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Abstract

A descriptive complexity approach to random 3-SAT is initiated. We show that unsatisfia-
bility of any significant fraction of random 3-CNF formulas cannot be certified by any property
that is expressible in Datalog. Combined with the known relationship between the complexity
of constraint satisfaction problems and expressibility in Datalog, our result implies that any
constraint propagation algorithm working with small constraints will fail to certify unsatisfi-
ability almost always. Our result is a consequence of designing a winning strategy for one
of the players in the existential pebble game. The winning strategy makes use of certain ex-
tension axioms that we introduce and hold almost surely on a random 3-CNF formula. The
second contribution of our work is the connection between finite model theory and proposi-
tional proof complexity. To make this connection explicit, we establish a tight relationship
between the number of pebbles needed to win the game and the width of the Resolution refu-
tations. As a consequence to our result and the known size-width relationship in Resolution,
we obtain new proofs of the exponential lower bounds for Resolution refutations of random
3-CNF formulas and the Pigeonhole Principle.
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1 Introduction

The phase transition phenomenon that certain combinatorial problems exhibit has inspired a new
line of research within the field of computational complexity. The focus is no longer exclusively
set to the worst-case complexity of the problem, but also in studying its structure for the typical
instances when drawn from certain distributions of interest. This research is motivated by the
need to understand the structure of hard-to-solve ��� -complete problems of practical importance.
Moreover, the structural analysis of the typical instance is often followed by an analysis of the
running-time of the known algorithms to solve the problem. As a matter of fact, the methods for
these two tasks are very often related, and one task can be seen as complementary of the other.

The satisfiability problem for 3-CNF formulas, the most popular ��� -complete problem, has
been intensively studied from this perspective. The distribution of interest in this context is param-
eterized by the number of variables � and the number of clauses � of the formula. Thus, following
the standard notation, we let �����
	���	�
�� denote the probability space of random 3-CNF formulas
with � variables and � clauses generated uniformly and independently from the set of all possible
clauses on exactly three distinct variables. The ratio ����� is denoted by � and is called the clause
density. It is conjectured that the probability that a random formula � is unsatisfiable exhibits
a phase transition from asymptotically � to asymptotically � around a critical clause density ���
[CR92]. As far as partial results are concerned, it has been proven that if ����
���� � then � is al-
most surely satisfiable [KKL02] and if �"!#�$�&%'�)( then � is almost surely unsatisfiable [DBM00].
Moreover, experimental results suggest that � � is around �*�+� [SML96], but the existence of such a
constant is only a conjecture for the moment.

As mentioned already, the structural analysis of the typical instance of the 3-CNF satisfiability
problem is complemented by an analysis of the known algorithms to solve it. The first results in this
respect were only experimental showing that the running-time of the Davis-Putnam-Logemann-
Loveland procedure (DPLL) for satisfiability experiments a sharp jump around � , �*�+� , and
decays slowly as the ratio � increases. These empirical observations are confirmed by two deep
theoretical results. First, Broder, Frieze, and Upfal [BFU93] proved that if �-�.�'�&('
 then a sim-
ple variant of DPLL running in linear time succeeds in finding a satisfying assignment with high
probability. Second, Chvátal and Szeméredi [CS88], as improved by [BKPS98, BS01], proved that
every Resolution refutation of an unsatisfiable � almost surely requires size �0/$1+2436587:9�;=< . Thus, since
a DPLL run on � provides a Resolution refutation when � is unsatisfiable no matter which heuris-
tic is used for the splitting rule [BKPS98], this provides a proof that all DPLL-based algorithms
behave badly in the unsatisfiable region with small � . The results of Broder, Frieze, and Upfal
were later improved to values of � closer to �$�&� (see the nice survey by Achlioptas [Ach01]), and
the results of Chvátal and Szeméredi were extended to other proof systems such as the Polynomial
Calculus and Res(2) [BSI99, ABE02].

We remark that, at the time of writing, the known lower bounds on the satisfiability threshold
� � are algorithmic, while the known upper bounds are not. What this means is that for every
density � for which it has been proven that a random formula is almost surely satisfiable, there
actually is a polynomial-time algorithm that certifies this with probability bounded away from
zero. The situation at the upper-end is quite different. All known constant upper bounds on ���
follow by a counting argument that does not provide with a polynomial-time algorithm that certifies
unsatisfiability. In fact, the theoretical results of Chvátal and Szeméredi about Resolution, and their
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extension to other proof systems such as the Polynomial Calculus and Res(2), prove that every
algorithm that implicitly or explicitly produces a refutation in such systems will fail to succeed
in polynomial-time or with non-zero probability. Hence, these results suggest a pattern in the
average-case complexity of the satisfiability problem sometimes referred to informally as the easy-
hard pattern (see [SK96], and see [CDA � 00] for a criticism). It seems that for constant values of �
beyond the critical point, certifying unsatisfiability on a significant fraction of the inputs becomes
computationally hard. A definitive argument in its favor would be the non-existence of a property
of 3-CNF formulas that (1) is efficiently decidable, (2) it implies unsatisfiability, and (3) holds with
probability bounded away from � when � ! �*�+� is constant. Obviously, this hypothesis implies
� �� ��� when the term “efficiently decidable” is interpreted as decidable in polynomial-time,
so its proof seems out of reach with current methods. Thus, it is reasonable to ask whether the
hypothesis is true for stricter but reasonable interpretations of the term “efficiently decidable”, and
this is the approach taken in this paper.

We initiate a study of the descriptive complexity of properties that imply unsatisfiability with
non-zero probability. We show the non-existence of a property of 3-CNF formulas that (1) is
expressible in Datalog when 3-CNF formulas are encoded as finite relational structures, (2) it
implies unsatisfiability, and (3) holds with probability bounded away from � when � is constant.
Datalog is a well-known query language studied in the context of database theory (see Ullman
[Ull89]), capable of expressing many interesting problems including Graph Reachability, Non-2-
Colorability, Unsatisfiability of 2-CNFs, and some � -complete problems such as the Monotone
Circuit Value Problem and Path Systems among others (see [KV00a, Pap85, Ull89]). In a nutshell,
Datalog may be viewed as the existential positive fragment of first-order logic augmented with a
mechanism of recursion. In fact, Chandra and Harel [CH82] proved that Datalog coincides with the
existential positive fragment �����	� of least fixed-point logic ���
� . Let us add that Datalog captures
a significant but proper fraction of polynomial-time (see [Ull89] again), and in the presence of
a successor relation and negations on the given predicates, it captures polynomial-time exactly
[Pap85].

The main ingredient of our proof is the design of a winning strategy for the Duplicator in the
existential � -pebble game between the structure encoding a randomly generated formula, and the
structure encoding a fixed template formula that we know is satisfiable. The existential � -pebble
game is a powerful combinatorial tool introduced by Kolaitis and Vardi [KV95, KV00a] to analyze
the expressive power of Datalog with � variables. In fact, the existential � -pebble game captures
the expressive power of the stronger logic �
�
���� , the existential positive fragment of infinitary
logic with � variables. Thus, our lower bound is much stronger than stated above since what
we actually prove is that every property that implies unsatisfiability of formulas with � variables
and is (non-uniformly) expressible in the infinitary logic �
������ when ���.� ������� � � � ��� must have
asymptotic probability � when ��� � and � is constant. Note that we allow the number of
variables � to grow with the number of propositional variables � , a parameter that is not allowed
to vary in a uniform Datalog program. The techniques also provide results when � is a function
of � . We discuss these in Section 5.

The design of the winning strategy for the Duplicator relies on the fact that the incidence graph
of a random 3-CNF formula, the bipartite graph that relates clauses with the variables that occur in
them, satisfies certain extension axioms that we introduce based on the expander properties of the
graph. The use of extension axioms is a recurring theme in proving 0-1 laws for several logics and
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distributions on the instances [Fag76, Lyn80, SS88, KV90]. Moreover, the expander properties of
these graphs have also been used in the context of propositional proof complexity to prove lower
bounds in the size of Resolution refutations [BSW01, BSG01]. We make the point that this is
not a coincidence since there actually is a connection between the fields of propositional proof
complexity and finite model theory that we discuss next.

Propositional proof complexity is devoted to the study of the length of proofs in propositional
proof systems. Unquestionably, certain tautologies are more obvious than others, and this is re-
flected by the length of their proofs in a fixed proof system. In addition, the study of the lengths of
proofs yields significant insight into the combinatorial and computational content of the tautology.
The field started with the pioneering work of Cook and Reckhow [CR79], and has been developing
continuously since then.

One of the well-studied proof systems is propositional Resolution, introduced by Robinson
[Rob65]. For a discussion on the origins of Resolution, going back to the work of Blake [Bla37],
and Davis and Putnam [DP60], see [CS88] (we thank a referee for pointing this out). Strictly
speaking, Resolution is a refutational system, which means that it provides proofs of contradiction
of unsatisfiable CNF formulas rather than proofs of tautologies. However, it is well known that
both frameworks are easily translatable one into the other without much effort. The first signifi-
cant lower bounds in propositional proof complexity were for Resolution. Indeed, Haken [Hak85]
showed that the propositional encoding of the Pigeonhole Principle proposed by Cook and Reck-
how requires Resolution refutations of exponential size. Later on, Chvátal and Szeméredi [CS88]
proved that a 3-CNF formula randomly generated from �����
	�� �
	 
0� requires exponential-size Res-
olution refutations almost surely.

Our results establish two previously unnoticed links between the fields of finite model theory
and propositional proof complexity. The first novelty of this work is the observation that hard-
to-prove tautologies yield finite structures on which playing combinatorial games might be easier
than expected. It is generally recognized that identifying the finite structures on which to carry
over a non-expressibility result via combinatorial games is a difficult task. Our point is that the
encodings of combinatorial principles as propositional tautologies could serve for this. As a matter
of fact, the idea of playing existential � -pebble games on random 3-CNF formulas came out of the
following informal reasoning: if a formula is hard to refute in Resolution, shouldn’t it be hard to
tell apart from a satisfiable formula by a bounded player that confronts an adversary? In order to
make this argument even more explicit, we consider the encoding of the Pigeonhole Principle as an
unsatisfiable CNF formula in the spirit of Cook and Reckhow, and show that the Duplicator wins
the existential pebble game on the finite structure encoding this formula and a structure encoding
a satisfiable formula.

The second link between finite model theory and propositional proof complexity is the obser-
vation that there is a tight connection between the number of pebbles needed to win the existential
� -pebble game and the concept of width in Resolution. In a Resolution refutation, the width is
the maximal number of literals in a clause of the refutation. Ben-Sasson and Wigderson [BSW01]
proved the following non-trivial result about the width of Resolution: if a 3-CNF formula has a
Resolution refutation of size � , then it has a Resolution refutation of width � ���

� �����	��
 , where
� is the number of propositional variables. This interesting result relates the width with the size
in a form that is suitable to prove size lower bounds. Indeed, if every Resolution refutation of �
requires width � , then every Resolution refutation of � requires size �0/$1�
�7�3 24< . Thus, lower bounds
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on width imply lower bounds on size. It is worth noting that a conjecture about a trade-off of
this type was formulated already in 1981 [KM81]. The connection that we establish is this: we
show the existence of a Datalog program � with � � variables such that (1) if � has a Resolution
refutation of width � , then � evaluates true on the structure encoding � , and (2) if � evaluates
true on the structure encoding � , then � has a Resolution refutation of width � � . Thus, if the
Duplicator wins the existential � -pebble game on the structure encoding � and the template struc-
ture, then every Resolution refutation of � requires width � � � . An immediate corollary of our
main result about the Duplicator winning the � ��� � � � � � -pebble game on a random 3-CNF formula
� , and the size-width trade-off of [BSW01], is that every Resolution refutation of � requires size
� /$1&2 3 1���� 24<

�
< . This shows that our main inexpressibility result for �
� � ��� is a generalization of the

result of Chvátal and Szeméredi. The same argument can be used to obtain Haken’s exponential
lower bound for the Pigeonhole Principle. It should be pointed out that Ben-Sasson and Wigderson
prove similar lower bounds by means of the width method in a more direct way. Nonetheless, it is
quite interesting that non-expressibility results in finite model theory yield lower bounds in proof
complexity.

