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A graph is k-linked if for every list of 2k vertices {s1, . . . , sk , t1, . . . , tk}, there exist internally

disjoint paths P1, . . . , Pk such that each Pi is an si, ti-path. We consider degree conditions

and connectivity conditions sufficient to force a graph to be k-linked.

Let D(n, k) be the minimum positive integer d such that every n-vertex graph with

minimum degree at least d is k-linked and let R(n, k) be the minimum positive integer r

such that every n-vertex graph in which the sum of degrees of each pair of non-adjacent

vertices is at least r is k-linked. The main result of the paper is finding the exact values of

D(n, k) and R(n, k) for every n and k.

Thomas and Wollan [14] used the bound D(n, k) � (n + 3k)/2 − 2 to give sufficient

conditions for a graph to be k-linked in terms of connectivity. Our bound allows us to

modify the Thomas–Wollan proof slightly to show that every 2k-connected graph with

average degree at least 12k is k-linked.

1. Introduction

Dirac [2] proved that every n-vertex graph G with minimum degree at least n/2 is

Hamiltonian, and Ore [12] observed that the condition δ(G) � n/2 in Dirac’s result can

be replaced by ‘σ2(G) � n’, where σ2(G) is the minimum value of the sum deg(u) + deg(v)

over all pairs {u, v} of non-adjacent vertices in G.

† This work was partially supported by the NSF grant DMS-0099608 and by the Japan Society for the

Promotion of Science for Young Scientists.
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After Chartrand introduced the notion of k-ordered graphs , that is, graphs in which for

every ordered sequence of k vertices there is a cycle that encounters the vertices of the

sequence in the given order, several authors (see, e.g., [4, 11, 8, 6, 5]) studied the analogue of

Dirac’s and Ore’s sufficient conditions for a graph to be k-ordered. Let D0(n, k) denote the

minimum positive integer d such that every n-vertex graph with minimum degree at least d

is k-ordered. Similarly, let R0(n, k) denote the minimum positive integer r such that every n-

vertex graph G with σ2(G) � r is k-ordered. Improving on results in [4, 11], it was shown

in [6] that R0(n, k) = n + �(3k − 9)/2� for every 3 � k � n/2. Furthermore, Kierstead,

Sárközy and Selkow [8] showed that D0(n, k) = �n/4� + �k/2� − 1 for 3 � k � (n + 3)/11.

These bounds demonstrate the interesting phenomenon that R0(n, k) > 2D0(n, k) for k

small with respect to n.

A graph is k-linked if, for every list of 2k vertices {s1, . . . , sk, t1, . . . , tk}, there exist

internally disjoint paths P1, . . . , Pk such that each Pi is an si, ti-path. It is a folklore

observation that if the number n of vertices of a graph G is at least 2k, then in the definition

of a k-linked graph it is enough to consider only the lists of distinct s1, . . . , sk, t1, . . . , tk .

As in the previous paragraph, let D(n, k) be the minimum positive integer d such that

every n-vertex graph with minimum degree at least d is k-linked. Also, let R(n, k) denote

the minimum positive integer r such that every n-vertex graph G with σ2(G) � r is k-

linked. Thomas and Wollan [14] used the bound D(n, k) � (n + 3k)/2 − 2 to give sufficient

conditions for a graph to be k-linked in terms of connectivity. In this paper we determine

the exact values of D(n, k) and R(n, k) for all n and k.

Theorem 1.1. If k � 2, then

R(n, k) =




2n − 3, n � 3k − 1,

� 2(n+5k)
3

� − 3, 3k � n � 4k − 2,

n + 2k − 3, n � 4k − 1,

(1.1)

and

D(n, k) =

⌈
R(n, k)

2

⌉
=



n − 1, n � 3k − 1,

� n+5k
3

� − 1, 3k � n � 4k − 2,

� n−3
2

� + k, n � 4k − 1.

(1.2)

Note that R(3k, k) < R(3k − 1, k). This is the only place for a fixed k where R(n, k)

decreases with growing n.

Egawa, Faudree, Győri, Ishigami, Schelp and Wang [3] proved the following very closely

related result.

