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Abstract. In this paper, we consider what condition is sufficient for
random inputs to secure probabilistic public-key encryption schemes.
Although a framework given in [16] enables us to discuss uniformly and
comprehensively security notions of public-key encryption schemes even
for the case where cryptographically weak pseudorandom generator is
used as random nonce generator to encrypt single plaintext messages, the
results are rather theoretical. Here we naturally generalize the framework
in order to handle security for the situation where we want to encrypt
many messages with the same key. We extend some results w.r.t. single
message security in [16] – separation results between security notions and
a non-trivial sufficient condition for the equivalence between security no-
tions – to multiple messages security. Besides the generalization, we show
another separation between security notions for k-tuple messages and for
(k+1)-tuple messages. The natural generalization, obtained here, rather
improves to understand the security of public-key encryption schemes
and eases the discussion of the security of practical public-key encryp-
tion schemes. In other words, the framework contributes to elucidating
the role of randomness in public-key encryption scheme. As application of
results in the generalized framework, we consider compatibility between
the ElGamal encryption scheme and some sequence generators. Espe-
cially, we consider the applicability of the linear congruential generator
(LCG) to the ElGamal encryption scheme.

1 Introduction

One of the important goals in computational cryptography is to provide a public-
key encryption scheme that achieves a security level as strong as possible under
various circumstances. For this purpose, several security notions have been in-
troduced. In particular, we will discuss in this paper the notions of “semantic
security” and “ciphertext indistinguishability” introduced in [14], which have
been shown to be equivalent [14,20]. For another major security notion, we have
“non-malleability” introduced in [8]. These notions are basically defined in terms
of an adversary who is given only a challenge ciphertext. This attack model is
called ciphertext only attack (abbreviated COA). Besides COA, three major at-
tack models have been studied in the literature. One is called chosen plaintext
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attack (abbreviated CPA) model, in which the adversary can encrypt any plain-
text messages of his choice. For more stronger attack models, chosen ciphertext
attack and adaptive chosen ciphertext attack have been also considered in the
literature [21,22].

Although these security notions have been studied quite well (see, e.g., [1,3]),
we think that there are still some important issues that have not been addressed
in the previous research. Security when used with a “pseudorandom” resource is
one of such issues. Usually, security notions are defined assuming that ideal (i.e.,
true) random resource is available. Furthermore, it has been shown that one can
safely use any “cryptographically strong polynomial-time pseudorandom” gen-
erator (see, e.g., [4,26]) for the substitute of the true random resource; that is,
most security notions do not change by using the polynomial-time pseudoran-
domness for the true randomness. Although we have several “cryptographically
strong” polynomial-time pseudorandom generators, they are unfortunately not
fast enough for practical use, and much faster but less reliable pseudorandom
generators have been used in many practical situations. Then the above security
notions (and their relations) may be no longer valid with such weak pseudo-
randomness. In fact, it has been shown [2] that if DSS is used with the linear
congruential generator, then its secret key can be easily detected after seeing a
few signatures. Though this result indicates that the linear congruential gener-
ator is unsuitable for cryptographic purposes, it does not mean that the linear
congruential generator is useless at all for all cryptographic systems. It is cer-
tainly important to study more carefully which aspect of the randomness is
indeed important for discussing several security levels.

A framework introduced in [16] enables to discuss uniformly and comprehen-
sively “semantic security” and “ciphertext indistinguishability” notions even for
the case where some cryptographically weak pseudorandom generator is used
as random nonce generator to encrypt plaintext messages. It has been shown
that semantic security and ciphertext indistinguishability in the framework are
not equivalent and a non-trivial sufficient condition for the equivalence has been
given. Unfortunately, security notions only for the situation where we encrypt
a single message per key generated can be handled in the framework. Clearly,
in reality, we want to encrypt many messages with the same key. Nevertheless,
security for multiple messages has not been intensively studied except results
in [11]. In [11], security notions for multiple messages have been shown to co-
incide with their respective security notions for single messages. We note that
such coincidence is proved only when cryptographically strong pseudorandom
generators are used.