We turn next to a discussion about the implications of our results for the complexity of algo-
rithms for constraint satisfaction problems. It was first pointed out by Feder and Vardi [FV98]
that every constraint satisfaction problem can be cast as a homomorphism problem: given two
finite structures � and � over the same relational vocabulary, is there a homomorphism from � to
� ? Intuitively, � represents the variables and the tuples of constraint variables, � represents the
values and the constraints, and the homomorphisms between � and � are the solutions to the con-
straint satisfaction problem. Note that satisfiability problems fit well in this framework by letting
the universe of � be �)��	 �
	 and the relations of � be the truth-tables of the involved connectives.

Several concepts of consistency have been popularized by the AI community as powerful al-
gorithmic tools to deal with the intractability of constraint satisfaction problems. The underlying
common idea of all these concepts is that of identifying some structural property on the instances
that guarantees success of a fixed constraint propagation algorithm in reasonable time. All these
algorithms start with the initial constraints of the problem, and propagate them by inferring new
and possibly tighter constraints, until the problem is either solved, or proved unsatisfiable.

Kolaitis and Vardi [KV00b] shed light on the connections between the concepts of consistency
and the concept of winning strategy for the Duplicator in the existential � -pebble game. These
seemingly unrelated concepts turned out to be tightly connected through a theorem stating that
a constraint satisfaction problem given by the structures � and � can be solved by establish-
ing strong � -consistency if and only if the Duplicator wins the existential � -pebble game on �
and � . As a matter of fact, what Kolaitis and Vardi pointed out is that solvability by the usual
constraint propagation algorithms can be cast, in one form or another, as conditions on winning
strategies for the Duplicator. With this interesting re-interpretation, our result about the Duplicator
winning the existential � -pebble game on a random 3-CNF formula admits the following intuitive
interpretation: any usual constraint propagation algorithm that attempts to solve satisfiability with
small constraints will succeed on a negligible fraction of all 3-CNF formulas only. We note that
resolution is only one very particular form of constraint propagation.
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2 About Datalog and Infinitary Logic

Let us start by defining the basic concepts of logic that we will use. Our terminology and no-
tation are standard. Any introductory textbook to the topic such as [EFT84] or [BM77] would
elaborate further, if need be. A finite relational vocabulary � is a finite set of relation symbols
����� 	 �4� � 	���� 	 , each with a non-negative integer arity ��� 	 � � �4	��	� . A structure over � is a tuple
 � ��� 	���
� 	4� � � 		��
� � , where � is a set, called the universe, and each ��
� is a relation of ar-
ity � � over � , called the interpretation of � � . The standard example is the relational language of
graphs � � ��� 	 , with a single binary relation symbol � . The structures over � are exactly the
directed graphs, possibly with loops. The undirected graphs are those structures over � whose
interpretation of � is a symmetric and irreflexive relation.

We assume the existence of countably many first-order variables that range over elements of
the universe. We also assume the existence of countably many second-order variables of each
non-negative arity that range over relations of that arity over the universe. The atomic formulas
are those of the form � ��� � 	 � � � 	�� � � , � ��� � 	 � � � 	���� � , or � � � � � , where � � 	�� � 	4� � � are first-order
variables that are not necessarily distinct, � is a relation symbol of arity � , and � is a second-order
variable of arity � . The class of first-order formulas is the smallest class of formulas that contains
the atomic formulas and is closed under conjunction, disjunction, negation, and existential and
universal quantification over first-order variables. The semantics of the first-order formulas over a
structure is defined in the usual way (see [EFT84]). If � ������	 �4� � 	�� 2 	���� 	 � �4� 	���� � is a first-order
formula with free variables as shown,



is a structure over its vocabulary, � ��	 � �4� 	�� 2 are elements

of the universe of



, and !"� 	 � � �4	�!#� are relations over the universe of



of the appropriate arity,
we use the notation


 $ � �&%'����	4� � � 	�� 2 	�!(��	 � �4� 	�!#�*) to denote the fact that � is satisfied in



under the given interpretation of its free variables. For example, if + � ��, 	�� � is an undirected
graph, and -/.0, is an isolated node, then + $ � �213� ���546� ��� 	�-$� � .

Next we define Datalog. Good introductory texts on Datalog are [Ull89] and [EF95]. Let
� � ���7� 	 � � � 		��� 	 be a relational vocabulary and let �8� 	 � � � 	9� � be second-order variables. Let � �
be the arity of � � , and let � � be the arity of � � . A Datalog program over �;: �<�=� 	4� � � 	�� � 	 is a set
of rules of the form

>�? @BA > � 	 �4� � 	 >DC 	
where

>5?
is an atomic formula of the form � � ��� � 	 � �4� 	�� �FE � , and each

>�G
with H ! � is an atomic

formula of the form � � ��� ��	 �4� � 	��B� E � or � � ���I� 	 � � �4	�� �DE � . Here the � � are first-order variables that
are not necessarily different.

Note that the heads of the rules (left part) are always predicates formed from second-order
variables. These are called the intensional database predicates (IDBs). The predicates in the
vocabulary � always appear in the bodies of the rules (right part), and are called the extensional
database predicates (EDBs). One of the IDBs is called the goal of the program, and it might be of
arity zero (a propositional letter). A Datalog program is a recursive specification of the IDBs from
the EDBs formally defined below. Informally, if



is a structure over the vocabulary � of the

EDBs, the IDBs are given the following semantics: initialize the IDBs to be empty, and repeatedly
apply the rules of the program whose bodies (right part) are satisfied by



and the current value of

the IDBs, until no new facts can be added to the IDBs. One way of formally defining the semantics
of Datalog is through the concept of system of simultaneous inductions that we introduce next.
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Let
� � ��� ��	 � �4� 	��B� � 	���� 	4� � � 	�� � � 	 � � � 	 � � ��� ��	 �4� � 	��B��� 	9��� 	 � � � 	�� � �

be a sequence of first-order formulas of ��: �<�8� 	 � �4� 	�� � 	 each of which is positive in each � � . In
order words, each � � occurs within an even number of negations. On every structure



over � ,

the sequence of formulas ��� � 	 � � � 	�� � � defines � mappings � � @�� � ���	�
����� � � � � � �DE by setting

� � ��!(� 	 � � � 	�! � � � �����B��	4� � � 	�� �FE � . � �FE @ 
 $ � � � %'�B� 	4� � � 	�� �FE 	�! ��	4� � � 	�! � ) 	��
Since the formulas are positive, it is not hard to see that each � � is a monotone operator, that is, if
! ��
���� for each ��. ���)	 � � � 	�� 	 , then � � ��! ��	4� � � 	�! � � 
 � � � � � 	 � �4� 	 � � � for each ��. ���)	 � � � 	 � 	 .
The stages are defined by setting �

?
� ���$	4� � � 	�� � and � � � � � �6� � �6� � ��	 � �4� 	 � � �6� � � � . If ! �

��!(��	 � �4� 	�! � � is such that ! � � � � ��! ��	 � �4� 	 � � ��! � � , we say that ! is a fixed-point. If in addition
every other fixed-point � � � � � 	 � � � 	 � � � is such that ! ��
���� for every �=. ���)	 � � �4	�� 	 , we
say that ! is the least fixed-point. The least fixed-point always exists, and if



is finite, some

finite stage � � reaches it. This follows from the Knaster-Tarki Theorem (see [EF95]). The least
fixed-point is denoted by � � � 
 � � �6� �� � 
 ��	 �4� � 	 � �� � 
 � � .

Each Datalog program specifies a system of monotone operators, also known as simultaneous
inductions. Indeed, each IDB predicate � � has an associated positive formula � � that is the dis-
junction of the existential closure of the bodies of the rules that have � � in its head. The proper
construction of � � requires some renaming of variables in order for each head to have the form
� � ��� � 	 � � � 	�� �DE � . Then, the interpretation of a program with goal predicate ��� on a structure



over � is simply � �� � 
 � , where ��� � � � 
 � 	 � � � 	 � �� � 
 � � is the least fixed-point of the system
���6� 	 � � � 	�� � � . The interpretation of a Datalog program � on



is denoted by � 
 . This defines the

semantics of Datalog. Let us see an example.

Example 1 Consider the following Datalog program over the vocabulary of directed graphs ��� 	 ,
where � and � are binary and unary second-order variables respectively:

� ��� 	�� � @BA � ��� 	��$�
� ��� 	�� � @BA � ��� 	�� � 		� ���$	�� �
� ��� � @BA � ��� 	�� ���

The Datalog program recursively defines � as the set of all pairs of nodes ��� 	�� � such that � is
reachable from � in the graph. Also, it defines � in terms of � as those nodes that are reachable
from themselves. Thus, if � is the goal predicate of the program, its interpretation on a graph
is the set of nodes that belong to a (non-necessarily simple) cycle. The corresponding system of
simultaneous inductions is

��� ��� 	��8	���	�� � � � ��� 	�� �! � �"� ���F� ��� 	�� �$# � ���$	��$� �
�&% ��� 	9��	�� � � � ��� 	 � � �

We note that in this particular case, the system is quite trivial since, in fact, � and � variables do
not mix. Nonetheless, we will have genuine simultaneous inductions in the general case. Exam-
ple 3 below is a genuine one. ' (
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A careful writing of the system of simultaneous inductions corresponding to a Datalog pro-
gram reveals that the defining formulas are existential positive. That is, each component of the
system is a first-order formula that is formed from the atomic formulas by means of conjunctions,
disjunctions and existential quantification only; no negations, and no universal quantification.

We are interested in the number of first-order variables of a Datalog program as a measure of its
complexity. Thus, following Kolaitis and Vardi [KV00a], let � -Datalog be the class of all Datalog
programs with at most � variables and IDB predicates of arity at most � . In the following Theorem
we show that each � -Datalog program is equivalent to one component of a system of simultaneous
inductions defined by an existential positive formula with at most � variables. This was already
noted without proof by Kolaitis and Vardi [KV00a]. We provide a full proof for completeness.

Theorem 1 ([KV00a]) Let � � ����� 	 �4� � 		��� 	 be a relational vocabulary, let �8� 	 � � �4	�� � be
second-order variables, and let � � be the arity of � � . Let � be a � -Datalog program over � :
�<��� 	 � �4� 	�� � 	 with goal predicate �=� such that ��� � � for every �*. ���'	 � �4� 	�� 	 . Then, there exists
a system of existential positive formulas

� � ��� � 	 � �4� 	�� � � 	���� 	4� � � 	�� � � 	 � � � 	 � � ��� ��	 �4� � 	�� � � 	9��� 	 � � � 	9� � �
with all variables among � �3� 	 � � � 	�� � 	 such that for every structure



over � it holds that � 
 �

� � � � 
 � .
Proof : Let , � � � � 	4� � � 	�� � 	 be a set of variables that contains all variables that occur in the
program. The main trick in the proof is to rename the variables of the rules in such a way that
all heads with the same second-order variable are identical. Technically speaking, this is done as
follows.

Suppose that � is a rule
>9?

