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1. Introduction. The origin of the present investigation goes back 

to two lectures presented by Jean Favard [9,10], the first of which the 

birthday celebrant as well as the authors were fortunate enough to be 

able to attend at the Oberwolfach Conference on"Approximation Theory" 

in 1963. A first formulation of the problem maybe stated as follows: 

Let X be an arbitrary (real or complex) Banach space and [X] be 

the Banach algebra of all bounded linear operators of X into itself. Let 

be a strong approximation process (on X for p •‡),i.e.,

(1.1)

Let be a further strong approximation process. The 

problem is to find direct estimates between thequantities ||T(p)f-f|| 
and ||G(P)f-f|| thus to establish, for instance, the existence of a con-
stant A>0 such that

(1.2)

In this event, the process {T(p)} is said to bebetter than {G(p)}. If 

{T(p)} is better than {G(p)} and the latter is in turn better than {T(p)}, 
then the processes are said to be equivalent, in notation

First contributions of the participants of the two Favard lectures 
to this problem have been made by Shapiro [17], Boman-Shapiro [4], and 
the authors [6] (compare also the comments given in [5; p. 507]). Whereas 
in [4,17] the concrete case of approximationprocesses representable as 
Fourier convolution integrals of Fejer's type is considered in Euclidean 
n-space (or n-dimensional torus), in [6] theproblem is discussed in the 
setting of abstract filbert spaces. 

In this paper the problem is studied in the setting originally envisaged

t This author was supported by a DFG fellowship.
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by Favard [9,10]. Thus the approximation processes in question will be 

given as summation processes of Fourier expansions corresponding to 

general decompositions (cf. [12; p. 86]) of Banach spaces. The proof of 

the general comparison theorem to be presented will depend upon a basic 

uniform multiplier condition (see (2.8)). Conditions of this type were 

studied in some basic work by G. Sunouchi [20] in connection with the 

related saturation problem for summation processes of (trigonometric) 

Fourier series, particularly employing the uniform quasi-convexity of 

scalar sequences. 

To this end, Sec. 2 gives the formal definitions as well as the com-

parison theorem. To deal with condition (2.8), Sec. 3 studies sufficient 

conditions upon multiplier classes in connection with the uniform bounded-

ness of the partial sums or of the Cesaro meansof the expansion of f. 

The final section is devoted to applications. 

The authors wish to thank Ivan Singer, Bucarest, for an interesting 

discussion during the occasion of the Oberwolfach Conference on "Linear 

Operators and Approximation", August 1971. 

2. A comparison theorem. Denote by f, g,•c•@ theelements of the 

Banach space X with norm ||• ||, and by X* its dual; further, let Z, P,N 

be the sets of all, of all non-negative, of allpositive integers, respective-

ly. Let {Pk}•‡k=0 k be a total sequence of mutually orthogonal continuous 

projections on X, i.e., i) Pk•¸[X] for each k•¸P, ii) Pkf=0 for all k•¸P 

implies f=0 (total), iii) PjPk=ƒÂjkPk,ƒÂjk being Kronecker's symbol 

(orthogonal). Then with each f•¸X one may associate its (formal) Fourier 

series expansion

(2.1)

With s the set of all sequences of scalars,ƒ¿•¸s is called a 

multiplier for X (corresponding to {Pk}), if for each f•¸X there exists an 

element fƒ¿•¸X such that for all k•¸P, thus

(2.2)

Note that fƒ¿ is uniquely determined by f since{Pk} is total. The set of 

all multipliers is denoted by M=M(X;{Pk}). Withthe natural vector 

operations, coordinatewise multiplication and norm

(2.3)

M is a commutative Banach algebra containing the identity {1}•¸s. An 

operator Te [X] is called a multiplier operatorif there exists a sequence
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ƒÑ•ş such that for all f•¸X, k•¸P, i.e., one has the formal 

expansion

(2.4)

Thus, by definition, with each multiplier operator T there is associated 

a multiplier sequence ƒÑ•¸M and vice versa, andsince by 

definition (cf. (2.3)), M can be identified with the subspace of multiplier 

operators in [X]. 

REMARK. The expansion (2.1) represents a slightgeneralization of 

the concept of Fourier series in a Banach spaceX associated with a 

total, biorthogonal system {fk,fk*}. Here {fk, fk*} consists of two sequences 

{fk}•¼X, {fk*}•¼X*  such that i){fk*} is total,i, e., fk*(f)=0 for all k•¸P 

implies f=0 and ii)for all j, k e P. Then (2.1)and (2.4) read

(2.5)

respectively; Pk(X) is the one-dimensional linear space spanned by fk. 