Here we naturally generalize the framework, proposed in [16], in order to
handle security for multiple messages. We extend results w.r.t. single message
security in [16] to multiple messages security. That is, we show that seman-
tic security for k-tuple messages and ciphertext indistinguishability for k-tuple
messages are not equivalent for any k ≥ 1 and give a sufficient condition for the
equivalence. Since these generalized results are easily derived from the original
results, we stress that the generalization improves to understand the security of
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public-key encryption schemes and eases the discussion of the security of practi-
cal public-key encryption schemes. Besides the generalization, we show another
separation between security notions for k-tuple messages and for (k + 1)-tuple
messages. Moreover, the generalized framework enables us to discuss compatibil-
ity between public-key encryption schemes and practical pseudorandom genera-
tors. We stress that though the generalization is a natural extension, it may have
an impact upon designing pseudorandom generators within practical public-key
cryptosystems. In the single message security setting, it is hard to grasp the
practical meaning of the results. On the other hand, generalized results with
respect to the multiple message security help us to figure out involvement with
practical systems. As application of results in the generalized framework, we con-
sider compatibility between the ElGamal encryption scheme and some sequence
generators. Especially, we show that linear congruential generator (LCG) is ap-
plicable to the ElGamal encryption scheme without losing security on some new
and acceptable assumption.

The main contribution of this paper is rather providing a framework in which
we can easily discuss security notions of practical public-key encryption schemes
under more various circumstances than theoretical results. In addition, we stress
that the framework elucidates the role of randomness in public-key encryption
scheme.

Notations and Conventions

We introduce some useful notations and conventions for discussing probabilistic
algorithms. If A is a probabilistic algorithm, then for any input x, the notation
A(x) refers to the probability space which assigns to the string y the probability
that A, on input x, outputs y. If S is a probability space, denote by Pre←S [e] (or
PrS [e]) the probability that S associates with element e. When we consider finite
sample sets, it is convenient to consider separately a sample set and probability
distribution on the set. If S is a finite set and D is a probability distribution on
S, denote by Pre∈DS [e] the probability that element e ∈ S is chosen according
to D. If S is a finite set, denote by Pre∈US [e] the probability that element e ∈ S
is chosen uniformly.

By 1n we denote the unary representation of the integer n. A function f :
{0, 1}∗ → {0, 1}∗ is polynomially-bounded if there exists a polynomial p(·) such
that |f(x)| ≤ p(|x|) for all x ∈ {0, 1}∗.

2 New Framework

In this section, we prepare a framework in which we can uniformly and com-
prehensively discuss “semantic security” and “ciphertext indistinguishability”
notions for multiple messages even for the case where some cryptographically
weak pseudorandom generator is used as random nonce generator to encrypt
messages. This framework is a slightly generalized version of the framework
proposed in [16]. We stress that the generalization improves to understand the



On Sufficient Randomness for Secure Public-Key Cryptosystems 37

security of public-key encryption schemes and eases the discussion of the secu-
rity of practical public-key encryption schemes thought the generalization itself
is slight.

2.1 R-sequence for Random Inputs to Encryption Algorithms

We begin with introducing the notion of “R-sequence” and some notations. An
R-sequence is just a sequence of strings (of certain length 
) randomly and
uniformly chosen from some (finite) subset of initial segments of sequences of
strings (of length 
). More specifically, we consider the following set family of
string sequences.

Definition 1. Let q(·) be a polynomial. A q(n)-R-sequence set family (abbre-
viated RSSF) {Rn}n∈N is a set family of sequences of strings of length q(n).

Below we usually use {Rn} to denote some RSSF. On the other hand, we consider
a special q(n)-RSSF, where q(n)-RSSF {Tn} is just a collection of sets of all
infinite sequences of strings of length q(n), and denote the special RSSF by
TSSF. We sometimes use TSSF instead of true randomness in the sequel. Note
that, in order to regard sequences in Rn as infinite ones, we sometimes consider
the concatenation of the finite sequence in Rn and some infinite sequences of
constant dummy strings. Although each element in Rn is possibly infinite, we
use its finite initial segments only. So, we prepare some operation Pref (·, ·) on
Rn; Pref (Rn, i) denotes a set {(r1, . . . , ri) : (r1, . . . , ri) is the initial segment
of a sequence in Rn}. This is because we avoid a tedious discussion of random
variables of infinite domain.

Our ultimate purpose is to give a taxonomy of RSSF from a viewpoint of the
security of public-key encryption schemes. We will enumerate some conditions
over RSSF to begin with.