:–
> � 	 � � � 	 >FC . The head of the rule is of the form � � ����� 1 � < 	4� � � 	���� 1 �DE < �

for some function � @ ���'	 �4� � 	�� � 	 � ���)	 � � � 	 � 	 . Now, let � @ ���'	 � �4� 	 � 	 � ���)	 � � � 	 � 	 be any
permutation such that �8��� � H$� � ���
	 � ��H�� @ � � H
� � � � � H$� 	 , where H and H�� range over ���'	4� � � 	�� � 	 .
Such a permutation exists because the minimal H � such that � � H � � ��� is clearly unique for any� . ��� � � � 	 � � � 	�� ��� � � 	 , and because ��� � � . This is the only place in the proof where we need that
� is at least as big as the arity of any IDB predicate. We let

��� � ��� � � � � �
�
� � � � ��� � � > � � # ���
� # > �C ��	
where

> �� is the result of renaming each variable � G by ��� 1 G < in
> � . Here, �5��	4� � � 	���� is the set of all

indices of variables in ���)	 � � � 	 � 	 A ���8��� � � � � 	 � � � 	��8��� ��� � � � 	 . In other words, ��� is the result of
renaming each variable of the rule according to the permutation � , and existentially quantifying all
variables that are not within the new names � � 1 � 1 � < < 	4� � � 	�� � 1 � 1 �DE < < of the variables � � 1 � < 	 � � � 	�� � 1 �FE <
in the head. Finally, let � � ��� H�	�H � � @ � � H$� � � � H � � 	 be the set of clashes of � , and let � ��� � 	4� � � 	����DE=� � � � # !

1
G�" G$#

<&%('
� G � � G # �

By now, we have succeeded to rename the variables of the rule � in such a way that the head, if
we were to write the rule again, has the form � � ��� � 	 �4� � 	 � �FE � . Now, if ��� 	 � � � 		�*) are all the rules
of the program having � � in its head, we let

� � ��� ��	 �4� � 	�� �FE 	���� 	 � � � 	�� � � �  � �  ���
�   �,+ �
8



From its very construction, the first component of the system ��� � � � 
 ��	4� � � 	�� �� � 
 � � is defining
the semantics of the program � . ' (

Following [KV00a] we will denote the existential positive fragment of first-order logic with �
variables by � ��� � . Similarly, we let �
�	���� be the existential positive fragment of infinitary logic
with � variables. That is, �
�	���� is the smallest class of formulas with at most � variables that is
obtained by closing the atomic formulas under infinitary conjunctions, infinitary disjunctions, and
existential quantification only. It was shown in [KV00a] that every component of the least fixed-
point of a system of � ��� � formulas is expressible in �
�	���� . In view of Theorem 1 we obtain:

Corollary 1 ([KV00a]) Let � be a positive integer. Then � -Datalog 
 �
������ , where � -Datalog is
the class of all Datalog programs with at most � variables and IDB predicates of arity at most � .

This result will be used to obtain non-expressibility results for Datalog from non-expressibility
results for �
� � ��� . It turns out, as we will see, that the latter is a more amenable task because it has
a nice combinatorial reformulation.

3 Formulas as Structures and Satisfiability as Homomorphism

Let � - ��	4� � � 	�- 2 	 be a set of propositional variables. A literal is a variable - � or the negation of a
variable 4*- � . A clause is a multiset of literals. A � -CNF formula is a multiset of clauses each of
which has at most � literals. It is customary to write clauses ������	 �4� � 	�� � 	 as disjunctions ���� �
���  �� � ,
and CNF formulas as conjunctions of clauses �#��# �
�
� # �6� . A � -CNF formula � is satisfiable
if there exists a truth assignment � @ � - � 	 �4� � 	 - 2 	�� �)� 	 � 	 that satisfies every clause � of � .
That is, if � � ��4 - � � 	 � � � 		4 - � ��	�- G � 	4� � � 	�- G��
	 � 	 is a clause of � , then either �
��- ��� � � � for some� . ���'	4� � � 	�� 	 , or �
��- G � � � � for some � . ���'	 � �4� 	 � A � 	 .

There is a natural encoding of � -CNF formulas into finite relational structures. Let � �
�

��� ? 	 �4� � 	�� � 	 be the vocabulary of ��
�� relations of arity � . We encode a � -CNF formula �
with variables - ��	 � �4� 	�- 2 as a finite structure


 � � � 		�#
? 	 �4� � 	���
� � over � � . The universe
�

is
the set of variables � - � 	 � � � 	�- 2 	 , and for each ��. �)� 	 �4� � 	 � 	 the relation �7
� encodes the set of
clauses of � with exactly � negated variables. More precisely, �(
� consists of all � -tuples of the
form

��- � � 	 �4� � 	 - � � 	�- G � 	 � �4� 	�- G �
	 � � . � - � 	4� � � 	�- 2 	 �
such that ��4 - � � 	 � �4� 		4 - � � 	�- G � 	 � � � 	 - G ��	 � 	 is a clause of � . The encoding of � by such a finite
structure will be denoted by

� �6� � .

Example 2 Consider the 3-CNF formula

� � ��- �! 4 - �  =-�� �!# �54 - �  ;4 -��  -�� �!# ��-��& 4*-��  ;4 -�� �
over the variables - � 	4� � � 	�-�� . Recall that, strictly speaking, the clauses of � are sets of liter-
als. Thus, � � � ��4*- � 	�-���	�-�� 	 , � � � ��4 - � 		4 -�� 	 -�� 	 and ��� � ��4 -��4		4 -���	�-�� 	 . The struc-
ture encoding � is

� � � � � � � 		� ? 	�����		� � 		��� � where
� � � - � 	�- � 	�-�� 	�-�� 	 , � ? � � , ��� �

����- � 	�-���	�-�� � 	 ��- � 	�-��4	�- � � 	 , � � � ����- � 	 -�� 	 -�� ��	4��-��4	�- � 	�-�� ��	 ��-��4	�-��4	�- � ��	 ��-�� 	 -���	�-�� � 	 and ��� � � . ' (
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The encoding by means of finite structures allows us to use logic to define properties of � -
CNF formulas. For example, the simple property that no clause is tautological is expressed by the
following first-order formula:

� 1�� � � �
�
� �213� � �
��
�!��� ?

��
� � ��� ��	 �4� � 	�� � �
� !��� ��� G � � �� � G	�
��
 �

More sophisticated properties can be expressed in more powerful logics as our next example re-
veals.

Example 3 The purpose of this example is to show that the property “ � is an unsatisfiable 2-CNF
formula” is definable by a 3-Datalog program. The main idea amounts to the well-known fact that
clauses of two literals may be seen as arcs of a directed graph, and that the unsatisfiability of a
2-CNF formula is characterized by a reachability property of that graph (see [Pap95, page 184]).
Let � be a 2-CNF formula on the variables - � 	 �4� � 	 - 2 . Let + � �5, 		� � be the following directed
graph. The set of nodes , is the set of all possible literals -B� 	 � �4� 	�- 2 		4 - ��	4� � � 		4 - 2 . The set of arcs
is the set of all pairs of literals � � � 	�� � � such that ��4 � � 	�� � 	 is a clause of � . Then, it is not hard to
check that � is unsatisfiable if and only if there exists a variable - � such that 4 - � is reachable from
- � and - � is reachable from 4 - � . We express this as a 3-Datalog program over the vocabulary � �
of 2-CNF formulas with four binary IDB predicates � � , �
� , � � , ��� , and a propositional IDB
goal � . The meaning of � � ��- � 	�- G � will be that - G is reachable from - � , the meaning of �
����- � 	�- G �
will be that 4 - G is reachable from - � , the meaning of � � ��- � 	 - G � will be that - G is reachable from
4 - � , and the meaning of ��� ��- � 	 - G � will be that 4 - G is reachable from 4 - � . Thus, the names � � ,
�
� , � � and ��� stand for Positive-Positive, Positive-Negative, Negative-Positive and Negative-
Negative respectively. The recursive definitions of each of these predicates by means of a Datalog
program follows:

� � ��� 	�� � @�A � � ��� 	�� �
�
����� 	�� � @�A � � ��� 	�� �� � ��� 	�� � @�A � ? ��� 	�� �������� 	�� � @�A ��� ��� 	�� �
� � ��� 	�� � @�A � � ��� 	�� ��	 � � ���$	�� �
� � ��� 	�� � @�A �
����� 	�� ��	�� � ���$	��$�
�
����� 	�� � @�A � � ��� 	�� ��	 ��� ���$	��$�
�
����� 	�� � @�A �
����� 	�� ��	��������$	�� �� � ��� 	�� � @�A � � ��� 	�� ��	 � � ���$	��$�� � ��� 	�� � @�A ��� ��� 	�� � 	�� � ���$	�� �������� 	�� � @�A � � ��� 	�� ��	 �
�����$	��$�������� 	�� � @�A ��� ��� 	�� � 	���� ���$	��$�

� @�A �
����� 	 � � 	�� � ��� 	 � � �
The recursive definition of � � ��- � 	�- G � , for instance, reflects the fact that there are exactly two ways
of reaching - G from - � by a path of length at least two: either we first reach a positive literal - � ,
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and from that we reach - G , or we first reach a negative literal 4*- � , and from that we reach - G . The
interpretation of the rest of recursive definitions is similar. ' (

Before we conclude this section, let us introduce an alternative way of interpreting satisfiability
of � -CNF formulas. Recall that a homomorphism between two relational structures



and � over

the same vocabulary � is a mapping � @&� � � such that if ��� � 	 � � � 	���� �(. � 
 for some � in
� , then � � ��� � � 	 � � �4	��
��� ��� �&.0��� . Now, let � be a � -CNF formula. Recall that a truth assignment
is a mapping from the set of variables of � to �)� 	 � 	 . Moreover, a truth assignment satisfies a
clause - G �  �
�
�  - G � exactly when � does not map the tuple ��- G � 	 �4� � 	�- G � � to the tuple ��� 	 �4� � 	 �0� ,
and similarly for the other types of clauses that have one, two, or more negations. Thus, we
observe, as Feder and Vardi [FV98] do, that the satisfying truth assignments of � are exactly the
homomorphisms between

� � � � , the structure encoding � , and the following structure:�
�

� � �)� 	 � 	�		� �? 		� � � 	 �4� � 		� �� �� �? � �)��	 �
	 � A ����� 	���	 � � � 	 �0� 	
� � � � �)��	 �
	 � A ��� �'	���	 � � � 	 �0� 	
� � �
� �� � �)��	 �
	 � A ��� �'	 �)	 � � � 	4� � 	��

The structure
�
� will be called the template structure from now on, and since most often in this

paper � � 
 , we will drop the subindex � in such a case. This interpretation of satisfiability in
terms of homomorphisms will be exploited later.

4 Random Model of CNF Formulas

Let � , � and � be positive natural numbers. Let � � � 	���	 � � be the set of all � -CNF formulas on
the variables � - ��	 �4� � 	 - 2 	 with exactly � clauses each of which has exactly � literals on distinct
variables. We let ��� � 	���	 � � be the uniform distribution on the sample space � � �
	 � 	 � � . Observe
that a particular formula � � � � #��4� � # � � of the sample space has probability�

� ��� � ���
	�� � �

Alternatively, ��� � 	���	 � � can be described as the result of independently repeating the following
experiment � times: choose exactly � variables from � - ��	 �4� � 	�- � 	 , and negate each variable in-
dependently with probability � � � . We will use this interpretation whenever it is convenient. The
ratio ��� � is denoted by � , and is called the clause density. Usually, � is fixed to a constant and
therefore � � � � is determined by � . We are interested in studying the asymptotic properties of
a randomly chosen formula ��
 ��� � 	�� �
	 � � as � approaches infinity.

It is well known that when the clause density � exceeds a certain constant that only depends on
� , a randomly chosen formula is almost surely unsatisfiable. Let us remind the simple argument.
Let � @ �)� 	 � 	 2 � �)��	 �
	 be a truth assignment. Observe that probability that a randomly chosen
clause is falsified by � is ����� � since all chosen variables need to be assigned the wrong polarity.
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Therefore, the probability that the clause is satisfied by � is � � A � � � ��� . Now, by independence of
the clauses, the probability that a randomly chosen formula � is satisfied by � is

� � A �
� � � � ��� � � 3 �

�
�

Here we used the fact that ��
 � ��� � for every real number � . If we let � be the random variable
that counts the number of satisfying assignments of a randomly chosen formula � , we have that� % � ) � � 2�� � � 3��

�
by linearity of expectation. By Markov’s inequality

���3% � ! � ) � � % � ) � � 2 � � � 3��
�
� � 2 � � 5 243��

�
�

Finally, if � ! � � ��� � ��� , the formula is unsatisfiable with probability approaching � as � ap-
proaches � . When � � 
 , this bound gives the well-known number % � �	� .