Theorem 1.2. ([3]) Let k � 2 and n � 3k. Let D1(n, k) be the minimum positive integer d

such that, for every n-vertex graph G with minimum degree at least d and every matching

M = {siti | i = 1, . . . , m} of size m � k in G, there exist vertex-disjoint cycles C1, . . . , Cm such

that Ci contains siti for each i = 1, . . . , m. Similarly, let R1(n, k) be the minimum positive
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integer r such that, for every n-vertex graph G with σ2(G) � r and every matching M =

{siti | i = 1, . . . , m} of size m � k in G, there exist vertex-disjoint cycles C1, . . . , Cm such that

Ci contains siti for each i = 1, . . . , m. Then

R1(n, k) =

{
� n

2
� + 4k − 2, 3k � n � 4k − 2,

n + 2k − 2, n � 4k − 1,
(1.3)

and

D1(n, k) =

{
� n+5k

3
� − 1, 3k � n � 4k − 2,

� n
2
� + k − 1, n � 4k − 1.

(1.4)

This is closely related because, for a graph G and a matching M = {siti | i = 1, . . . , m}, the

existence of cycles provided by Theorem 1.2 is equivalent to the existence in G′ = G − M

of vertex-disjoint paths linking si with ti provided by Theorem 1.1. Although the graphs G

and G′ differ only by a matching, the values of R(n, k) and R1(n, k) for 3k < n < 4k differ

significantly. On the other hand, the ideas of the proofs are similar. But neither of the

bounds of Theorem 1.2 and Theorem 1.1 can be derived from the other. Also, in terms

of linkages, Theorem 1.1 gives slightly better bounds for some parities of n and k, which

could perhaps be used for extremal problems on linkages.

A very interesting problem is estimating f(k) – the minimum positive integer f such

that every f-connected graph is k-linked. After a series of papers by Jung [7], Larman and

Mani [9], Mader [10], and Robertson and Seymour [13], the first linear upper bound for

f, namely f(k) � 22k, was proved by Bollobás and Thomason [1]. Very recently, Thomas

and Wollan [14] improved this bound to f(k) � 16k. If one were to use Theorem 1.1 in

the Thomas–Wollan proof [14], then their sufficient condition for a graph to be k-linked

could be relaxed.

Theorem 1.3. Every 2k-connected graph G = (V , E) with |E| � 6k|V | is k-linked. In par-

ticular, every 12k-connected graph is k-linked.

We note that applying Theorem 1.2 also would yield Theorem 1.3. In the next section

we prove lower bounds for D(n, k) and R(n, k). Then, in Section 3, the upper bounds are

established. In the final section, we show how to modify the Thomas–Wollan proof [14]

in order to derive Theorem 1.3.

Using new ideas (in particular, ideas of this paper), Thomas and Wollan improved the

upper bound on f(k) further to f(k) � 10k.

2. Constructions

In this section we present examples giving lower bounds for D(n, k) and R(n, k). Consider

several cases.

Case 1: n � 3k − 1. Let G be Kn with a deleted matching {(v1, v2), . . . , (v2�n/2�−1, v2�n/2�)}.
Clearly, δ(G) = n − 2 and σ2(G) = 2n − 4. Let m = min{k, �n/2�}. For i = 1, . . . , m, let

si = v2i−1 and ti = v2i. Assume that there exist internally disjoint paths P1, . . . , Pk such
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Figure 1. Graph G for Case 2.

that each Pi is an si, ti-path. Denote S = {s1, . . . , sm, t1, . . . , tm}. For every i, the path Pi

contains a vertex xi /∈ S , since siti /∈ E(G). Therefore, n � |S | + m = 3m. This is impossible

if n � 3k − 1, k � 2, and m = min{k, �n/2�}.

Case 2: 3k � n � 4k − 2. Let x = � 2n−5k
3

� + 1. It is easier to describe the complement

G = (V , E) of G. Fix six disjoint subsets S0, S1, S2, T0, T1, T2 of V with |S0| = |T0| = x − 1,

|S1| = |T1| = x, and |S2| = |T2| = k − x. Let V0 = V − S0 − S1 − S2 − T0 − T1 − T2.

Looking ahead, we may assume that

S1 = {s1, . . . , sx}, S2 = {sx+1, . . . , sk},
T1 = {t1, . . . , tx}, T2 = {tx+1, . . . , tk}.

The set E of edges of G is E1 ∪ E2 ∪ E3, where

E1 = {siti : i = 1, . . . , k},
E2 = {vw : v ∈ S0, w ∈ T1},

and E3 = {vw : v ∈ T0, w ∈ S1}.

The graph G itself is drawn in Figure 1.