While the well-known fact can be restated in our framework as the polynomial-
time pseudorandomness (see, e.g., [4,26]) is sufficient to have the equivalence
between semantic security and ciphertext indistinguishability, we show that the
polynomial-time pseudorandomness is not necessary to have the equivalence.
This implies that there may be more usable sufficient conditions for the equiv-
alence. It is easy to consider separately “efficient samplability” and “indistin-
guishability from true randomness” as some properties on R-sequences. We call
the former property samplability simply and the latter semi-randomness to dis-
tinguish from pseudorandomness. “Samplability” is quite a natural property be-
cause generators without samplability is, in general, difficult to use algorithmi-
cally. Especially in Monte-Carlo simulation, far efficient samplability is required
much. On the other hand, “semi-randomness” is also one of important proper-
ties. Semi-random sequences pass many feasible statistical tests. Some sequences
that are obtained from physical sources such as electronic noise or the quantum
effects in a semiconductor. When the sequences pass all known feasible statistical
tests, it is often that such sequences may have the semi-randomness property.
So, in this paper, we study these two properties on RSSF.
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We begin with definition of “semi-randomness.” Semi-random sequences are
ones which are not distinguished from the true randomness by any polynomial-
size circuit. More specifically, we consider the following definition.

Definition 2. A q(n)-RSSF {Rn} is said to be t(n)-semi-random if for any po-
lynomial-size circuit family {Cn}n∈N, any polynomial p(·), all sufficiently large n,∣∣∣∣∣ Pr
(r1,...,rt(n))∈U
Pref (Rn,t(n))

[
Cn(r1, . . . , rt(n)) = 1

]− Pr
(r′1,...,r

′
t(n))∈U

Pref (Tn,t(n))

[
Cn(r′1, . . . , r

′
t(n)) = 1

]∣∣∣∣∣ < 1
p(n)

,

where {Tn} is TSSF.
We note that semi-random sequences are different from output sequences by

polynomial-time pseudorandom generators. Semi-random sequences need not to
be recursive nor generated efficiently.

Next, we give a definition of “samplability.” For any samplable sequence,
there exists a (polynomial-size) generator {Sn}n∈N whose output is statistically
close to the samplable sequence. More specifically, we consider the following
definition.

Definition 3. A q(n)-RSSF {Rn} is said to be t(n)-samplable if there exists a
polynomial-size circuit family {Sn}n∈N so that for every polynomial p(·) and all
sufficiently large n,

max
A

{∣∣∣∣ Pr
r∈U{0,1}q(n)

[
Sn(r) ∈ A

]− Pr
(r1,...,rt(n))∈U
Pref (Rn,t(n))

[
(r1, . . . , rt(n)) ∈ A

]∣∣∣∣
}

<
1

p(n)
,

where the maximum is taken all over the subsets A of Pref (Tn, t(n)).

We note that the maximum value in the above definition is so called “statistical
difference” between two probability distributions: {Sn(r)}r∈U{0,1}q(n) and the
uniform distribution on Pref (Rn, t(n)).

We extend the notion of public-key encryption scheme in order to cope with
RSSF instead of true randomness. The following is our treatment for public-
key encryption schemes in the new framework. The following definition seems
to be cumbersome. Since nonces in encryption are not necessarily independent
of each other, the definition below seems to be more complex than the original
(simplified) definition.

Definition 4 (public-key encryption scheme, revisited). A public-key en-
cryption scheme is a quadruple (G,M,E,D), where the following conditions
hold.

1. G, called the key generator, is a probabilistic polynomial-time algorithm
which, on input 1n, outputs a pair of binary strings. (Although the key
generator also uses randomness, we disregard it here in order to cast light
on roles of randomness in encrypting. So, we assume that randomness in key
generator is always ideal.)
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2. M = {Mn}n∈N is a family of message spaces from which all plaintext mes-
sages will be drawn. In order to make our notation simpler (but without loss
of generality), we will assume that Mn = {0, 1}n.

3. For every polynomial q(·), every q(n)-RSSF {Rn}, every n, every pair (e, d)
in the support of G(1n), for any integer k ≥ 1 and for any α1, . . . , αk ∈Mn,
(encryption) “deterministic” polynomial-time algorithm E and (decryption)
deterministic polynomial-time algorithm D satisfy

Pr
(r1,...,rk)∈U
Pref (Rn,k)

[ k∧
i=1

D(d,E(e, αi; ri)) = αi

]
= 1,

where the probability is over the uniform distribution on Pref (Rn, k).

Hereafter, we write Ee(α; r) instead of E(e, α; r) and Dd(β) instead of D(d, β).
We note that the argument r in the term Ee(α; r) denotes the random input
to the encryption algorithm E. Also, we let G1(1n) denote the first element
(i.e., encryption key) in the pair G(1n). Without loss of generality, we treat the
encryption algorithm as deterministic one fed with a plaintext message and a
(random) supplementary input of length q(n).

2.2 Security Notions in the New Framework

In this subsection, we reformulate the notions of semantic security and indistin-
guishability to suit the new framework.