5 Main Result and Discussion of Proof Techniques

Let 

� ��� 2 be the class of all structures of the form
� �6� � where � is a 3-CNF formula on at

most � variables. Let 
 � ! � 2 
 

� ��� 2 be the class of all structures of the form
� �6� � where �

is a satisfiable 3-CNF formula on at most � variables. Similarly, let 
���� � ! � 2 
 

� ��� 2 be the
class of all structures of the form

� �6� � where � is an unsatisfiable 3-CNF formula on at most �
variables. The main result of this chapter is the following:

Theorem 2 For all constants 
 !.� , � !.� , and for all sufficiently large � , if � 2 
 
�� ��� 2 is
such that

(i) � 2 
 
���� � ! � 2 and

(ii) ���<% � �6� �6. � 2 )���
 when � is drawn from ��� �
	 � � 	�
0� ,
then � 2 is not definable in �
�	���� on 
�� ��� 2 for � � � ��� � � ��� � � � .

In words, what this result says is that every property of 3-CNF formulas that implies unsat-
isfiability and is expressible in �
� � ��� with � � � ��� � � ��� � � � must have asymptotic probability � .
Let us point out that the hypothesis that 
 and � are constants is only enforced to simplify the
calculations and to obtain a cleaner statement. If 
 and � were monotone functions tending to �
and � respectively, we would obtain a similar result with these parameters appearing in the bound
on � . For example, if 
 is constant and � is an arbitrary increasing function, we obtain the same
result with � bounded by � � � ����
 for arbitrarily small � ! � , where

� � ����� ����	 � � ��� � � . We
return to this example after the proof of the theorem in Section 7.

Before we discuss how Theorem 2 is proved, let us state the consequence for Datalog. Let

�� ��� � �

2�� � 

� ��� 2 and 
���� � ! � � �
2�� � 
 �
� � ! � 2 . Since � -Datalog is included in

�
� � ��� by Corollary 1, the following holds:

Corollary 2 Let � ! � be a constant. Every Datalog Boolean query on 

� ��� that implies

 �
� �*! � must have asymptotic probability � in ��� � 	�� � 	�
0� .
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Theorem 2 is an inexpressibility result since it asserts that certain Boolean queries are not
expressible in �
�	���� on 
�� ��� . The purpose of the rest of this section is to discuss the techniques
that are available to prove such a result.

Consider the following game played by two players, Spoiler and Duplicator, on a board formed
by two structures � and � over the same relational vocabulary. Each player has � pebbles num-
bered ���)	 � � � 	 � 	 . At each round of the game, Spoiler can make one of two different moves: either
he places a free pebble over an element of � , or he removes a pebble from a pebbled element of
� . To each move of Spoiler, Duplicator must respond by placing her corresponding pebble over an
element of � , or removing her corresponding pebble from � respectively. By corresponding peb-
ble we mean the pebble that has the same number as that chosen by Spoiler. If a round is reached
in which the correspondence � ���� � � that assigns pebbled elements of � to the corresponding
pebbled elements of � is not a partial homomorphism between � and � , then we say that Spoiler
wins. Otherwise, Duplicator wins. Recall that a partial homomorphism from � to � is a function
� @ ! � � � � , where ! � 
 ! and � � 
 � , such that if � � 	 � � � 	�����.;! � and ���B� 	 � � � 	���� �6.0��� , then
� � ���B����	 �4� � 	 �
����� � � .0��� . The following definition makes the game formal:

Definition 1 Let � be a relational vocabulary, and let � and � be two structures over � . A
winning strategy for Duplicator in the existential � -pebble game on � and � is a non-empty set�

of partial homomorphisms from � to � such that:

(i) If �;. �
, then

$	� � � � � � $ � � .

(ii) If �;. �
and 
 
 � , then 
=. �

.

(iii) If � . �
,
$	� � � ��� � $ � � and ��. ! , then there is some

� . � and 
 . �
such that � 
 


and
� . � � � �

8� .

The main result about existential � -pebble games is that they characterize expressibility in the
logic �
� � ��� in the following sense:

Theorem 3 ([KV00a]) Let � be a relational vocabulary, let � be a class of finite structures over
� , and let � be a Boolean query on � . Then, the following are equivalent:

(i) � is definable in �
�	���� on � ,

(ii) For every two structures ��	 � .�� , if � $ � � and Duplicator wins the existential � -pebble
game on � and � , then � $ � � .

Equipped with the tool of the existential pebble games, the proof of Theorem 2 will proceed as
follows. Suppose that � 2 satisfies conditions (i) and (ii) in the hypothesis of the theorem, and that� 2 is definable on 

� ��� 2 by an ��� � ��� -sentence � with ���.� � �����
��� � � � . The core of the proof
will be a probabilistic argument that, using (ii), will show that there exists some 3-CNF formula
� such that

� �6� � . � 2 and Duplicator wins the existential � -pebble game on
� � � � and

�
,

where
�

is the template structure defined in Section 3. Then we apply Theorem 3 and infer that� $ � � , and so
� . � 2 because

� .�

� ��� 2 and � defines � 2 on 

� ��� 2 . By (i),
�

must be the
encoding of an unsatisfiable 3-CNF formula. However, this is absurd because the identity mapping
is a trivial homomorphism from

�
to
�

. Indeed,
�

is the encoding of the unique 3-CNF formula
on the variables � - � 	�- � 	 that contains every clause except those falsified by the truth assignment
- � �� � and - � �� � . Consequently,

�
is the encoding of a satisfiable 3-CNF formula.
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6 Extension Axioms and the Matching Game

In order to execute the proof idea that we outlined in Section 5 we will need to develop some
combinatorial machinery. We do it in this section.

A directed graph + � � � 		� � is called bipartite if there is a partition of the set of nodes�
into two sets � and , such that � 
 � � , . A partial matching � of + is a subset of the

edges not sharing an endpoint. If ��� 	�-$� . � , we write � ��� � � - . Note that this notation is not
ambiguous. We say that � is defined on � , and we define the domain

� � � ���
� of � as the set of
nodes of � on which � is defined. We also define the range

� � � ���
� of � as ��� ��� � @ � . � � � ���
� 	 .
If ! 
 � , we say that ! is matchable into , in + if there exists a partial matching � of + such
that

� � � ���
� � ! . If � . � , we let ��� ��� � � � - . , @ ��� 	�-$� . � 	 , and if - . , , we let��� ��- � � ��� . � @ ��� 	�-$� .0� 	 . The left-degree (resp. right-degree) of + is the maximum size of��� ��� � as � ranges over � (resp. , ). If ! 
 � , then ��� ��! � � �
	 %�� ��� ��� � . For 
 !�� , we say
that + is an ����	�
�� -bipartite expander if for every ! 
 � of size at most � , the size of � � ��! � is at
least � � 
�
�� $ ! $ . Observe that in an ����	�
�� -bipartite expander, every subset of � of size at most � is
matchable into , . This is true by Hall’s Theorem:

Theorem 4 (Hall’s Theorem) If + � ��� :0, 		� � is a bipartite graph on � and , , and ! 
 � ,
then ! is matchable into , in + if and only if

$ ���
� � � $ � $ � $ for every � 
 ! .

Observe also that an immediate consequence of Hall’s Theorem is that if ! 
 � is minimally
non-matchable into , , then

$ ��� ��! � $ � $ ! $ . We will use this observation later.
Let + � �5� : , 	�� � be a bipartite graph on � and , . The matching game on + with � fingers

was introduced by Ben-Sasson and Galesi [BSG01]. The game is played by two players: Prover
and Disprover. Each player has � fingers numbered ���'	4� � � 	 � 	 . In each round of the game, Prover
may place a finger over an uncovered node in � or remove a finger from a covered node in � . If
Prover places a finger over node � . � , Disprover must place her corresponding finger over an
uncovered node in � � ��� � 
 , . If Prover removes a finger from a node in � , Disprover must
remove her corresponding finger from , . The game is over when Disprover is not able to answer
to a move of the Prover. In that case, we say that Prover wins the game. If Disprover can make the
game go on forever, we say that Disprover wins the game. Notice that at every non-final round,
the fingers placed on + determine a partial matching of + . The goal of Disprover is to maintain a
partial matching forever.

Ben-Sasson and Galesi found a sufficient condition on the graph + that guarantees a win for
Disprover. They proved that if + is an ����	�
�� -bipartite expander, then Disprover wins the matching
game with � ��
9�'����� 
�
�� fingers. Although our main result would already follow from this, we
prefer to give an alternative and self-contained proof of a similar result with the aim of isolating
the extension axioms on which the strategy of Disprover relies. The result that we obtain is that if
+ is an ����	�
�� -bipartite expander of left-degree at most � , then Disprover wins the matching game
with � ��
9�'��� � 
�
�� fingers. Although our result is weaker than the one of Ben-Sasson and Galesi,
our proof is somewhat simpler (Claim 4.6 and 4.7 in [BSG01] are avoided). Moreover, we will
consider bipartite graphs whose left-degree is 
 , and therefore the weakness of our result is really
minor.

Let us isolate an important property of bipartite graphs.
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Definition 2 Let � � � , let + � �5� : , 		� � be a bipartite graph on � and , , and let ! 
 � and� 
 , be such that
$ ! $ � $ � $ � � . We say that �5+ 	�! 	 � � satisfies the ����	��'� -matching property if

the following holds: For every � 
 � A ! of size � A $ � $ , there exists a partial matching from �
to , A � in + .

The following is the main result of this section.

Theorem 5 ([BSG01]) Let + be an ����	�
�� -bipartite expander of left-degree at most � , and let � be
a positive integer bounded by 
9�'��� � 
�
�� . Then, Disprover wins the matching game on + with �
fingers.

Proof : The strategy of Disprover is to guarantee that �5+ 	 � � � ��� ) � 	 � � � ����):� � satisfies the ����	��'� -
matching property, where � ) is the partial matching of the game at the end of round

>
. Observe that

�5+ 	��$	�� � satisfies the ����	��'� -matching property because in an ����	�
�� -bipartite expander, every subset
of � of size � is matchable into , . The following two lemmas will be used to show that Disprover
can reply to the moves that Prover makes according to her strategy.

Lemma 1 (Extension Axiom) If �5+ 	�! 	 � � satisfies the ��� 	��'� -matching property, � .0� A ! , and$ ! $ � $ � $ � � , then there exists -�. ���
��� ��� �5, A � � such that �5+ 	�! : ��� 	�	 � : � - 	�� satisfies
the ��� 	��'� -matching property.