Assume that there exist internally disjoint paths P1, . . . , Pk such that each Pi is an

si, ti-path. As in Case 1, each Pi contains a vertex in S0 ∪ T0 ∪ V0. Moreover, if i � x

(i.e., si ∈ S1 and ti ∈ T1), then either Pi contains a vertex in V0, or it has at least two

internal vertices, since no vertex in S0 ∪ T0 is adjacent to both si and ti. Therefore, n �
2k + k + (x − |V0|) = 5k − n − 2 + 3x. By the definition of x, the last expression exceeds

n, a contradiction.

The vertices in S0 ∪ S1 ∪ T0 ∪ T1 have degree x in G and all other vertices have

degree at most 1. It follows that δ(G) = n − 1 − x = � n+5k
3

� − 2 and σ2(G) = 2n − 2 − 2x =

2� n+5k
3

� − 4. This proves the lower bound on D(n, k) for every 3k � n � 4k − 2 and on

R(n, k) for 3k � n � 4k − 2 such that n + 5k 	≡ 2 (mod 3). For n + 5k ≡ 2 (mod 3), we

slightly modify the construction: we change x to x = � 2n−5k+2
3

� and move one vertex from

V0 to T0, so that |T0| = x. Then, as in the previous paragraph, we obtain n � 2k + k +

(x − |V0|) = 5k − n − 2 + 3x + 1, which contradicts the new definition of x. On the other
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Figure 2. Graph G for Case 3.

hand, σ2(G) = 2n − 3 − 2x = 2� n+5k−2
3

� − 3. Since we have 2� n+5k−2
3

� − 3 = � 2(n+5k)
3

� − 4,

for n + 5k ≡ 2 (mod 3), this completes Case 2.

Case 3: n � 4k − 1. This is a standard example of a graph with connectivity 2k − 2 (see

Figure 2). Clearly, δ(G) = �n/2� + k − 2 and σ2(G) = n + 2k − 4. If s1, . . . , sk−1, t1, . . . , tk−1

are the vertices of the central K2k−2, sk belongs to the left K�n/2�−k+1, and tk belongs to

the right K�n/2�−k+1, then there is no corresponding linkage: there is simply no room for

an sk, tk-path.

3. Upper bounds in Theorem 1.1

Observe that it is enough to prove the upper bound for R(n, k), since D(n, k) � R(n, k)/2.

The case of n � 3k − 1 is obvious, because σ2(G) � 2n − 3 means that G = Kn.

Remark 1. If n � 4k − 1, then n + 2k − 4 � 2n+10k−1
3

− 4.

Let n � 3k and G = (V , E) be a graph on n vertices satisfying the conditions of the

theorem. Let Mi = {si, ti}, i = 1, . . . , k, be arbitrary disjoint vertex pairs to be linked, and

let M = ∪k
i=1Mi. If, say, sktk ∈ E(G), then, for the graph G′ = G − sk − tk with n′ = n − 2

vertices and for k′ = k − 1, we have σ2(G
′) � R(n, k) − 4 � R(n′, k′). Therefore, if the

theorem holds for G′, it also holds for G. Thus, we may assume that none of the pairs siti
is an edge in G.

We will find the linkage in 3 steps (resembling the steps of the main proof in [6]). On

each of the steps, if we cannot perform this step, then σ2(G) < R(n, k).

Construct the auxiliary bipartite graph H with partite sets W1 and W2 as follows. Let

W1 = {M1, . . . ,Mk}, W2 = V − M, and a pair (Mi, v) be an edge in H if v ∈ NG(si) ∩ NG(ti).

If H has a matching saturating W1, then this matching gives the required linkage.

Otherwise, let m be the size of a maximum matching in H .

By the König–Egerváry theorem, there is a Q ⊆ W1 with k − m = |Q| − |NH (Q)|. Denote

R = NH (Q) and S = V (G) − M − R. We may assume that Q = {Mi : i = 1, . . . , q}. Let

Q′ =
⋃q

i=1{si, ti} (the elements of Q are pairs, and the elements of Q′ are all the elements

of these pairs). Note that |Q| = q, |Q′| = 2q, |R| = q − k + m, and |S | = n − k − q − m.

Let P be a maximum matching in H . We may assume that only vertices in D =

{M1, . . . ,Mk−m} are not covered by this matching. Let D′ = {si, ti : 1 � i � k − m}.
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Consider the linkage P of M − D corresponding to P . Let Z be the set of vertices

not participating in the linkage.

Lemma 3.1. n � 4k − m.

Proof. We need to prove this lemma only for n � 4k − 1.