Since Goldwasser and Micali defined semantic security and ciphertext indis-
tinguishability (a.k.a. polynomial security), several ways to define such notions
are shown. In this paper, we adopt a non-uniform formulation as in [11] in order
to simplify the exposition. We note that employing such a non-uniform formu-
lation (rather than a uniform one) may strengthen the definitions; yet, it does
weaken the implications proven between the definitions, since proofs make free
usage of non-uniformity.

A transformation is a uniform algorithm which, on inputs Cn, outputs C ′n,
where Cn (resp., C ′n) is the representation of a circuit Cn (resp., C ′n) in some
standard encoding. Without loss of generality, we identify a circuit with its
representation (in the standard encoding).

Definition 5. A public-key encryption scheme (G,M,E,D) is semantically se-
cure for t(n)-tuple messages w.r.t. q(n)-RSSF {Rn} if there exists a probabilistic
polynomial-time transformation T so that every polynomial-size circuit fam-
ily {Cn}n∈N, for every probability ensemble {X̄n}n∈N satisfying that X̄n is a
probability distribution on M

t(n)
n , every pair of polynomially-bounded functions

f, h : {0, 1}∗ → {0, 1}∗, every polynomial p(·) and all sufficiently large n,

Pr
G,X̄;(r1,...,rt(n))∈U

Pref (Rn,t(n))

[
Cn(G1(1n), ĒG1(1n)(X̄n; r̄), 1n, h(X̄n)) = f(X̄n)

]

< Pr
T,G,X̄n

[
C ′n(G1(1n), 1n, h(X̄n)) = f(X̄n)

]
+

1
p(n)
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where C ′n = T (Cn), X̄n = (X(1)
n , . . . , X

(t(n))
n ), and Ēe(X̄n; r̄) = Ee(X

(1)
n ; r1), . . . ,

Ee(X
(t(n))
n ; rt(n)).

Some explanation on the attack model is needed here. In the above defini-
tion, an adversary Cn is given only an encryption key G1(1n) and a ciphertext
message EG1(1n)(Xn; r) (and some supplementary information h(Xn)). Thus, it
is considered as ciphertext only attack (COA) model. But note here that we
may consider any polynomial-size circuit Cn for the adversary; hence, we may
assume that the encryption algorithm is also included in Cn. In the situation
where the true randomness is available, this immediately includes the chosen
plaintext attack (CPA) model where the adversary can encrypt any plaintext
messages of his choice. This is not true any more in the new framework because
there is no guarantee that some (randomized) polynomial-size circuit can gener-
ate R-sequences in Rn uniformly at random. Moreover, we consider our revised
COA model. For our COA model, we consider the situation where an adversary
cannot directly access to R-sequence generators. The situation means that those
who use public-key encryption scheme have their own private R-sequence gen-
erators. In general, they do not have to publicize their R-sequence generators
which are used in public-key encryption scheme. In addition, the case where
R-sequence generators are privately used is more secure than the case where
R-sequence generators are publicly used. Thus, we can say that our COA model
makes sense.

Definition 6. A public-key encryption scheme (G,M,E,D) is ciphertext indis-
tinguishable for t(n)-tuple messages w.r.t. q(n)-RSSF {Rn} if for every poly-
nomial-size circuit family {Cn}n∈N, every polynomial p(·), all sufficiently large
n and every x1, . . . , xt(n), y1, . . . , yt(n) ∈Mn,

∣∣∣∣∣ Pr
G;(r1,...,rt(n))∈U

Pref (Rn,t(n))

[
Cn(G1(1n), ĒG1(1n)(x̄; r̄)) = 1

]

− Pr
G;(r′1,...,r

′
t(n))∈U

Pref (Rn,t(n))

[
Cn(G1(1n), ĒG1(1n)(ȳ; r̄′)) = 1

]∣∣∣∣∣ < 1
p(n)

where x̄ = (x1, . . . , xt(n)), ȳ = (y1, . . . , yt(n)), Ēe(x̄; r̄) = Ee(x1; r1), . . . ,
Ee(xt(n); rt(n)), and Ēe(ȳ; r̄′) = Ee(y1; r′1), . . . , Ee(yt(n); r′t(n)).

The following notion is somewhat artificial. However, it is useful to charac-
terize the notions of semantic security and ciphertext indistinguishability.