Proof : Let � - ��	 � �4� 	�-�� 	 � ��� ��� ���#�5, A � � . Clearly � � � because the left-degree of + is at
most � . Also � ��� because � . � A ! and every subset of � A ! of size � A $ � $ ! � A � � � is
matchable into , A � . Let ! � � ! : ��� 	 , and for every � . ���)	 � � � 	 � 	 let � � � � : � - � 	 . Note
that

$ ! � $ � $ � � $ � � since
$ ! $ � $ � $ � � . Suppose for contradiction that �5+ 	�! � 	 � � � does not

satisfy the ����	��'� -matching property for any �*. ���'	4� � � 	 � 	 . Let � � 
 � A ! � be of size � A $ � � $ and
non-matchable into , A � � . Let �

� 
 � � be minimally non-matchable into , A � � . Necessarily,$ � �
��� � ��� �5, A � � � $ � $ � � $ by Hall’s Theorem. The rest of neighbors of �
�

can only be in � � , so$ � � $ 
 $ � � $ ! $ ��� ��� � � $ ��� � 
 
�� $ � � $ (1)

for every � . ���)	 � � � 	 �
	 . Recall that
$ � � $ � $ � � $ � � A $ � � $ � � and the expansion property of +

for the second inequality. We derive a lower bound on
$ � � $ for some � . ���)	 � � �4	 � 	 . We first claim

that � �� � � � � : ��� 	 is not matchable into , A � . Indeed, suppose that � 
 � is such a matching,
and let � � be the image � ��� � � of �

�
. Then - � . � � since �

�
is minimally non-matchable into

, A � � . Therefore, � cannot be matched to any of its neighbors in , A � ; a contradiction. Now,
since � �� � � � � : ��� 	 
 � A ! and �5+ 	�! 	 � � satisfies the ����	��'� -matching property, we conclude
that 					

�

� � � � � : ��� 	

					 ! � A $ � $ �
Therefore, using

$ � � $ � $ � $ 
 � , there must exist some �*. ���)	 � � � 	 � 	 such that

$ � � $ ! � A $ � � $
� � � A $ � � $

� �
Plugging this bound into (1) we get

$ � � $ ! 
9�
� 
�
 � ��	

a contradiction. ' (
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Lemma 2 (Retraction Axiom) If �5+ 	�! 	 � � satisfies the ����	��'� -matching property and ��� 	�- � .
� ����! � � � , then �5+ 	�! A ��� 	�	 � A � - 	�� satisfies the ����	��'� -matching property.

Proof : Let ! � � ! A ��� 	 and � � � � A � - 	 . Clearly
$ ! � $ � $ � � $ � � . Let � 
 � A ! � be of size

� A $ � � $ . Suppose first that � . � . Then � A ��� 	 
 � A ! and has size � A $ � � $ A � � � A $ � $ .
Therefore, � A ��� 	 is matchable into , A � since ��+ 	�! 	 � � satisfies the ����	��'� -matching property.
It follows that � is matchable into , A � � by adding the edge ��� 	 - � to that matching. Suppose next
that � �. � . For every � . � , the set � A � � 	 
 � A ! is matchable into , A � 
 , A � � since
�5+ 	�! 	 � � satisfies the ��� 	 � � -matching property. It follows that if � is not matchable into , A � � ,
then it is minimally non-matchable, and so

$ ��� � � ��� �5, A � � � $ � $ � $ by Hall’s Theorem. The
rest of neighbors of � can only be in � � and therefore

$ � $ 
 $ � � $ ! $ � �
�$� � $ � � � 
 
�� $ � $ �
Recall that

$ � $ � � A $ � � $ � � and the expansion property of + for the second inequality. We
conclude that $ � � $ ! 
9�

� 
�
 �

9�

� 
 
 � � 	
a contradiction. ' (

We complete the proof. Suppose that �5+ 	 � � � ��� ) � 	 � � � ��� ) � � satisfies the ��� 	��'� -matching prop-
erty. Consider the move of Prover at time

> 
 � . If Prover places a finger over an uncovered node
� .0� A � � � ��� ) � , Disprover answers by some -/. � � ��� � � �5, A � � � ��� ) � � such that �5+ 	 � � � ��� ) ��:
��� 	�	 � � � ��� ) �*: � - 	�� satisfies the ����	��'� -matching property. Such a - exists by Lemma 1 because$	� � � ��� ) � $ � $ � � � ��� ) � $ � � . If Prover removes a finger from a node � . � � � ��� ) � , Disprover re-
moves the corresponding finger from - � � )���� � , and �5+ 	 � � � ���,)=� A ��� 	�	 � � � ����) � A � - 	�� satisfies
the ��� 	��'� -matching property by Lemma 2. ' (

7 Proof of Main Result

Let � � � ��# � � � # �6� be a 3-CNF formula on the variables - � 	 � �4� 	�- 2 . We define the incidence
graph + � � � of � as follows: + �6� � is a bipartite graph on the sets of nodes �
����	4� � � 	 �6� 	 and
� - � 	 � � �4	�- 2 	 , and � � � 	 - G � is an edge in + � � � if and only if - G . ,(� �0�$� � � . Here ,�� ��� � � � is used
to denote the set of variables that occur in � � . Notice that the left-degree of + � � � is at most 
 .

Let � be a 3-CNF formula, let , be a set of variables from � , and let � 
 � be the subset of
the clauses of � that mention some variable from , . In symbols,

� � �
� . � @ ,(� ��� � � � , �� � 	��
Let � be a partial matching of + �6� � such that

� � � ���
� � � . We define the partial truth assignment� corresponding to � and , as follows: For every � �.0, , the partial truth assignment � is undefined
on � . If � . , and � �$� � � � for some � . � , then �8��� � � � if � occurs both positively and
negatively in � , �8��� � � � if � occurs positively in � only, and �8��� � � � if � occurs negatively in� only. Finally, if � .0, but � �. � � � ���
� , then �8��� � � � . Note that � is well-defined because � is
a partial matching. In the following, we say that a partial truth assignment � falsifies a clause � if� sets all literals of � to � .

16



Lemma 3 Let � be a 3-CNF formula and let � be the partial truth assignment corresponding to
some partial matching � of + �6� � and some set of variables , . Then � does not falsify any clause
from � .

Proof : Let � be the set of clauses from � that mention some variable in , . Let � be an arbitrary
clause from � . If � �.�� , then every variable of � is left undefined by � and � cannot be falsified.
If � .�� , then � � � � occurs in � and �8��� � � � � is set to satisfy � . ' (

The next result connects the matching game and the existential pebble game.

Theorem 6 Let � be a 3-CNF formula such that + �6� � has right-degree at most
�
. If Disprover

wins the matching game with � fingers on + � � � , then Duplicator wins the existential �F�'� ��� -pebble
game on

� �6� � and
�

.

Proof : Let + � + � � � and � � � �2� � ��� . Thus, + is a bipartite graph between the clauses and
the variables of � . Duplicator will simulate a play of the matching game on + on the side trying
to satisfy the following condition: clause � has a finger on it in the matching game at time

>
if

and only if some variable � . ,(� �0�$� � has a pebble on it in the existential � � -pebble game at
time

>
. In other words, if , ) is the set of pebbled variables in the existential � � -pebble game at the

end of round
>
, and ��) is the set of clauses of � that mention some variable in ,,) , then ��) is the

set of fingered clauses in the matching game at the end of round
>
. Since at most � � variables are

pebbled simultaneously in the existential � � -pebble game, and since the right degree of + is at most�
, at most � � � � � fingers will be required. Duplicator will make use of the winning strategy of

Disprover in the matching game on + with � fingers. In the following, let � ) be the partial matching
in the matching game at the end of round

>
. Note that � ? � � and

� � � ����)=� � � ) . We consider the
two possible moves of Spoiler at time

> 
 � separately.
If Spoiler puts a pebble on variable � , Duplicator responds as follows. Let � � �
��� 	 � � � 	 ��� 	

be the set of clauses of � on which variable � occurs. Duplicator considers each clause of �
one at a time, starting by ��� . If ��� does not have a finger on it in the matching game at time

>
,

Duplicator simulates the winning strategy of Disprover as if Prover had placed a finger over �(� ,
and proceeds to � � . Otherwise, she proceeds to � � directly. This procedure is repeated until ���
is considered and treated. Let � ) � � be the partial matching in the matching game at that point.
Then Duplicator replies in the existential ��� -pebble game as follows: If some � � exists such that��) � � � � � � � � , Duplicator answers � if � occurs both positively and negatively in � � , answers � if �
occurs positively in � � only, and answers � if � occurs negatively in � � only. Otherwise, Duplicator
answers � . Note for the record that Duplicator is answering consistently with the partial truth
assignment corresponding to � ) � � and , ) � � , the partial matching and the set of pebbled variables
in the existential � � -pebble game at time

> 
 � .
If Spoiler removes a pebble from variable � , the answer of Duplicator is clear: she removes the

corresponding pebble from
�

. However, she will need to do some bookkeeping in the matching
game: Let � � �
� � 	4� � � 	 � � 	 be the set of clauses of � on which variable � occurs. Duplicator
considers each clause of � one at a time, starting by � � . If some other variable � .0,(� ��� � � � A � � 	
has a pebble on it in the existential � � -pebble game at time

>
, Duplicator proceeds to � � . If there

is no � . ,�� ���$� � � A � � 	 as above, Duplicator simulates the matching game as if Prover had
removed his finger from � � . Then Duplicator proceeds to � � . This procedure is repeated until �	�
is considered and treated. Let � ) � � be the partial matching in the matching game at that point.
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We need to argue two points: (1) that Duplicator can follow this strategy, and (2) that if she
does, she wins the existential � � -pebble game on

� �6� � and
�

. For (1), recall that each variable
occurs in at most

�
clauses, and therefore, since at most � � � �F�'� ��� variables are pebbled in

the existential � � -pebble game, at most � fingers are used in the matching game. It follows that
Duplicator can simulate the winning strategy of Disprover in the matching game. For (2), suppose
that Spoiler has not won at time

>
; we show that he does not win at time

> 
�� . When Spoiler
removes a pebble, Duplicator cannot lose since she removes the corresponding pebble from

�
.

When Spoiler puts a new pebble, Duplicator answers according to the partial truth assignment
corresponding to the partial matching � ) � � and the set of pebbled variables ,�) � � , and this cannot
falsify a clause from � by Lemma 3. This completes the proof of the Theorem. ' (

Finally, we are ready for the proof of the main result.

Proof of Theorem 2: Fix 
 ! � , � ! � , and let � be large. Let � � � ��� � � ��� � � � . Suppose for con-
tradiction that � 2 satisfies (i) and (ii), and � is an ���	���� sentence defining � 2 on 
�� ��� 2 . We will
show that there exists a 3-CNF formula � such that

� � � ��. � 2 and + �6� � is an ��� � ��� � � ��	 ��� ��� -
bipartite expander of right-degree at most

� � ��� � � � ���4
 and left-degree at most 
 . This will be
enough because then: (1)

� � � � $ � � and (2) Duplicator wins the existential � -pebble game on� � � � and
�

by Theorem 5 and Theorem 6. This means that
� $ � � by Theorem 3, so that� . � 2 
 3UNSAT 2 ; a contradiction since

�
is isomorphic to a satisfiable 3-CNF formula on at

most � variables (in fact, on two variables).
Let us prove the existence of � as above by the probabilistic method. First we bound the

probability that the right degree of + � � � is bigger than
�
. Let

� � �5+ �6� � � denote the right-degree
of the bipartite graph + �6� � . The proof of the following Lemma can be found in the Appendix.

Lemma 4 Let � be drawn from �����
	�� �
	�
�� . Then,

����� � � �5+ �6� � � � ��� � � � 
��4�� �
�
�

Next we bound the probability that + �6� � is not an ����	�
�� -bipartite expander. Similar calculations
have been done many times, starting with [CS88]. Our proof is in the Appendix too.

Lemma 5 Let � ! � and 
 ! � be such that � ��
 
���� � � and let � be drawn from ��� �
	 � � 	�
0� .
Then,

��� � + � � � not ����	�
�� -bipartite expander
� � � � � A � � �

� A � 	
where � � � � ����� � ��
 
���� � � ���'� � � � � � .
Finally, we bound the probability that the right-degree of + � � � is bigger than

�
, or + �6� � is not an

����	�
�� -expander, or
� �6� � does not belong to � 2 by

� � 
��4�� �
�

 � � � A � � �

� A � 
 � A 
 � (2)

From our choice of
� � ��� � � � � � 
 , � � � � � � ��� � , and 
 � � � � , we immediately see that (2) is

strictly smaller than � for sufficiently large � (recall that 
 ! � and �-!�� are constants). Thus,
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some � must exist for which + � � � is an ����	�
�� -expander of right-degree at most
�
, and

� �6� �
belongs to � 2 . This completes the proof of the Theorem. ' (

Before we close this section, we discuss how the proof would be modified to obtain the result
mentioned after the statement of the theorem in Section 5. Namely, we want to show that if 
 is
still constant but � is an increasing function of � we obtain the same result with � bounded by
� � � ����
 for arbitrarily small � ! � , where

� � � ��� ����	 ��� ��� � � . The proof would proceed by
cases according to whether � is bounded by 
 ��� � � � or not. In the former case we proceed as
before. In the latter case, for an arbitrarily small ��! � , we choose the parameter

� � ()� , let 
 ! �
be smaller than � � � ��
 � � , and let � � ('� ��� � � 
 . Then we replace Lemma 4 by an application of
Chernoff bounds [HR89], and check that the resulting expression replacing (2) is strictly smaller
than � for sufficienly large � .