Assume n � 4k − m − 1. Let Mi ∈ Q and x ∈ S . Then either si or ti is not a neighbour

of x. Therefore,

deg(si) + deg(ti) � 2(n − 2) − |S | = n + k − 4 + q + m. (3.1)

For the same reasons, x is not adjacent to at least q vertices in Q′. We may assume that

xs1 /∈ E(G). If s1y /∈ E(G) for every y ∈ S , then

deg(s1) + deg(x) � (n − 2 − |S |) + (n − 1 − q) = n − 3 + k + m � n − 4 + 2k.

By Remark 1, this contradicts (1.1). Otherwise, there is a y ∈ S with ys1 ∈ E(G) and,

therefore, yt1 /∈ E(G). Thus, by (3.1),

3σ2(G) � (deg(x) + deg(s1)) + (deg(y) + deg(t1)) + (deg(s1) + deg(t1))

� 2(n + k − 4 + q + m) + 2(n − q − 1) � 2(n + 5k − 6).

It follows that σ2(G) < R(n, k).

By Lemma 3.1, for every i = 1, . . . , k − m, we can assign a vertex zi ∈ Z to si and a

vertex z′
i ∈ Z to ti so that we assign distinct members of Z to distinct vertices. Also, for

every k − m + 1 � i � k, let yi be the common neighbour of si and ti corresponding to

the matching P above. Among such assignments, choose an assignment A with as many

edges zisi and z′
i ti as possible. Let Z ′ =

⋃k−m
i=1 {zi, z′

i}.

Lemma 3.2. In A, every zi is adjacent to si and every z′
i is adjacent to ti.

Proof. Assume that s1z1 	∈ E(G). We will prove that

|N(s1) − M| � |M − N(z1)|. (3.2)

To do this, for every neighbour w of s1 outside M we show a non-neighbour f(w) of

z1 in M. First, observe that either w ∈ Z ′ or w was used in the linkage P, since otherwise

we can assign w as z1.

Case 1. If w is used in a path si, w, ti in the linkage P and z1 is adjacent to both si and ti,

then by swapping w with z1, we will get an assignment with new z1 (former w) adjacent

to s1. Thus, either si or ti can be chosen as f(w).

Case 2. If w ∈ Z ′, say, w = z′
i (possibly, i = 1), and z1 is adjacent to ti, then swapping z1

with w produces a better assignment. Thus, z1ti /∈ E, and we let f(w) = ti.

Since all si and ti are disjoint, (3.2) holds, and therefore deg(s1) + deg(z1) � 2(n − 2) −
|V − M| = n − 4 + 2k. By Remark 1, this yields σ2(G) < R(n, k) for each n � 3k.
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The last step in the proof is given by the next lemma.

Lemma 3.3. The assignment A in Lemma 3.2 can be chosen in such a way that every zi is

adjacent to every z′
i .

Proof. Consider an assignment A satisfying Lemma 3.2. For i = 1, . . . , k − m, let Xi =

{si, ti, zi, z′
i}, and for i = k − m + 1, . . . , k, let Xi = {si, ti, yi}. Let X =

⋃k
i=1 Xi. Choose A

in Lemma 3.2 so that as many as possible zi are adjacent to corresponding z′
i . Suppose

that the lemma does not hold. Then we may renumber (si, ti) so that z1z
′
1 /∈ E(G). Let

A = N(s1) ∩ (V (G) − X) and B = N(t1) ∩ (V (G) − X).

Note that N(A + z1) ∩ (B + z′
1) = ∅. For i = 1, . . . , k, let ki denote the number of

neighbours of X1 (with multiplicities) in Xi. Since each member of X1 has exactly

one neighbour in X1, k1 = 4.

Claim 3.4. If 2 � i � k − m, then kj � 12. If k − m + 1 � i � k, then kj � 10.

Proof.

Case 1: 2 � i � k − m. By the maximality of m, neither of z1, z
′
1 is a common neighbour

of si and ti and neither of zi, z
′
i is a common neighbour of s1 and t1. Therefore, ki �

|X1| · |Xi| − 4 = 12.

Case 2: k − m + 1 � i � k.

Subcase 2.1: s1yi, t1yi ∈ E(G). If some of z1, z
′
1 (say, z1) is a common neighbour of si and

ti, then assigning z1 as the new yi and assigning the old yi as the new y1 will contradict

the maximality of m. Otherwise, ki � |X1| · |Xi| − 2 = 3 · 4 − 2 = 10.