Definition 7. A public-key encryption scheme (G,M,E,D) is ciphertext skew-
indistinguishable for t(n)-tuple messages w.r.t. q(n)-RSSF {Rn} if for every
polynomial-size circuit family {Cn}n∈N, every polynomial p(·), all sufficiently
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large n and every x1, . . . , xt(n), y1, . . . , yt(n) ∈Mn,∣∣∣∣∣ Pr
G;(r1,...,rt(n))∈U

Pref (Rn,t(n))

[
Cn(G1(1n), ĒG1(1n)(x̄; r̄)) = 1

]

− Pr
G;(r′1,...,r

′
t(n))∈U

Pref (Tn,t(n))

[
Cn(G1(1n), ĒG1(1n)(ȳ; r̃)) = 1

]∣∣∣∣∣ < 1
p(n)

where x̄ = (x1, . . . , xt(n)), ȳ = (y1, . . . , yt(n)), Ēe(x̄; r̄) = Ee(x1; r1), . . . ,
Ee(xt(n); rt(n)), and Ēe(ȳ; r̃) = Ee(y1; r′1), . . . , Ee(yt(n); r′t(n)).

We note that, in three definitions above, any adversary does not directly
access to RSSF but gets ciphertext messages encrypted using the RSSF as inputs.

We have seen some security notions for public-key encryption schemes. Here
we mention known results w.r.t. multiple messages security by our terminology.

Theorem 1 ([11,14,20]). Let (G,M,E,D) be a public-key encryption scheme.
The following statements are equivalent.

1. (G,M,E,D) is semantically secure for single message w.r.t. TSSF.
2. (G,M,E,D) is ciphertext indistinguishable for single message w.r.t. TSSF.
3. (G,M,E,D) is semantically secure for polynomial-tuplemessages w.r.t. TSSF.
4. (G,M,E,D) is ciphertext indistinguishable for polynomial-tuple messages

w.r.t. TSSF.

Recall that TSSF is a special case of RSSF. So, the equivalence is satisfied if
the true randomness (say, TSSF) is used as random inputs. In what follows, we
discuss general cases.

3 Results

3.1 Separation Results

In this subsection, we consider classes of pairs of RSSF and public-key encryp-
tions scheme w.r.t. the RSSF. We especially show that semantic security and
ciphertext indistinguishability for multiple messages are separable from each
other.

We denote by SSt(n)
r the class of pairs of encryption scheme (G,M,E,D)

and RSSF {Rn} satisfying that (G,M,E,D) w.r.t. {Rn} is semantically se-
cure for t(n)-tuple messages. We also denote 〈(G,M,E,D), {Rn}〉 ∈ SSt(n)

r if
an encryption scheme (G,M,E,D) which is semantically secure for t(n)-tuple
messages w.r.t. a RSSF {Rn}. We denote by INDt(n)

rr the class of pairs of en-
cryption schemes (G,M,E,D) and RSSF {Rn} satisfying that (G,M,E,D)
w.r.t. RSSF {Rn} is ciphertext indistinguishable for t(n)-tuple messages. We
denote by INDt(n)

rt the class of pairs of encryption scheme (G,M,E,D) and
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RSSF {Rn} satisfying that (G,M,E,D) w.r.t. RSSF {Rn} is ciphertext skew-
indistinguishable for t(n)-tuple messages.

In [16], some relations among security notions for single message have been
already shown. In case of multiple messages, we can obtain similar results to the
case of single message.

Theorem 2. Suppose that there exists a public-key encryption scheme w.r.t.
TSSF. Then, for any polynomial t(n), INDt(n)

rt � SSt(n)
r � INDt(n)

rr .

We omit the proof on account of space constraints. We note that the theorem
can be similarly shown as a proof in [16].

3.2 Sufficient Condition for the Equivalence

In this subsection, we consider how properties of RSSF affect on the security
of encryption schemes. We especially give a sufficient condition that semantic
security and ciphertext indistinguishability for multiple messages become equiv-
alent.

Theorem 3. Let t(n) be a polynomial. Suppose that 〈(G,M,E,D), {Rn}〉 ∈
INDt(n)

rr . If {Rn} is t(n)-semi-random, then 〈(G,M,E,D), {Rn}〉 ∈ INDt(n)
rt .

Theorem 4. Let t(n) be a polynomial. Suppose that 〈(G,M,E,D), {Rn}〉 ∈
INDt(n)

rr . If {Rn} is t(n)-samplable, then 〈(G,M,E,D), {Rn}〉 ∈ SSt(n)
r .

We omit the proofs for the above two theorems on account of space con-
straints. We note that the theorem can be similarly shown as a proof in [16].

