)(¢™+1) = tk for some k € Z, which implies (¢—1)(¢"+1)/d =0
mod t/d. So, we have ¢ — 1 = 0 mod t/d and hence s < h. We can write
h = sa + b for some a,b € Z with b < s and hence p® = p"/p** =1 mod t/d.
The minimality of s gives that b is zero, and this implies s|h. (]

Lemma 3.5. There is a ui/s dimensional Fps subspace of F,.

Proof. This is an immediate result of Lemma 3.4. (I

Let Wi be a u; /s dimensional Fps subspace of F,. Then we have |W;| = p*
Lemma 3.6. Let L be the set of automorphisms of the following form:

Z =z
oc=qy—=7"y+p
n 1
& — " a4 ym gy + B

where 8 € W1 and v is a t-th root of unity. Then, L is a subgroup of G(Px).

Proof. Any ¢ € L is obviously an automorphism of G(Ps) as f4tDe =
Blatl) - So, it is enough to check that L is closed under composition. Let

Bq+1 q+1
o1 = [Wlaﬁla 12 ] and g9 = [’725623 ] Thena
ﬂqul q+1
0102 = 172,75 Br + B2, 7% ! 5 T2 B3B1 + —5 I

We have

(75" B1 + B2+ = T BITEY 4 2417 By + YT
Since p* — 1 = 0 mod t/d we have p* — 1 = kt/d for some integer k. So,
(Y )P =t = ()Rt = (4)Fm/d = 1 implying 73" € F,.. We also have
B € Fy. Thus,

(4581 + )1+ st 5
e =T B+
This completes our proof. ([

Now, we construct another type of subgroup of G(Ps). For this, we need
to prove some lemmas.

Lemma 3.7. Let V ={x € Fpeo : 294+ 2 = 0}. Then V has a F,s subspace of
dimension usy/s.

Proof. V is a one dimensional Fy vector space as well as a h/s dimensional I,
space. So, it has a subspace of dimension uy/s. (I

Let W5 be a subspace V given in Lemma 3.7. Then |Ws| = p“2.
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Lemma 3.8. Let J be the set of automorphisms of the following form:

Z—z
0=43Y—Y
T — T+ «,

where a« € Wo. Then, J is a subgroup of Auty (Cy).

Proof. Tt is obvious from Lemma 3.7. O
Lemma 3.9. J x L is well defined.

Proof. i) The intersection of J and L is obviously identity. Let [y™, 3, %ﬁ] el

and [1,0,a] € J. Then we have

pat!
2

patt o

Porasyl

[,ym’ﬁ’ ][1,0,04][’ym,6, ]71 = [1’0

Since p* —1 =0 mod t we have p°* — 1 = kt for some integer. So, it turns out
that (y0"+1)P =1 = (4" +1)kd = (y1)*"d" = 1. So, [1,0, 7#5] € J, and this
implies L normalizes J. O

Let U = Jx L. Then U consists of the automorphisms of the following form:

Z =z
y—=y"y+ 8
n +1
z =0y 4 ympiy + B +a,

where 7' = 1, 8 € Wi, a € Wa. Hence, |U| = tp“'p“2. We need to calculate
different of the fixed field of U in order to calculate the genus of its fixed field.

Lemma 3.10. The different exponent of Ps, in the extension C,/CY is
(18) d(Poo) = (m + 1)(pu1 _ 1)puz + (qn + 2)(puz _ 1) + (t _ 1)pu1+uQ.

Proof. By the equations (16) and (17), we have

d(P) = > vp.lo(t) —1]

1#o0€U
= (m+ 1" = 1)p™ + (¢" +2)(p* — 1) + 1(tp™'p™* —p“'p™).
Proposition 3.11. The degree of Diff(C,,/CY) is
deg Diff (C,,/CY) = (m + 1)(p"* — 1)p* + (¢" +2)(p"* — 1) + (t — L)p“r+*
+ ¢3[ged(t,m) — 1] + g[ged(t, " + 1) — ged(t, m)]p™
+ [t — ged(t, g™ + 1)]p* T2,
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Proof. From (15), we have deg Diff (C,\C},) = d(Px) + X, cir_(1y N(0). The
proof follows from Lemma 3.3, Lemma 3.10 and the calculation of the cardi-
nalities of the following sets

{o:4y™ =1,8=0,a =0} = ged(t,m),

m m 7m5q+1 n u
o9 #1974 = 10 = Ty = (et + 1) — ged(t, )™
{o 97" £ 1} = "7 — god(t,g" + L)p™ 2. o

We now state the main theorem of this section.
Theorem 3.12. The genus of CY is given
9(C) = ﬁ {(a-1)(@" +¢"—¢*) =2~ [(m+1)(p" —1)p*

+ (" +2)(p" — 1)+ (- 1pm T
+¢°(ged(t,m) — 1) + qlged(t, ¢" + 1) — ged(t, m))p*!
+(t = ged(t,¢" + 1))p 2]} +2|U].