Subcase 2.2: s1yi /∈ E(G). If all the four edges z′
1si, z

′
1ti, z1yi, t1yi are in E(G), then we can

swap yi with z′
1 and get a better assignment, since the new z′

1 is adjacent to z1. Otherwise,

we again have ki � 10.

Claim 3.5. For each v /∈ X, |N(v) ∩ {s1, t1, z1, z
′
1}| � 2.

Proof. Otherwise, we can swap v with either z1 or z′
1 so that the new assignment is

better.

Let F = deg(s1) + deg(t1) + deg(z1) + deg(z′
1). In view of the claims above, F � 2(n −

|X|) + 4 + 12(k − m − 1) + 10m. Since |X| = 4(k − m) + 3m, we obtain

F � 2(n − 4k + m) + 4 + 12(k − m − 1) + 10m = 2n + 4k − 8.

Since F � 2σ2(G) � 4δ(G), we obtain a contradiction to both (1.1) and (1.2). This proves

the lemma, and thus the theorem as well.

4. Connectivity conditions

Thomas and Wollan [14] showed that f(k) � 16k by proving the following (stronger)

result.
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Theorem 4.1. ([14]) Every 2k-connected graph G with |E(G)| � 8k|V (G)| is k-linked.

Most of the proof works under weaker restrictions on the average degree. The bottleneck

for the bounds in Theorem 4.1 is the following claim.

Claim 4.2. ([14]) For α = 8, every graph H on at most 2αk vertices with minimum degree

at least αk contains a k-linked subgraph.

If one proves Claim 4.2 for any 3 � α < 8, this would imply the strengthening of

Theorem 4.1 with α in place of 8. Using Theorem 1.1, we prove below an analog of

Claim 4.2 with α = 6. This will make Theorem 4.1 work with 6 in place of 8, i.e., will

yield Theorem 1.3. The beginning of the proof is reminiscent of that for Claim 4.2, but

for completeness, we present the full proof.

Lemma 4.3. For α = 6, every graph H on at most 2αk vertices with minimum degree at

least αk contains a k-linked subgraph.

Proof. Consider an H satisfying the conditions of the lemma. If H itself is not k-linked,

then there is a set X = {si, ti : 1 � i � k} ⊆ V (H) such that there are no disjoint paths

P1, . . . , Pk such that each Pi is an si, ti-path and all si and ti are distinct. Link as many as

possible pairs (si, ti) by paths of length at most 6 and, subject to this, minimize the sum of

the lengths of these paths. Suppose that l1 pairs are not linked and the number of paths

of length i is li+1, 1 � i � 6. We may assume that s1 and t1 are not linked.

Let S be the union of X with vertex sets of all the paths of the linkage. Let A =

NH (s1) − S and B = NH (t1) − S . By the choice, A and B are disjoint and are at distance

at least 5 in H − S . Since the paths Pi are chosen to be of the minimum total length, we

have

|NH (v) ∩ V (Pi)| � 3 ∀v ∈ V (G) − S ∀Pi, (4.1)

|NH (v) ∩ {s1, t1}| � 1 ∀v ∈ V (G) − S, (4.2)

and

|NH (s1) ∩ NH (t1) ∩ V (Pi)| � 3 ∀i, (4.3)

Claim 4.4. For each v ∈ V (H) − S − A − B, |N(v) ∩ (A ∪ B)| � 2 and either N(v) ∩ A = ∅
or N(v) ∩ B = ∅.

Proof. Suppose that |N(v) ∩ (A ∪ B)| � 1 for some v ∈ V (H) − A − B. By (4.1), (4.2), and

(4.3), |NH (v) − S | � δ(H) − 3(k − 1) − 1 and |A| + |B| � 2δ(H) − |S | − 3k, we have

|V (H)| � |A| + |B| + |S | + (1 + degH−S (v)) − 1 � 2 + 3δ(H) − 6k > 12k � |V (H)|,

a contradiction. If both N(v) ∩ A 	= ∅ and N(v) ∩ B 	= ∅, then there is an s1, t1-path of

length 4 outside S , a contradiction.
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By Claim 4.4, every vertex in V (H) − S has distance at most two from either s1 or

t1, but not both. Therefore, H − S is the union of H1 = H[A ∪ N(A) − S] and H2 =

H[B ∪ N(B) − S], and there are no edges connecting V (H1) with V (H2). Assume that

|V (H1)| � |V (H2)|.
Observe that δ(H1) � δ(H) − 3(k − l1) − l1 � 6k − 3k + 2l1 = 3k + 2l1 and |V (H1)| �

1 + δ(H1) > 3k. If |V (H1)| � 4k, then 3k + 2l1 � |V (H1)|+5k
3

, and by Theorem 1.1, H1 is

k-linked. This proves the lemma when |V (H1)| � 4k.