For these definitions and results compare Marti[12; p. 86 ff], see also 

Singer [18; pp.1-49], Milman [13]. 

Denoting the null manifold of a linear operatorT by 

and the identity mapping of X into X by I, we may 

formulate 

THEOREM 2.1. Let {T(p)}, {G(p)}•¼[X] be two families of multiplier 

operators with associated multiplier sequences {ƒÑk(p)},{ƒÁk(p)}, respectively. 

Let

(2.6)

Furthermore, if,p>0, 
be defined by

and assume ƒÂ(p) to be a multiplier for each p >0. Then, for fixed p>0,

(2.7)

If, furthermore, there exists a constant A>0 such that

(2.8)

uniformly for all p>0, then the process {T(p)} is better than {G(p)}.
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PROOF. Let f•¸X be arbitrary and; then

(2.9)

If k•¸G(p), then, and (2.9) holds trivially. 

Thus with multiplier operator UƒÂ(p)associated with ƒÂ(p)•¸M one has

for each f•¸X, p>0 since {Pk} is total. This completes the proof. 

Obviously, (2.6) is natural for an estimate of type (1.2) and easy 

to verify. On the other hand, the multiplier condition, in particular 

the uniform one (2.8), is strong and intricate;its verification in the 

applications is the actual problem. Therefore the next section is devoted to 

establishing convenient criteria concerning (uniformly bounded) multipliers. 

3. Some multiplier classes. By the representation (2.2) it is almost 

obvious that a necessary condition for a e s tobe a multiplier is the 

boundedness of the coefficients ƒ¿k, i.e.,that

In the case of a total biorthogonal system {f k,fk*} with {fk} being an 

unconditional basis for X the converse statement l•‡•¼M is also valid. 

In this instance,ƒ¿•¸l•‡ is a necessary and sufficient condition for a e s to 

be a multiplier ([18; p. 484], [12; p. 110]). 

But the case of unconditional bases correspondsto a very particular 

situation in the applications. Therefore one makes use of weaker con-

ditions upon {Pk} in connection with a characterization of its multiplier 

class. To this end, consider the nth partial sum operator Sn defined by

(3.1)

and assume that Sn is uniformly bounded in n, i.e.,

(3.2)

the constant B being independent of n•¸P and f •¸X. Let us note that 

in this case {Pk(X)} is called a Schauder decomposition of X if (addi-

tionally) the linear span of is dense in X (see[12; p. 89]). 

Then it is known [12; p.109] that with,k•¸P,

(3.3)

is continuously embedded in the multiplier class corresponding to the 
Schauder decomposition. But the density of the linear span of {Pk(X)}
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is not essential as the following theorem shows; its proof being standard 

is only given for the sake of completeness. 

THEOREM 3.1. Let be a total sequence of mutually 

orthogonal projections and let satisfy (3.2). Then every 

ƒ¿•¸bv is a multiplier and

(3.4)

PROOF. For each f•¸X set

where, k•¸P. Then f a exists in X since 

by (3.2)

Thus it remains to show that. But this follows since for 

Pk•¸[X] one has PnSkf=Pnf if k•†n and zero otherwise, and therefore

REMARK. In the case of a total biorthogonal system {fk,fk*} in X, 

{fk} being fundamental in X (i.e., the linear combinations of fk are dense 

in X), it is clear by the Banach-Steinhaus theorem that (3.2) is equivalent 

to the assumption that {fk} is a Schauder basis, i.e., for every f•¸X

Then Theorem 3.1 as well as its converse is contained in [18; p. 40]. 
Concerning this statement for Schauder decompositions see e.g. [12; p. 109]. 

However, also the uniform boundedness (3.2) of the partial sums is 

quite restrictive for the applications. In order to replace this assump-
tion by a weaker one, let us introduce the nth Cesaro mean operator 

(of order 1)

(3.5)

and assume that an is uniformly bounded in n•¸ P, i.e.,

(3.6)

the constant C being independent of n•¸P and f •¸X. Now results of 

the theory of trigonometric series induce one to examine the set of
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bounded, quasi-convex sequences

(3.7)

where

THEOREM 3.2. Let {Pk}•¼[X] be a total sequence of mutually or-

thogonal projections and let the Cesaro means (3.5) satisfy (3.6). Then 

every ƒ¿•¸bqc is a multiplier and

(3.8)

PROOF. For each f•¸X set

where, k•¸P. Then fƒ¿ exists in X since by (3.6)

Thus it remains to show that. But this follows since for 

Pn•¸[X] one has if k•†n and zero other-

wise, and hence

REMARK. In case of a total biorthogonal system {fk,fk*} in X, {fk} 

being fundamental in X,(3.6) is equivalent to the statement that {fk} is 

a Cesaro basis, i.e., for every f•¸X

In this case Theorem 3.2 states that bqc is contained in the multiplier 

class associated with {fk,fk*}; the converse direction, namely bqc being 

contained in the latter multiplier class implies that {fk} is a Cesaro 

basis, is shown by Kadec [11]. 