Proof. Follows from (14) and the proposition above. O

3.2. Example 2: A subgroup of G for n = 3

In this section, we will extend Theorem 5.4 in [6]. Let v be a (¢g—1)(¢3+1)-th
root of unity. We consider the following automorphisms

z =z z—=z/x
(19) e=<y—7"y and w=<y—y/z
z— Ty x— 1/

Let U be the group generated by these automorphisms. Then, we have |U| =
2(¢ - 1)(¢* +1).

Lemma 3.13. CY = K (2@~ 4 g=(a=1),

Proof. Tt follows from the fact that [K (z) : K(z(4=D 42~ (=) =2(¢—1). O

Note that all the places in the extension K (x(@~ D)\ K (2@~ 4 z=(@=1) are
unramified, and the only ramified places in K (z)\K (29~Y) are (z = o) and
(z = 0). So, there is no ramified place in the extension C3\X¥ apart from the
places Py and Py

The automorphisms in U are in the form

z =z z = yz/x
(20) c=qy—7"y and T=<y—y"y/x
z— T+ T — 'yqurl/:c.

We can now state the following lemma.
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Lemma 3.14. Let o and T be given as above. Then

@+l ym=1 a=p=0
g+1 AmAL =1

N(O’) = 9 ,yqs-i-l 7& 1
0 otherwise,
and
q+1 A" el
N(r)=130 4™ ¢ Fy, A2 =]

2 @ +D(=D/2 = 1,

233

Proof. Calculation of N(o) is the direct result of Lemma 3.3. For the second
part, we first note that the places Py, and Pyoo do contribute to N (7). So, we
have to count the pairs (a,b) € (F;2)* x F,2 such that P,y € N(7). We have

T(Pavo) = Paro & 7(x —a),7(y —b),7(2) € Paro
= 7q3+1/$ —a,
Y"y/x —b,vz/x € Puyo
& AT g -yt g 444 g g,
Y y/x —y"b/a+y"b/a —b,yz/x € Puo

°+1 1
& T—fa-a)- (" ),
axr a
ghil b m
—(ya —bx) + —(v"™ —a) € Pano
ax a
3
Nt 1 ¢ +1 2
<:> J— JR— J—
—(a-2) -~y a’),

m
ax
o (7q3+1 —a?), b(y™ —a) € Pupo

= 7‘13"’1 —a?>=0 and b(y™ —a)=0.

2 f(aly — 8) +b(a — o) + > (0" — ) € Pag

Hence, we need to count the pairs (a,b) € (Fj2)* x Fp such that ~e'H = g2

q
and b(y™ — a) = 0. We do the calculations case by case.

Case 1: " € F,.

If Y™ € F,, then a* = AP+ = ymla+]) = ym(a=Da2m — 42m  Hence, we
get a = £y™. If a = —y™ € F,, then we have —27™ = b?"! as a? + a = b?T!.
So, for b # 0 it turns out that v = a, which is contradiction. Therefore, we

have Y™ = q b9t = 24™,
Case 2: 4™ ¢ F, and y™(@*=1/2 = 1,

In this case, we have a?~! = (@’ +D@=1)/2_1 and hence a € F,. This

implies 7™ # a and b = 0 and hence a = 0. So, we get a contradiction.
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Case 3: v ¢ F, and »ym(q271)/2 -1
In this case, we have a?~! = —1 and a¢ = —a and hence b = 0 and a =
Loya+1)/2, .

Theorem 3.15. Let t be a divisor of (¢ + 1)(q¢ — 1) and v be primitive n-th
root of unity. The genus of the subgroup U generated by € and w defined as in
(19) s

9(C) = ((¢® +1)(¢® = 2) = {(¢* + D]dr — 1] + (g + 1)[d2 — du] + 2[t — do]
+ (g + 1)ds + 2[t — d4]} + 4t) /4¢,

where di = ged(t,m), do = ged(t,q¢® + 1), d3 = ged(m(q — 1),t) and dy =
ged(t, (¢* +1)(g — 1)/2).
Proof. Note that all the places of U are tamely ramified in the extension C,/CY

as |U| = 2t and t is a divisor of (¢ — 1)(¢® + 1). U consists of elements of the
form ¢ and 7 given in (20). By Lemma 3.14, we have