Now consider the case |V (H1)|, |V (H2)| � 4k + 1. If δ(H1) � (|V (H1)| − 3)/2 + k or

δ(H2) � (|V (H2)| − 3)/2 + k, then by Theorem 1.1, either H1 or H2 is k-linked. Thus we

may assume that there exist v1 ∈ H1 and v2 ∈ H2 such that degH1
(v1) � |V (H1)|/2 + k − 2

and degH2
(v2) � |V (H2)| + k − 2. Hence,

degH1
(v1) + degH2

(v2) � (|V (H1)| + |V (H2)|)/2 + 2k − 4,

that is,

degH (v1) + degH (v2) − (|NH (v1) ∩ S | + |NH (v2) ∩ S |) � (|V (H)| − |S |)/2 + 2k − 4.

Therefore

|NH (v1) ∩ S | + |NH (v2) ∩ S | � 2δ(H) − |V (H)|/2 + |S |/2 − 2k + 4

� 12k − 6k + |S |/2 − 2k + 4 � 4k + 4 + |S |/2. (4.4)

Claim 4.5. |N(v1) ∩ S | + |N(v2) ∩ S | � 4l1 + 4l2 + 5l3 + 6(l4 + l5 + l6 + l7).

Proof. It is enough to prove that v1 and v2 together have at most:

(a) 4 neighbours (counted with multiplicities) on each Pi of length 1 and each unlinked

pair in S ,

(b) 5 neighbours on each Pi of length 2,

(c) 6 neighbours on each Pi of length at least 3.

Statement (a) is evident and (c) follows from (4.1). To prove (b), suppose that each

of v1 and v2 has exactly 3 neighbours in a path Pi = (si, w, ti). Since |S | � |V (H)| −
|V (H1)| − |V (H2)| � 12k − 2(4k + 1) = 4k − 2, every v ∈ V (H) has at least 6k − |S | � 2k +

2 neighbours outside S. Thus we may assume that wu ∈ E(G) for some u ∈ V (H1), u 	= v1.

Since no u ∈ V (H1) + s1 is adjacent to any w ∈ V (H2) + t1, each distinct pair u1, u2 ∈
V (H1) + s1 has at least 6k + 6k − (8k − 2) = 4k + 2 � |S | + 4 common neighbours. Simil-

arly, each distinct pair w1, w2 ∈ V (H2) + t1 has at least |S | + 4 common neighbours. Thus,

the graph H − (S − s1 − t1) contains an s1, u-path Q1 of length at most 2 avoiding v1

and a t1, v2-path Q2 of length at most 2. Then we replace Pi by siv1ti and add the path

s1Q1uwv2Q2t1 of length at most 6. This contradicts the maximality of the linkage.
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Now by Claim 4.5 we have

|N(v1) ∩ S | + |N(v2) ∩ S | � 4l1 + 4l2 + 5l3 + 6(l4 + l5 + l6 + l7)

= 4

7∑
i=1

li + (l3 + 2l4 + 2l5 + 2l6 + 2l7)

= 4k + (l3 + 2l4 + 2l5 + 2l6 + 2l7) � 4k + |S |/2,

which contradicts (4.4).

As we have mentioned above, proving Lemma 4.3 for smaller α would yield the

corresponding improvement for f(k).
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[8] Kierstead, H. A., Sárközy, G. and Selkow, S. (1999) On k-ordered Hamiltonian graphs. J. Graph

Theory 32 17–25.

[9] Larman, D. G. and Mani, P. (1974) On the existence of certain configurations within graphs

and the 1-skeletons of polytopes. Proc. London Math. Soc. 20 144–160.

[10] Mader, W. (1967) Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math.

Annalen 174 265–268.

[11] Ng, L. and Schultz, M. (1997) k-ordered Hamiltonian graphs. J. Graph Theory 2 45–57.

[12] Ore, O. (1960) Note on Hamilton circuits. Amer. Math. Monthly 67 55.

[13] Robertson, N. and Seymour, P. D. (1995) Graph minors XIII: The disjoint path problem.

J. Combin. Theory Ser. B , 63 65–110.

[14] Thomas, R. and Wollan, P. (2003) An improved linear edge bound for graph linkage. Submitted.