Corollary 1. Let t(n) be a polynomial. Suppose that {Rn} is t(n)-semi-random
or t(n)-samplable. Then 〈(G,M,E,D), {Rn}〉 ∈ INDt(n)

rr if and only if 〈(G,M,

E,D), {Rn}〉 ∈ SSt(n)
r .

Although we have a better sufficient condition for the equivalence between se-
mantic security and ciphertext indistinguishability, the condition is not necessary
for the equivalence.

Theorem 5. Let t(n) be a polynomial. Suppose that there exists a public-key
encryption scheme that is semantically secure w.r.t. TSSF. There exists an en-
cryption scheme (G,M,E,D) such that 〈(G,M,E,D), {Rn}〉 ∈ INDt(n)

rt and
{Rn} is not t(n)-semi-random.
Proof. Suppose that 〈(G,M,E,D), {Tn}〉 ∈ INDt(n)

rt , where {Tn} is q(n)-TSSF.
Then there exists an encryption scheme (G,M,E′, D′) such that 〈(G,M,E′, D′),
{T ′n}〉 ∈ INDt(n)

rt , where {T ′n} is (q(n)+1)-TSSF, E′e(α; r) = Ee(α; r1), D′d(β) =
Dd(β), r = r1r2 and |r2| = 1. We consider a RSSF {Rn} = ({0, 1}q(n)1)t(n). It
is easy to see that 〈(G,M,E′, D′), {Rn}〉 ∈ INDt(n)

rt , because the last bit of
random supplementary bit is not used in encrypting.

On the other hand, it is easy to see that {Rn} and {T ′n} are distinguishable.
In other words, {Rn} is not t(n)-semi-random. ��
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3.3 Multiplicity

It is easy to see that the parameter of RSSF is available as a measure of com-
patibility between RSSFs and encryption schemes. The following theorem says
that, for any pair of RSSF and encryption scheme, there may exist limitation on
the numbers of messages which are encrypted with the same key and without
losing security.

Theorem 6. Let t(·) and t′(·) be polynomials. Suppose that there exists a public-
key encryption scheme that is semantically secure w.r.t. TSSF. If t(n) < t′(n)
then INDt′(n)

rr � INDt(n)
rr , INDt′(n)

rt � INDt(n)
rt , and SSt′(n)

r � SSt(n)
r .

Proof. Let g be a pseudorandom generator which, given a seed s of length q(n),
outputs a string of length t(n)q(n). We consider two RSSFs Rn = {g(s) : s ∈
{0, 1}q(n)} andR′n = {(g(s), gl(s)) : s ∈ {0, 1}q(n)}, where gl(s) denotes the suffix
of g(s) of length q(n). Let {Tn} be q(n)-TSSF. Suppose that 〈(G,M,E,D), {Tn}〉
∈ INDt(n)

rt . It is easy to see that 〈(G,M,E,D), {Rn}〉 ∈ INDt(n)
rt , which implies

that 〈(G,M,E,D), {Rn}〉 ∈ SSt(n)
r and 〈(G,M,E,D), {Rn}〉 ∈ INDt(n)

rr . It is
also easy to see that 〈(G,M,E,D), {R′n}〉 �∈ INDt(n)+1

rt and 〈(G,M,E,D), {R′n}〉
�∈ INDt(n)+1

rr , because encryptions of x1, . . . , xt(n), xt(n) and y1, . . . , yt(n), yt(n)+1
are distinguishable. We consider a function f such that f(x1, . . . ,xt(n),xt(n)+1)=1
if and only if xt(n) = xt(n)+1. Then 〈(G,M,E,D), {R′n}〉 �∈ SSt(n)+1

r .

It is easy to see that INDt′(n)
rr ⊆ INDt(n)

rr , INDt′(n)
rt ⊆ INDt(n)

rt , and
SSt′(n)

r ⊆ SSt(n)
r . This completes the proof. ��

4 Application

In [25], it is shown that the ElGamal encryption scheme [10] is semantically se-
cure on condition that the decision Diffie-Hellman (DDH) problem is intractable.
Let G be a group of some odd prime order q. Roughly speaking, the DDH problem
is one to distinguish the uniform distribution on {(g, ga, gb, gab) : g ∈ G, a, b ∈
Zq} ⊂ G4 from the uniform distribution on G4 (see, e.g., [5,7,19]). In this sec-
tion, we consider the compatibility between the ElGamal encryption scheme and
linear congruential sequences.