8 Easier Games

The aim of this section is to show that certain combinatorial statements such as the Pigeonhole
Principle, when encoded as contradictory sets of clauses in the spirit of Cook and Reckhow [CR79],
may yield structures on which playing pebble games is easier than expected.

The Pigeonhole Principle states that there is no one-to-one mapping from a set of ��
�� pigeons
into a set of � holes. This statement may be expressed in propositional logic as follows. For
�". ���'	4� � � 	�� 
 �
	 and H . ���)	 � � � 	 � 	 , let � � " G be a propositional variable meaning that pigeon
� is sitting in hole H . The clause � � � � � " �� #� �4�  � � " 2 says that pigeon � sits in some hole. The
clause �

� " G
�

� 4 � � " �  ;4 � G�" � for � �� H says that pigeons � and H cannot sit in the same hole � . The
conjunction ��� � 2 � �2 of all the clauses � � and �

� " G
� is an unsatisfiable CNF since it expresses the

negation of the Pigeonhole Principle. Note that ��� � 2 � �2 is not a 3-CNF formula since the clauses
� � involve � literals. However, it is easy to turn it into an equivalent 3-CNF as follows. For every
�#. ���'	4� � � 	�� 
 �
	 and H . �)��	 � � � 	�� 	 , let � � " G be a new propositional variable. Then � � � is the
following 3-CNF formula: 4�� � " ? #�� 2G � � ��� � " G � �  

� � " G  4�� � " G � # � � " 2 . Finally, the 3-CNF formula
� ��� � 2 � �2 expressing the negation of the Pigeonhole Principle is the conjunction of all clauses
� � � and all clauses �

� " G
� . Here is our promised result about pebble games and the Pigeonhole

Principle:

Theorem 7 Duplicator wins the existential � -pebble game on
� �5� ��� � 2 � �2 � and

�
.

Proof : Consider the following strategy for Duplicator. She will keep track of a partial matching � )
in the complete bipartite graph ��2 � �2 that satisfies the following property: Pigeon � . ���'	 � �4� 	�� 

�
	 belongs to

� � � ���,):� if and only if some variable of pigeon � is pebbled at the end of round
>
.

The variables of pigeon � are � � " � 	4� � � 	 � � " 2 and � � " ? 	 � �4� 	�� � " 2 . Notice that if there are � pebbles on
the board at the end of round

>
, then

$ � � � ��� ) � $ � $ � � � ��� ) � $ � � . Initially � ? � � . Let us consider
the possible moves of Spoiler at time

> 
 � separately:
If Spoiler places a pebble over a variable � � " G , Duplicator acts as follows: If ��. � � � ��� ) � ,

Duplicator answers � if H � � ) ���6� and � otherwise. In that case, � ) � � � � ) . If � �. � � � ��� ) � ,
Duplicator finds some � . ���'	4� � � 	�� 	 A � � � ��� ) � and sets �,) � � � ��)�: ����� 	 � � 	 . Note that such a
� exists since at most � A � pebbles are placed on the board at the end of round

>
, and therefore$	� � � ����) � $ � $ � � � ���,) � $ � � A � . Then she answers � if H � � and � otherwise.
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If Spoiler places a pebble over a variable � � " G , Duplicator acts as follows: If ��. � � � ��� ) � ,
Duplicator answers � if H � �,) ���6� and � otherwise. In that case, � ) � � � ��) . If � �. � � � ���,) � ,
Duplicator finds some �8. ���)	 � � �4	�� 	 A � � � ���,) � and sets �,) � � � ��)�: ����� 	 � � 	 . Such a � exists for
the same reason as above. Then she answers � if H
� � and � otherwise.

If Spoiler removes a pebble from a variable, the answer of Duplicator is clear: she removes
the corresponding pebble in

�
. However, she will need to do some bookkeeping in the partial

matching �,) . Suppose that the variable from which Spoiler removed the pebble belongs to pigeon
� . If no other variable of pigeon � is pebbled at time

>
, Duplicator sets � ) � � � �,) A ����� 	���) ���6� � 	 .

Otherwise, Duplicator sets � ) � � � ��) .
It is not hard to see that Duplicator wins the existential � -pebble game when playing according

to this strategy since a clause is never falsified. ' (
We can do the same with a form of the Pigeonhole Principle called + - ��� � that was introduced

by Ben-Sasson and Wigderson [BSW01]. Let � and , be disjoint sets of sizes � 
 � and �
respectively. Let + � �5�;: , 	�� � be a bipartite graph on � and , . Obviously, there is no matching
from � into , . This is expressed by the conjunction of the following set of clauses on the variables
� � 	 " ��@ ��� 	�- �7. � 	 . For every � . � , let � 	 ���

1
	 " �
<&%�� � 	 " � , and for every ��� 	 � � 	 ��-8	�� ��. � ,

� �� - , let �
	 " �

 � 4 � 	 " 
  /4 � ��" 
 . We write + - ��� � for the conjunction of these clauses. Observe

that if + � ��2 � �2 , then + - ��� � coincides with ��� � 2 � �2 . Observe also that if + has left-degree
at most � , then + - ��� � is a � -CNF.

We assign a partial truth assignment � to every partial matching � in + . For every � . � � � ���
� ,
let �8��� 	 " � 1 	 < � � � and �8��� 	 " � � � � for every -/.0, A ��� ��� � 	 such that ��� 	�-$�6.0� .

Lemma 6 Let + � �5� :�, 		� � be a bipartite graph, let � be a partial matching in + , and let � be
the partial truth assignment corresponding to � . Then, � does not falsify any clause from + - ��� � .

Proof : The clauses of the form 4 � 	 � " �  ;4 � 	 7
" �

are not falsified by � since at most one of ����� 	 - �
or ��� � 	 - � is in the partial matching � . Similarly, the clauses of the form � 	 " � �  #�4� �  � 	 " ��� are
not falsified by � since if �8��� 	 " ��� � � � for some H . ���'	 �4� � 	 � 	 , then �8��� 	 " � E � � � for some other
�*. ���'	 �4� � 	 � 	 . ' (

The proof of the following result is very similar to the proof of Theorem 6.3 in [BSG01].
Nonetheless, for all we know at this point, neither statement seems to imply the other1.

Theorem 8 Let + � �5� : , 		� � be an ����	�
�� -expander of left-degree at most � , and let � be a
positive integer bounded by 
9�'��� ��
 
�� , then Duplicator wins the existential � -pebble game on� ��+ - ��� � � and

�
.

Proof : We design a strategy for Duplicator to win the existential � -pebble game on the structures� ��+ - ��� � � and
�

. Duplicator will simulate the play of a matching game on + on the side trying
to satisfy the following condition: Node � .0� has a finger on it in the matching game at time

>
if

and only if there exists some -/. ���
��� � such that � 	 " � has a pebble on it in the existential � -pebble
game at time

>
. This condition is clearly satisfied at time

> � � . Duplicator will make use of the

1But see the paragraph on recent developments in Section 10. It turns out that our statement does imply the
statement in [BSG01] in a rather indirect way. The converse is not known.
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winning strategy of Disprover in the matching game on + with � fingers. In the following, let � ) be
the partial matching in the matching game at time

>
, so that � ? � � . We consider the two possible

moves of Spoiler at time
> 
 � separately.

If at time
> 
 � Spoiler removes a pebble from variable � 	 " � in the existential � -pebble game,

Duplicator acts as follows: Note that � must have a finger on it at time
>

in the matching game
since � 	 " � has a pebble at time

>
in the existential � -pebble game. Thus, � ) ��� � is well-defined. If

some � . , A ����) ��� � 	 exists such that the variable � 	 " 
 is pebbled in the existential � -pebble
game, Duplicator does nothing in the matching game, so that � ) � � � �,) . Then she removes the
pebble from

�
corresponding to � 	 " � in the existential � -pebble game. On the other hand, if no� . , A ����) ��� � 	 exists as above, Duplicator removes the fingers from nodes � and � ) ��� � in the

matching game as if Prover had removed his finger from node � and Disprover had responded
accordingly. Thus, � ) � � � �,) A ����� 	���) ��� � � 	 in that case. Then, she removes the pebble from

�
corresponding to � 	 " � in the existential � -pebble game.

If at time
> 
 � Spoiler places a pebble over variable � 	 " � in the existential � -pebble game,

Duplicator acts as follows: If � has a finger on it in the matching game already, Duplicator does
nothing in that game, so that � ) � � � �,) . Then, in the existential � -pebble game, she answers � if
- � �,)���� � , and � otherwise. If � did not have a finger in the matching game, Duplicator finds some� . , to match � according to the winning strategy of Disprover as if Prover had placed a finger
over � in the matching game. Thus, � ) � � � �,) : ����� 	�� � 	 in that case. Then, in the existential
� -pebble game, she answers � if � � - and � otherwise.

We need to argue two points: (1) that Duplicator can follow this strategy, and (2) that if she
does, she wins the existential � -pebble game on

� � � � and
�

. For (1), observe that since at most �
pebbles are involved in the existential � -pebble game, at most � nodes from � have a finger in the
matching game. It follows that Duplicator can always find the required � when needed according
to the winning strategy of Disprover in the matching game. For (2), suppose that Spoiler has not
won at time

>
; we show that he does not win at time

> 
 � . If Spoiler removed a pebble from
variable � 	 " � , say, Duplicator cannot lose there since she removed the corresponding pebble in

�
.

If Spoiler placed a pebble over variable � 	 " � , say, Duplicator will always answer according to the
truth values inferred by a partial matching on + , and these never falsify a clause from + - ��� � by
Lemma 6. This completes the proof of the Theorem. ' (

9 On the Complexity of Resolution

Resolution is probably the most popular proof system for propositional logic. There is only one
rule: from clauses � : � � 	 and � : ��4*� 	 derive � : � . A Resolution refutation of a CNF formula
� is a sequence of clauses ending with the empty clause � 	 , each of which is either (1) a clause of
� , (2) a clause appearing earlier in the sequence, or (3) follows from two previous clauses in the
sequence by the Resolution rule. The length of a Resolution refutation is the length of the sequence
of clauses. The width of a Resolution refutation is the maximum number of distinct literals in a
clause of the refutation.

Theorem 9 Let � � 
 be an integer. There exists a � � -Datalog sentence � such that for every
3-CNF formula � , the following holds:

(i) If � has a Resolution refutation of width � , then
� �6� � $ � � .
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(ii) If
� � � � $ � � , then � has a Resolution refutation of width � � .