Concerning connections between the various multiplier classes one 

has in the sense of continuous embedding. For, if ƒ¿•¸by, 

then, and thus. If ƒ¿•¸bqc, then 

, and hence.This implies

thus. For more general results in this direction see [7].
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Let us recall that our main interest in this section lies in furnishing 

us with sufficient criteria for a uniform bound(in p>0) of the multipliers 

involved in the comparison Theorem 2.1. In general, the problem is very 

difficult on account of the complex structure of the multipliers. There-

fore we shall restrict ourselves to the particular, but nevertheless widely 

applicable case that the family {ƒÑ(p)}p>0 is of Fejer's type, i.e.,  

for some function t(x) defined on [0,•‡). Introducing BV[0,•‡) as 

the set of functions of bounded variation on [0,•‡) one obtains 

LEMMA 3.3. Let be a family of sequences for which 

there exists a function t(x)•¸BV[0,•‡) such that for all 

k•¸P, p>0. Then z(p)•¸by for each p>0 and

(3.9)

Indeed, for any n•¸P and p>0

Since obviously uniformly for p>0, one has by 

Theorem 3.1 

COROLLARY 3.4. Let be as in Lemma 3.3 and {Pk} as in 

Theorem 3.1 satisfying (3.2). Then {ƒÑ(p)}p>0 is a family of uniformly 

bounded multipliers. 

For the analogous result in case of bounded, quasi-convex sequences 

consider the space BQC of bounded, quasi-convexfunctions t(x) defined 

on [0,•‡). BQC[0,•‡) consists of bounded continuous functions t which 

are locally (i.e. on every compact subinterval)absolutely continuous on 

(0,•‡) and whose derivatives t' are locally ofbounded variation* on (0,•‡) 

such that. 

LEMMA 3.5. Let be a family of sequences for which 

there exists a function such that for all 

k•¸P, p>0. Then ƒÑ(p)•¸bqc for each p>0 and

(3.10)

* In many cases of interest t' is furthermore continuous on (0,•‡), except perhaps for 

a finite set of discontinuities of the first kind, and absolutely continuous in every bounded 

subinterval of (0,•‡) which does not contain any of these points. Then is 

satisfied if.
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PROOF. In view of the hypothesis and the definition of BQC one 

has for any k•¸P

Hence, for arbitrary n•¸P and p>0

COROLLARY 3.6. Let be as in Lemma 3.5 and {Pk}as in 
Theorem 3.2 satisfying (3.6). Then is a familyof uniformly 
bounded multipliers. 

4. Applications. 

4.1 Typical and Abel-Cartwright means. Let X bea Banach space 
and {Pk} be a sequence of projections as specified in Sec. 2. We would 
like to compare the following means of the series (2.1): The typical 
means of order k>0

(4.1)

with the Abel-Cartwright means of order k>0

(4.2)

Obviously, there holds equality in (4.1) sincethe sum is finite. In order 

to show that Rk(n), Wk(n) are multiplier operators of type (2.4) with 

discrete parameter p=n+1, n•‡, assume that the Cesaro means ƒÐn 

are uniformly bounded (see (3.6)). Then, sincerK, wK•¸BQC (cf. [5; Sec. 

6.4]), an application of Corollary 3.6 in particular gives that RK(n), 

Wk(n)•¸[X] are multiplier operators of type (2.4). To obtain an estimate 

of type (1.2) one may apply Theorem 2.1. Concerning condition (2.6), if 

,then

and hence Pkf=0 for every k•¸N. Since {Pk} is total this implies 

f=P0f, and since the same reasoning applies toRk(n), it follows that
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In order to verify the uniform multiplier condition (2.8) observe that in 

case of the typical and Abel-Cartwright means the corresponding sequences 

{ƒÂ(p)} are of Fejer's type so that one has to examine dk(x), [dk(x)]-1 where

By an elementary calculation one has dk(x), [dk(x)]-1•¸BQC for each k>0 

so that by Corollary 3.6 the uniform multipliecondition (2.8) is verified. 