Let us give a simple description of the ElGamal encryption scheme EG =
(Geg,Meg, Eeg, Deg). Key generation algorithm Geg chooses an n-bit prime num-
ber p such that p = 2q + 1 and q is a prime number. Let Gp be the unique
non-trivial subgroup of Z∗p. Geg also chooses uniformly and randomly a genera-
tor g ∈ Gp and x ∈ Zq. Geg finally outputs ((p, g, gx), x). Message space Meg is
set to be Gp. (Although, in the definition of encryption scheme, message space
depends only on the security parameter, we use prime-dependent message space
without loss of generality.) Encryption algorithm Eeg, given an encryption key
(p, g, y), a message m and a random input r, outputs (gr,myr). We note that
group operation is carried using the value p. Decryption algorithm Deg, given a
decryption key x and ciphertext (c1, c2), outputs c2/(c1)x.
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Let us consider the prime-indexed RSSF {Rp} which corresponds to linear
congruential sequences, where Rp = {(r, fp(r), . . . , f t(n)−1

p (r)) : r ∈ Zq} and fp
is a function of the form fp(r) = ar + b mod q.

Now we are ready to consider the security of the ElGamal encryption scheme
w.r.t. linear congruential sequence for random inputs. First, we restate some
trivial statements using our terminology.

Proposition 1. Suppose that the DDH problem is intractable. If the parame-
ter a for linear congruential sequence is public, then 〈EG, {Rp}〉 ∈ SS1

r and
〈EG, {Rp}〉 �∈ SSkr for any k ≥ 2.

The above proposition seems to say that the linear congruential sequence is
useless at all for the ElGamal encryption scheme. However, we do not have to
publicize the parameter of the linear congruential sequence.

Proposition 2. Suppose that the DDH problem is intractable. If the parameter
of the linear congruential sequence is not public but randomly and uniformly
distributed, then 〈EG, {Rp}〉 ∈ SS2

r.

We do not know whether or not 〈EG, {Rp}〉 ∈ SS3
r on the same assumption.

So, we consider a bit stronger assumption. Let Lk = {(gh, gah, . . . , gakh) : g, h ∈
Gp, a ∈ Zq} ⊂ (Gp)k+1. We call the problem to distinguish the uniform distribu-
tion on Lk from the uniform distribution on (Gp)k+1 decision k-skew-power series
(k-DSPS) problem. If h = 1 then the k-DSPS problem is reducible to the DDH
problem. It seems that the k-DSPS problem is somewhat artificial. However, it
is just a subproblem of a natural problem. We note that Gp is a commutative
ring w.r.t. two operators ⊕g and ⊗g, where ga ⊕g gb = ga+b and ga ⊗g gb = gab.
The DDH problem is considered as the equivalence problem between α⊗g β and
γ, where α, β, γ ∈ Gp. Similarly, the (computational) Diffie-Hellman problem is
considered as the evaluating problem for α⊗g β, where α, β ∈ Gp. Naturally, we
can define expression on Gp using the additive operator ⊕g and the multiplica-
tive operator ⊗g. So, the equivalence problem for two expressions on Gp is more
general than the DDH problem. It is easy to see that the k-DSPS problem is
also a subproblem of the equivalence problem for two expressions on Gp. We note
that if both of two expressions on Gp do not include any multiplicative operator,
the subproblem is easily solved.

Theorem 7. Suppose that the k-DSPS problem is intractable, where k is a con-
stant. If the parameter of the linear congruential sequence is not public but ran-
domly and uniformly distributed, then 〈EG, {Rp}〉 ∈ SSk+1

r .

Proof. The ciphertext skew-indistinguishability w.r.t. LCG follows directly from
the assumption. Using Theorem 2, we get the assertion. ��

We consider a bit stronger assumption that z(n)-DSPS problem is intractable
for any polynomial z(·) and name it DSPS assumption. Then we get the follow-
ing.
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Corollary 2. Under the DSPS assumption, 〈EG, {Rp}〉 ∈ SSv(n)
r for any poly-

nomial v(·).
We note that in the case of the DSS in [2] the secret key can be detected by

solving some simultaneous linear equations. However, in the case of the ElGamal
encryption scheme w.r.t. LCG, such equations do not appear in ciphertext. Thus,
the techniques in [2] do not seem to be applicable to the case of the ElGamal
encryption scheme w.r.t. LCG.

5 Concluding Remarks

We have extended the framework proposed in [16] where we can uniformly and
comprehensively discuss security notions of public-key encryption schemes even
for the case where some cryptographically weak pseudorandom generator is used
as random nonce generator to encrypt plaintext messages. We have also shown
some separation results between security notions for multiple messages and given
a sufficient condition for the equivalence between the security notions. Obtained
results give us a clear sight for designing sequence generators for random inputs
to public-key encryption schemes. We have shown that the LCG is available to
random inputs to the ElGamal encryption schemes on some similar assumption
with the DDH assumption, although the LCG itself is cryptographically weak
[6,17,24]. However, reliability of the assumption may be controversial, thought
it is weaker than a natural assumption where the equivalence problem for two
expressions on Gp is intractable.