Proof : Consider the following set of Datalog rules. For every � and � such that � � ��� � � � � ,
let � 
� be a new predicate symbol of arity � . Consider the following rule that we call (A):

� �� ���I� 	 � � 	�� � � @BA � � ��� � 	�� � 	�� � �
The meaning of (A) is that every clause of � is derivable. Add also the following rules that we call
(B) and (C) respectively:

� 
� ��� � 	 � � � 	�� C �<� � 	4� � � 	�� � �<� C 	 �4� � 	 � � 	�� � 	 � � �4	�� 
 �
� � @�A � 
� ��� � 	 � �4� 	�� � 	�� � 	 � � � 	�� 
 �

� �
� 
� ��� � 	 �4� � 	 � � 	�� � 	 � � �4	�� C # � � � # 	 � � � 	�� � # � � C # 	 � � �4	�� 
 �

� � @�A � 
� ��� � 	 � �4� 	�� � 	�� � 	 � � � 	�� 
 �
� �

where � � � ��� � � in (B), � � � � ��� � � � A � in (C). The meaning of (B) is that if the
clause ��4*� � 	 � � � 		4 � � 	�� � 	 � �4� 	�� 
 �

� 	 is a derivable, then any result of permuting two � -literals in
it is also derivable. Similarly for (C). The following four clauses are called (D), (E), (F) and (G)
respectively:

� 
� ��� 	 �4� � 	 � 	 � 	 �I� 	 � � � 	�����	���� 	 � � � 	�� 
 �
� � @BA � 
� ��� 	 � � � 	�� 	�� ��	 �I� 	 � � �4	�����	�� � 	 � � � 	�� 
 �

� �
� 
� ��� ��	 � �4� 	�� � 	�� � 	 �4� � 	�����	��8	��8	 � � ��	�� � @BA � 
� ��� ��	 �4� � 	�� � 	�� � 	4� � � 	�����	�����	��8	 � �4� 	��$�

� 
� ��� � 	 � � � 	�� � 	�����	 �4� � 	�� 
 �
�
� � 	�� 
 �

�
� � �

@BA � 
� � � ��� ��	�� � 	 � �4� 	�� � 	�� � 	 � � � 	�� 
 �
�
� � �� 
� � � ��� ��	�� ��	4� � � 	�� � 	���� 	 � � � 	�� 
 �

�
� � �

@BA � 
� ��� ��	 �4� � 	�� � 	�� � 	4� � � 	�� 
 �
�
� �4	�� 
 �

�
� ���where �#� � � � A � in (D), � � � � � A � A � in (E), and � � � � � A � in (F) and (G).

The meaning of rule (D) is that if ��4 � 	4� � � 		4 � 	�4*� ��	�4*� � 	 �4� � 	�4*���)	�� � 	 � � � 	�� 
 �
� 	 is derivable, so

is the result of contracting one 4*� � and adding one 4 � . Similarly for (E). The meaning of (F) is
that if ��4 �I� 	�4*� � 	 � � � 		4 � � 	���� 	 � � � 	�� 
 �

�
� � 	 is derivable, so is the result of contracting one 4*��� and

adding one � 
 �
�
� � . Similarly for (G). We introduce two rules that, together with (B) 	 � � ��	 (G) can

be used to eliminate repeated literals. The rules are called (H), (I):

� 
� ��� � 	 � �4� 	�� � 	�� � 	 � � � 	�� 
 �
� � @�A � 
 � C� ��� � 	 � � � 	�� � 	�� ��	4� � � 	�� 
 �

� 	�� 
 �
� 	 � � �4	�� 
 �

� �
� 
� ��� � 	 � �4� 	�� � 	�� � 	 � � � 	�� 
 �

� � @�A � 
 � C�
�
C ��� � 	 � � � 	�� ��	 �I� 	4� � � 	�� � 	�����	 � �4� 	�� 
 �

� ��	
as long as � 
 � � � � , � � � � � in (H) and ��� � � � in (I). Next we introduce the rule that
simulates the Resolution rule that we call (J):

� 
 � � 
 7 � �� � � � 7 � � ��� � 	4� � � 	��B� � 	�� � � 	 � �4� 	�� �� 7 	���� 	 � � � 	�� 
 � � � � 	�� �� 	 �4� � 	�� �
 7 � � 7 � � �
@BA

@BA � 
 �� � ���$	�� � 	4� � � 	��B� � 	�����	 �4� � 	�� 
 � � � � ��	 � 
 7� 7 ��� � � 	 � �4� 	�� �� 7 	�� �� 	 � � � 	�� �
 7 � � 7 � � 	�� ��	where �7� 
 � � A � � � � , � � � � � �#� and � � � � � � � . The meaning of (J) is that if the clauses
��4��$		4 � � 	 � �4� 		4 �B� � 	�� � 	 � � � 	�� 
 � � � � 	 and ��4 � � � 	4� � � 		4 � �� 7 	�� �� 	 � �4� 	�� �
 7 � � 7 � � 	�� 	 have been derived,
then the resolvent clause is also derivable by an application of the Resolution rule. Note that the
resulting clause may have repeated literals. Note also that we do not insist that variable � appears
only once in each clause in order to apply the Resolution rule. The soundness of the rule is not lost
and we will make use of this fact later. Finally, add a new predicate symbol + and the rule (K):

+ @�A � �? ��� � 	 � �� ��� ���
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The meaning of (K) is that if � � 	 and ��4 � 	 are derivable, then � is refutable.
Let � be the conjunction of all these Datalog rules (ABCDEFGHIJK). Simple inspection re-

veals that each rule can be written with at most � � variables. Thus, � is a � � -Datalog program. It
is a routine task (but somewhat tedious) to check that if � has a Resolution refutation of width �
then

� � � � $ � � . Similarly, if
� �6� � $ � � then � has a Resolution refutation of width � � . The

proof can be found in the Appendix. ' (
An immediate corollary of the proof of Theorem 2 and Theorem 9 is that every Resolution

refutation of a random 3-CNF formula requires width � � � ����� � � � with probability approaching �
as � approaches � . Now, Ben-Sasson and Wigderson [BSW01] proved that if � is a 3-CNF on �
variables that has a Resolution refutation of length � , then � has a Resolution refutation of width� ���

� � � �	��
 . Thus, we obtain a slightly weaker bound than that of Chvátal and Szeméredi.

Corollary 3 ([CS88]) Let � be drawn from ��� � 	�('� 	�
0� . Then, almost surely, � is unsatisfiable
and every Resolution refutation of � requires size ��/$1&2 3 1 ����24<

�
< .

From Theorem 8 we can obtain Haken’s lower bound:

Corollary 4 ([Hak85]) Every resolution refutation of ��� � 2 � �2 requires length �)/$1+24< .
Proof : It is known that there exist ��� � � ��	 ��� ��� -bipartite expanders of left-degree 
 on sets of size
� 
�� and � (an easy probabilistic argument as in the proof Theorem 2 does it). Therefore, for
such a bipartite expander + � ��� : , 		� � , every Resolution refutation of the set of clauses + -
��� � requires width � ��� � by Theorem 8. Since the number of variables of + - ��� � is � � � � ,
we conclude from the size-width trade-off of Ben-Sasson and Wigderson that every Resolution
refutation of + - ��� � requires size �'/$1+24< . Although the lower bound for ��� � 2 � �2 follows from
this at once, we review the proof for completeness.

Suppose for contradiction that ��� � 2 � �2 has a resolution refutation with ��� 1&2 < clauses. Let��� 	 � �4� 	 �6� be such a refutation. Let � be the partial truth assignment to the variables � � � " G 	 that sets�8� � � " G � � � if ��� 	�H$� �.0� . Here we are assuming without loss of generality that � � ���'	 �4� � 	�� 
 �
	
and , � ���)	 � � � 	 � 	 . For every ��. ���)	 � � �4	�� 	 , let � �� � �8�$� � � be the result of applying � to� � . That is, � �� is � if � sets some literal of � � to � , and the subset of non-falsified literals of� � otherwise. We claim that the sequence of clauses � �� 	 � �4� 	 � �� is a Resolution refutation with
weakening of + - ��� � : ���
	 . If this is true, then + - ��� � has a Resolution refutation of length
��� 1+24< since the clause � cannot be used in any cut.

We will show, by induction on � . ���'	 �4� � 	�� 	 , that � �� 	 �4� � 	 � �� is a valid Resolution derivation
from + - ��� �;: ���
	 . For the base case � � � , necessarily � � is an initial clause of ��� � 2 � �2 , and
it is easily seen that either � �� � � , or � �� is an initial clause of + - ��� � . Suppose that � ! � and
that the claim is valid for every smaller value. If �&� is an initial clause of ��� � 2 � �2 , argue as in the
base case. Suppose next that � � is derived by the resolution rule from � � and � � with � � �
� � .
Suppose that the cut variable is � � " G . The immediate case is when � �� �� � and � �� �� � because then� �� is simply the result of applying the resolution rule on them. Also, if � �� � � and � �� � � , then� �� � � because some satisfied literal must be inherited by � � . Finally, if � �� � � and � �� �� � ,
say, there are two cases two consider. If the satisfied literal in � � is not about variable � � " G , then
this literal is inherited in � � and so � �� � � . If the satisfied literal in � � is about variable � � " G
indeed, then it must be 4 � � " G . In that case, � �� does not contain the literal � � " G because �8� � � " G � � � .
We conclude that � �� is a weakening of � �� and we are done. ' (
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10 Conclusions

While Datalog falls short to capturing any complexity class defined in terms of the standard com-
putational models, many important algorithmic techniques can be “implemented” as Datalog pro-
grams. In particular, this holds true for algorithmic techniques capable of solving such problems
as unsatisfiability of 2-CNF formulas, graph reachability, or the circuit value problem. Note that
the latter problem is � -complete but Datalog is not closed under logspace reductions, and that is
why it falls short to capturing � .

The fact that natural classes of algorithms can be implemented in Datalog makes inexpress-
ibility results powerful. A clear example of this is provided by the results in Section 9, where
we showed that a � � -Datalog program is able to implement the proof search algorithm for Reso-
lution of width � . This algorithm was studied already in 1977 by Galil [Gal77], and revisited by
Ben-Sasson and Wigderson [BSW01]. Moreover, the important results of Ben-Sasson and Wigder-
son that relate Resolution width with Resolution size, together with our inexpressibility result for
Datalog, allowed us to re-derive the known lower bounds for Resolution size. In this sense then,
inexpressibility results for logics that fall short to capturing complexity classes can still be used to
derive complexity-theoretic lower bounds.

The main issue that remains open from our paper is that of establishing further connections
between inexpressibility results and lower bounds for proof complexity. The first observation we
want to make in this respect is related to a potential application of proof-complexity techniques
to finite-model-theory techniques. The second observation is related to a synergy in the reverse
direction.

From proof-complexity to finite model theory Inexpressibility results are usually proved by
designing a winning strategy for the Duplicator, one of the players of the appropriate Ehrenfeucht-
Fraı̈ssé game for the logic under consideration. For example, inexpressibility results for ��� � ��� are
proved by exhibiting a winning strategy for the Duplicator in the existential � -pebble game. It turns
out that the design of winning strategies for the Duplicator is often a highly non-trivial task. To
make things worse, there is a clear lack of techniques to describe the winning strategies in a precise
mathematical form, other than by enumerating essentially all possible cases. However, there is an
important exception: when extension axioms are available, winning strategies for the Duplicator
are easy to describe. The proof of our main result made strong use of extension axioms, which,
in turn, were derived from the expansion properties of certain graphs. This suggests that further
extension-type axioms are yet to be discovered, and the experience in using expander properties in
propositional proof complexity may turn out to be helpful.

This brings the opportunity to compare our result to a result in finite model theory due to Dawar
[Daw98]. The result is that the class of finite non-3-colorable graphs is not definable in the logic
� � ��� , the full infinitary logic with � variables, for any � � � . The relationship with our result
is the fact that 3-colorability is a constraint satisfaction problem, and can thus be expressed as
a homomorphism problem to a fixed template structure as we did for the satisfiability problem.
Indeed, a graph is 3-colorable if and only if it can be mapped homomorphically to the triangle.
We note that � � ��� is a stronger logic than the one we studied, �
� � ��� , since negations are allowed
and there is no restriction in the allowed quantifiers. On the other hand, the inexpressibility result
due to Dawar is a worst-case negative result, as opposed to ours which is an average-case negative
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result and thus stronger.
In turn, this suggests a few open problems. The phase transition phenomenon also occurs

in the 3-colorability problem and has been studied intensively in recent years [AF99]. Can we
prove average-case negative results similar to ours, or maybe for the stronger logic � � ��� , near the
threshold of 3-colorability? We point out that Beame et al. (personal communication) have studied
the problem also recently from the proof complexity perspective.