> N(oy) = (¢® + D)lged(t,m) — 1] + (g + 1)[ged(t, ¢° + 1) — ged(t, m)]
yr=1,9#1
+ 2t — ged(t, ¢* + 1)),

and
Y N(7) = (a+ 1) ged(m(q — 1), 8) + 2[t — ged(t, (¢ + 1)(g — 1)/2)].
t=1
By Hurwitz-genus formula, we get the desired result. O

3.3. Example 3: A subgroup of G for n = 3

We now extend the Example 5.6 in [6]. Let ¢ be a divisor of (¢ — 1)(¢® + 1)
and d = ged((q — 1)(¢® + 1), (¢3 — 1)t). Let t; be a divisor of d and «, be an
element of order ¢;. Let J be the subgroup of G which consists of the elements
of the form

Zz =z
oy =Yy —=>7"y
3
1
x — 7 Ty,

where 7 is a t’th root of unity. We also define the following automorphism

z = apz/x
p=Ny—agy/e
T — ozgs"'ll/z.

Lemma 3.16. The group U = J U pJ is a subgroup of G for n = 3.
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Proof. Since

z— ag/agerlz z — ('yao/('yao)qSJrl)z/:c
3 3
PP =qy = (aZ/al My and oyop =y = (yao/(yoo)? )"y /x
3 3 3 3
x— (af /ol THT g = (yao/(yoo) T T
we see that p? and 0. o p are in G. O

Theorem 3.17. Let U be the subgroup constructed in Lemma 3.16. Then, we
have

g(xY) = ((¢® +1)(¢* = 2) = {(¢® + D]di — 1] + (¢ + 1)[dz — di] + 2[t — do]
+ (g + 1)d1 + 282} + 4t) /4¢,
where

dy = ged(t,m), do = ged(t,q® + 1), ds = ged(m(q — 1),1),

0 else

dy 2|t
dy = ged(t, (¢° + 1)(q¢ —1)/2), o1 = { ' EIATE  gna

to t
5y — {t ~dt g @EE D@

t else

Proof. All the places of U in C,,/CU are tamely ramified as |U| = 2t. U consists
of elements of the form

z =7z z = (yaw)z/x
oy =Sy ="y and 7, =y — (yao)"y/x
3 3
r =7 Ty = (yae)? 11 /.

By Lemma 3.14, we have

> N(oy) = (¢* +D)ged(t,m) — 1] + (g + 1)[ged(t, ¢* + 1)
vi=1,7#1
— ged(t,m)] + 2[t — ged(t, ¢ + 1)].

For the elements of the second type, we first consider
(21) {7 (yao)™™ D =1} = { : 4™ = g mla=-DY,

The image of the group <7m(q_1)> under the homomorphism «a : z — ™41
is the unique subgroup of the group generated by primitive (¢ — 1)(¢"™ + 1)-th
root of unity, and its order is t/ds. So, if the order of (a,) ™~ does not
divide t/d3, then the set in (21) would be empty. The kernel of a consists of
the elements of order ds.

Now we consider the set

(22) {v: (Wao)(q3+1)(q_1)/2=1}|=|{72 (7)(q3+1)(q—1)/2:(ao)(q3+1)(q—1)/2}-
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The image of (y(¢°+D@=1/2) ynder the homomorphism 2z — 2(¢’+D(@=1)/2
is the unique subgroup of order ¢/dy of the group generated by primitive (¢ —
1)(q"+1)’th root of unity. Hence if the order of (a,)(@" +1(@=1/2 does not divide
t/dy4, then the set in (22) is empty. The kernel of the map = — 2@+ (a-1)/2
in (y™(4=1) consists of the elements of order dy. O

Remark 3.18. By Theorem 3.12 and Theorem 3.17, we can construct the max-
imal function fields over the finite fields of the cardinalities 55, 510, 310 and 318
with the following genera which are new up to [2], [4], [6], [8]:

Fre : 146 Theorem 3.12
Fsi0 : 1820, 2080, 3120, 3640, 4681, 7282, 9362, 12482, 18724 Theorem 3.12
F310 : 481 Theorem 3.12
Fais : 45,91, 145,289,579, 645,1057,1755,2547, 3511, 5617,

6552, 12300, 39361 Theorem 3.12
F31s : 505,1311, 255535 Theorem 3.17

Remark 3.19. One can use Theorem 3.12, Theorem 3.15 and Theorem 3.17 to
construct maximal function fields over the finite field with the cardinality 5°
with the genera that were obtained in [4]:

9,14, 21, 38,70, 76, 86, 140, 220, 282, 362, 442, 724 Theorem 3.12
9,27, 37,73, 76,109, 180, 220, 361, 724 Theorem 3.15
9,27,37, 38,73, 76,109, 180, 220, 361, 362, 724 Theorem 3.17
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