References

1. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In H. Krawczyk, editor, Advances in
Cryptology — CRYPTO’98, volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer-Verlag, 1998.

2. M. Bellare, S. Goldwasser, and D. Micciancio. Pseudo-random number generation
within cryptographic algorithms: The DSS case. In B. S. Kaliski Jr., editor, Ad-
vances in Cryptology — CRYPTO’97, volume 1294 of Lecture Notes in Computer
Science, pages 277–291. Springer-Verlag, 1997.

3. M. Bellare and A. Sahai. Non-malleable encryption: Equivalence between two no-
tions, and an indistinguishability-based characterization. In M. Wiener, editor,
Advances in Cryptology — CRYPTO’99, volume 1666 of Lecture Notes in Com-
puter Science, pages 519–536. Springer-Verlag, 1999.

4. M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing, 13(4):850–864, 1984.

5. D. Boneh. The decision Diffie-Hellman problem. In J. P. Buhler, editor, Proceedings
of the 3rd International Symposium on Algorithmic Number Theory (ANTS-3),
volume 1423 of Lecture Notes in Computer Science, pages 48–63. Springer-Verlag,
1998.

6. J. Boyar. Inferring sequences produced by pseudo-random number generators.
Journal of the Association for Computing Machinery, 36(1):129–141, 1989.



46 Takeshi Koshiba

7. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

8. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In Proceedings of
the 23rd Annual ACM Symposium on Theory of Computing, pages 542–552. ACM
Press, 1991.

9. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000.

10. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT-31(4):469–472, 1985.

11. O. Goldreich. Foundation of Cryptography (Fragment of a Book – Version 2.03),
1998.

12. O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness,
volume 17 of Algorithms and Combinatorics. Springer-Verlag, 1999.

13. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

14. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

15. T. Koshiba. A theory of randomness for public key cryptosystems: The ElGamal
cryptosystem case. IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, E83-A(4):614–619, 2000.

16. T. Koshiba. A new aspect for security notions: Secure randomness in public-
key encryption schemes. In K. Kim, editor, Proceeding of the 4th International
Workshop on Practice and Theory in Public Key Cryptography (PKC2001), volume
1992 of Lecture Notes in Computer Science, pages 87–103. Springer-Verlag, 2001.

17. H. Krawczyk. How to predict congruential generators. Journal of Algorithms,
13(4):527–545, 1992.

18. M. Luby. Pseudorandomness and Cryptographic Applications. Princeton Univ.
Press, 1996.

19. U. M. Maurer and S. Wolf. Diffie-Hellman protocol. Designs, Codes and Cryptog-
raphy, 19(2-3):147–171, 2000.

20. S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryp-
tosystems. SIAM Journal on Computing, 17(2):412–426, 1988.

21. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, pages 427–437. ACM Press, 1990.

22. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In J. Feigenbaum, editor, Advances in Cryptology —
CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages 433–444.
Springer-Verlag, 1992.

23. T. Saito, T. Koshiba, and A. Yamamura. The decision Diffie-Hellman assumption
and the quadratic residuosity assumption. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, E84-A(1):165–171, 2001.

24. J. Stern. Secret linear congruential generators are not cryptographically secure.
In Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer
Science, pages 421–426. IEEE Computer Society Press, 1987.

25. Y. Tsiounis and M. Yung. On the security of ElGamal based encryption. In H. Imai
and Y. Zheng, editors, Proceedings of the 1st International Workshop on Practice
and Theory in Public Key Cryptography (PKC’98), volume 1431 of Lecture Notes
in Computer Science, pages 117–134. Springer-Verlag, 1998.



On Sufficient Randomness for Secure Public-Key Cryptosystems 47

26. A. C. Yao. Theory and applications of trapdoor functions. In Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science, pages 80–91.
IEEE Computer Society Press, 1982.


	On Sufficient Randomness for Secure Public-Key Cryptosystems
	1 Introduction
	2 New Framework
	2.1 R-sequence for Random Inputs to Encryption Algorithms
	2.2 Security Notions in the New Framework

	3 Results
	3.1 Separation Results
	3.2 Sufficient Condition for the Equivalence
	3.3 Multiplicity

	4 Application
	5 Concluding Remarks
	References