From finite model theory to proof-complexity The second observation that we want to make
with respect to the interaction between finite model theory and proof complexity is the following:
it seems intuitively clear that if Datalog relates to Resolution in the precise sense of Theorem 9 of
Section 9, then stronger fixed-point logics should relate to stronger proof systems. This suggests
two problems. The first one is in finite model theory, proper.

Open Problem 1 Extend the inexpressibility results of Datalog on random 3-CNF formulas to
stronger fixed-point logics, such as Least Fixed-Point Logic LFP, or even full infinitary logic with
finitely many variables � � ��� .

Clearly, the same problem could be posed for other logics such as first-order logic, existential
monadic second-order logic (monadic ��� ), or logics with counting quantifiers. The second open
problem is stated in slightly more general terms. It should be considered as a family of open
problems, one for each logic and proof system, rather than as concrete open problem with a precise
statement.

Open Problem 2 Establish further connections between inexpressibility results for natural logics
and lower bounds for propositional proof systems.

We hope that our results, together with the solution to some of these open problems, may contribute
to the synergy between the fields of finite model theory and propositional proof complexity.

Recent developments The second part of this paper established a tight connection between the
minimum Resolution width and the minimum number of pebbles for Duplicator to win the game.
We showed that the width is at least half this number of pebbles. On the other hand, our proofs
rest on the techniques that were employed for proving Resolution space complexity lower bounds
in [BSG01]. A few obvious questions arise. What is the exact connection? Is the minimum width
equal to the minimum number of pebbles for Duplicator to win? Is it the minimum space? Is
the space bigger than the width, or conversely? Recent work by the author and Dalmau [AD03]
answered some of these questions. It turns out that the minimum width coincides, indeed, with
the minimum number of pebbles for Duplicator to win. The proof idea also led to a proof that the
minimum space is lower bounded by the minimum width minus the width of the formula, resolving
an open problem in [ET01, ABSRW02, BSG01]. These results show that width and number of
pebbles are two names for the same thing, and that all space lower bounds already follow from
width lower bounds. It remains open whether width can be smaller than space for some formula.
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Appendix: Proofs

Let us start by proving Lemma 4 on the right-degree of the incidence graph of a random formula.

Proof of Lemma 4: Note that a variable occurs in a random clause with probability
�
2 � �� 
 �

2 � 
 � � �
0� � . For every � . ���'	4� � � 	�� 	 , let � � be the random variable that counts the number of clauses
of � in which variable - � occurs. By the above, the expectation of � � is � � � 
0��� � 
)� . More
important,

���<% � � � � ) � � � �� � � 
� �
�
� � � � �� �

� � 
� �
�
� � 
��4�� �

�
�

Here we used the well-known inequality
�
2
� 
 �.� � ��� � � � that is derivable using the fact that ��� �

� �8� ��� � . Now, let � be the random variable that counts the number of ��. ���'	4� � � 	�� 	 such that
� � � �

. The expectation of � is at most � � 
 � � � � � � . Therefore, the probability that � !�� is at
most �
� 
 �4� � � � � by Markov’s inequality. ' (

Next we prove Lemma 5 on the probability that the incidence graph is an expander.

Proof of Lemma 5: Write + � + �6� � � �5� � :"� � 		� � . Let � � � 
 
 . We bound the probability that
for a fixed set � 
 � � of size � � � and a fixed set , 
 � � of size �$� it holds that ��� �5� � 
 , .

For a fixed �0. � , the probability that ��� ��� � 
 , is bounded by
�


�� 
 �

2 � 
 � � . Since each clause
is drawn independently of the rest, the probability that � � �5� � 
 , is bounded by�� �



�� 
�
2 � 


�� �
� � �$�� � �

�
�

Here we used the fact that
�
2
� 
 �

� �
� 
 ��� � � ��� � if � � � . The probability that + is not an ����	�
�� -

bipartite expander is bounded by the probability that there exist sets � and , as above. Since there
are

�
5 2� 
 possible � and

�
2


� 
 possible , , this probability is bounded by

��
� � � � � �

� �
� �
�$�	� � �$�� � � � �

��
� � � � � � �

� �
� � � �
�$�
� 
 � � �$�� � � � �

�
��
� � ��� � � ����� � ��
�
�� � � � � �� � � � ��
 � �

The largest term into brackets is achieved when � � � . Thus, we can bound the sum by

��
� � � � � � � � � A � � �

� A �
as was to be proved. ' (

The next proof establishes that the Datalog program defined in Theorem 9 achieves its goal.
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Proof of Theorem 9 (continued): We first prove that if � has a Resolution refutation of width � ,
then

� �6� � $ � � . Indeed, suppose that ��� 	 � � 	 � � � 	 �6� is a Resolution refutation of � of width
� . We may assume without loss of generality that � � � �

� � � 	 , �6� � �
� ��4*� 	 and �6� � � 	 .

For H;. ���'	 � �4� 	�� A �
	 , let us write � G � ��4 � G�" � 	 � �4� 		4 � G�" � � 	�� G�" � 	 � � � 	�� G�" � � 	 where all displayed
variables are different and � G 
 � G � � . Let � G � � G 
 � G be the width of � G . We will show, by
induction on H�. ���'	 � �4� 	�� A �
	 , that

� 
 �� � ��� G�" � 	 � � � 	�� G�" � � 	�� G�" ��	 � �4� 	�� G�" � � �
is derivable from

� �6� � and the Datalog rules. The base case H � � is clear: � G is necessarily
a clause of � , and the conclusion is immediate from rule (A), and rules (B) 	4� � ��	 (I). Fix H !-�
and suppose that the claim holds for all smaller values of H . If � G is a clause of � , the conclusion
is again immediate. Suppose then that � G follows from ��� and ��� by the Resolution rule. Here
��� � � H . By induction hypothesis, we know that

� 
 �� � ����� " ��	4� � � 	���� " � � 	���� " ��	 � �4� 	���� " � � �� 
 �� � ��� � " � 	 �4� � 	 � � " � � 	�� � " � 	 � � � 	�� � " � � �
are derivable. Since � � and � � are resolved together to obtain � G , some variable must appear
negatively in � � and positively in � � , or conversely. Without loss of generality, let us assume that
the former holds. Using the rules (B) and (C), we may also assume that ��� " � � � � " � � is the cut
variable � . Now let us apply the rule (J) to obtain

� 
 � � 
 � � �� � � � � � � ����� " � 	4� � � 	���� " � � 	�� � " ��	 � �4� 	�� � " � � 	���� " � 	 � � � 	���� " � � 	�� � " � 	 � � � 	�� � " � � � �����Then apply the rules (B) 	 � � ��	 (I) to obtain

� 
 � � 
 � � �� � ��� G�" � 	 � � � 	�� G�" � � 	�� G�" � 	 � � � 	�� G�" � � 	�� G�" � � 	4� � � 	�� G�" � � ���
or � 
 � � 
 � � �
 � � 
 � � � ���

G�" � 	 � � � 	 � G�" ��	�� G�" ��	 � �4� 	�� G�" � � �
depending on whether � G ! � or � G � � respectively. Finally, apply the rule (H) or (I) to obtain

� 
 �� � ��� G�" ��	4� � � 	�� G�" � � 	�� G�" � 	4� � � 	�� G�" � � ���
We have proved that � �? ��� � and � �� ��� � are derivable. Thus, + is derivable, so

� �6� � $ � � .
Let us prove the reverse direction, namely that if

� �6� � $ � � , then � has a Resolution refutation
of width � � . In order to prove that, we will need to introduce a mild extension of Resolution as an
intermediary step. The new proof system incorporates the so-called weakening rule: from clause� , derive � : � where � is an arbitrary clause. In Lemma 7 below, we prove that weakenings
may be eliminated without increasing the width, and therefore allowing them cannot hurt. Next we
prove that if � 
� ��� � 	 � � � 	�� � 	�� � 	 �4� � 	�� 
 �

� �
holds, then the clause

��4 � ��	 � �4� 		4 � � 	�� � 	 � �4� 	�� 
 �
� 	 (3)

27



has a Resolution derivation with weakening from � in width � � . The proof is by induction on the
stage � at which the tuple ��� � 	 � � � 	�� � 	�����	 �4� � 	�� 
 �

� � entered in the least fixed-point of the Datalog
rules. The base case � � � is easy: necessarily, the tuple entered following rule (A), and the claim
becomes obvious since then (3) is an initial clause of � . Fix � ! � and suppose that the claim holds
for all smaller values of � . If the tuple entered following one of the rules (B) 	 �4� � 	 (I), the claim is
clear since clauses are sets of literals. If the tuple entered following the rule (J), we proceed as
follows: Let us rename � � 	 � �4� 	�� � 	�� � 	 � � � 	�� 
 �

� in the form of the conclusion of rule (J); that is

��� � � 	 � � � 	 � �� � 	 � � �� 	4� � � 	�� � �� 7 	�� �� 	 �4� � 	�� �
 � � � � 	�� � �� 	4� � � 	�� � �
 7 � � 7 � � ��	 (4)

where both

� 
 �� � ���$	�� � � 	4� � � 	�� �� � 	�� �� 	 �4� � 	�� �
 � � � � �� 
 7� 7 ��� � �� 	4� � � 	�� � �� 7 	�� � �� 	 � �4� 	�� � �
 7 � � 7 � � 	�� �hold and have entered in a previous stage. If � does not occur in (4), then (3) is simply the result
of resolving the clauses

��4��$		4 � � � 	4� � � 		4 � �� � 	�� �� 	 � �4� 	�� �
 � � � � 	��4 � � �� 	 � �4� 		4 � � �� 7 	�� � �� 	 � �4� 	�� � �
 7 � � 7 � � 	�� 	on � . If on the contrary, � occurs in (4), then we may obtain (3) by weakening over one of these
two clauses. Which clause depends on whether � occurs positively or negatively. This completes
the proof of the Theorem. ' (

Finally, it remains to address the following lemma that we left without proof in the preceeding
argument. The result it asserts is well-known, but we include a complete proof for completeness.

Lemma 7 Let ��� 	 � � � 	 �6� be clauses. If �
� ��	 �4� � 	 �6� 	 has a Resolution refutation with weakening
of width � and length � , then it also has a Resolution refutation without weakening of width at
most � and length at most � .
Proof : We prove, by induction on � , that if � � 	 �4� � 	 �(� is a Resolution derivation with weakening,
then there exist a Resolution derivation � � � 	4� � � 	 � �� without weakening such that � �� 
 � � for
every �8. ���'	4� � � 	�� 	 . The base case � � � is clear: � � is necessarily an initial clause, so
� �� � � � works. Let � ! � and suppose that the claim holds for all smaller values. Let
� � � 	 � �4� 	 � �� � � be the derivation claimed by the induction hypothesis. We consider three cases
according to the nature of � � . If � � is an initial clause, let � �� � � � and we are done. If � �
is derived from � � with � �.� by weakening, we let � �� � � �� and we are also done because
� �� 
 � �


 � � . If � � is derived from � � and � G with � � H�� � by a cut with � . � � and
4 � . � G , we consider three cases. If � appears in � �� and 4 � appears in � �G , we let � �� be the
result of cutting � �� and � �G on � . Then

� �� � � �� : � �G A � � 		4 � 	 
 � � : � G A � � 		4 � 	 
 �(� �
If � appears in � �� but 4 � does not appear in � �G , we let � �� � � �G . Then

� �� � � �G � � �G A � � 	�4*� 	 
 � G A � � 		4 � 	 
 �(� �
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Finally, if � does not appear in � �� , we let � �� � � �� and again

� �� � � �� � � �� A � � 		4 � 	 
 � �
A � � 		4 � 	 
 �(� �

Since we covered all possible cases, this completes the proof of the lemma. ' (
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