Analogously one has if k2>k2>0. Thus 

THEOREM 4.1. Let X be a Banach space,be a total

sequence of mutually orthogonal projections andlet the Cesaro means ƒÐn, 

of (3.5) satisfy (3.6). Then, for each k>0, thetypical and the Abel-

Cartwright means are equivalent, i.e.,

If k2>k1>0 then Rk2(n) is better than Rk1(n), i.e., there exists a constant 
D such that

for all f•¸X, n•¸P.

4.2 Trigonometric system. Let,1•…p•…•‡, or C2ƒÎbe the 

Banach space of 2ƒÎ-periodic functions with standard norms ||•E||x2ƒÎ 

ess. sup |f(x)|, max |f(x)|,

respectively. Defining {Pk} by

(4.3)

f(k) being the usual Fourier coefficients

it is obvious that {Pk} is a sequence of orthogonal projections which are 

total on account of the uniqueness property forFourier coefficients. The 

famous theorem of M. Riesz states that is uniformly bounded 

in n provided 1 <p<•‡, but not for p=1 and p= •‡ . Furthermore, 

the theorem of Fejer implies the uniform boundedness of the Cesaro 

means ƒÐn in every X2ƒÎ which in particular shows that (3.6) does not
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imply (3.2). 
Rewriting R,(n) and Wk(n) in the usual fashion

(4.4)

(4.5)

one obtains from Theorem 4.1

COROLLARY 4.2. Let X2ƒÎ and {Pk} be given as above . Then

i) 
ii)

Let us note that Corollary 4.2 does not assert the convergence of Rk(n)f 

(or of Wk(n)f) towards f as n•‡. This convergence is only guaranteed 

if is dense in X2ƒÎ, i.e. for Lp2ƒÎ,1•…p<•‡
, and C2ƒÎ. Hence 

{Pk(Lp2ƒÎ)} is in particular a Schauder decomposition of Lp2ƒÎ 1<p<•‡. 

Let us also mention that the above equivalence relations imply some 

particular results of Zuk[21] who obtained these with the aid of estimates 

in terms of moduli of continuity. 

REMARK. Formulae (4.3) and (2.4) indicate that our approach only 

admits symmetric operators in Lp2ƒÎ,1<p<•‡. Butit is immediately 

clear that this is not necessary. Indeed, a sufficient multiplier condition 

corresponding to Theorem 3.1 for a two-a-way sequence of pro-

jections reads for.

This condition was weakened by Marcinkiewicz (cf.[1]) to

for a discrete analog see Sunouchi [19]. 

Now let us briefly indicate the connection on X2ƒÎ
, between multiplier 

operators and operators of Fourier convolution type. 

For k=1 the operator Rk(n) coincides with the Cesaro mean operator 

ƒÐn and admits the closed representation

which is Fejer's singular integral. Wk(n) reduces for k=1 to the
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classical Abel means and also admits the closedrepresentation

which is the singular integral of Abel-Poisson.Thus Corollary 4.2 states 

the equivalence of the (approximation) processes ƒÐn and Pr on X2ƒÎ. 

Generally, operators of type (2.4) in X2ƒÎ may be reformulated as Fourier 

convolution type integrals,

with appropriate "2ƒÎ-periodic" kernel ƒÊ. 

4.3 Legendre polynomials. Let X=Lp(-1,1), 1•…p <•‡, or C[-1,1] 

with norm ||• ||

respectively. Consider the Legendre polynomialsdefined by

Since

the projections {Pk},

are mutually orthogonal. 

Pollard [16] has shown that the corresponding partial sum operators 

{Sn} are uniformly bounded and approximate f•¸ Lp(-1,1) provided 4/3< 

p<4. On the other hand, Askey-Hirschman [2] have proved that the 

Cesaro mean operators {ƒÐn} are uniformly bounded and approximate f•¸X 

for every X. Thus, {Pk} is total and is dense in X; in 

particular, {Ck} is a Schauder basis in Lp(-1, 1), 4/3 <p<4, and a 

Cesaro basis in every X. Hence, on account of Theorem 4.1 

COROLLARY 4.3. Let X, {Pk} be as above and Rk (n), WKk(n) be given 

by (4.1), (4.2), respectively. Then, for each f•¸X,

i) 
ii)
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Statements analogous to this Corollary may be derived for ultra-

spherical polynomials of order ƒÉ•†0

(4.6)

Mk,ƒÉ being a suitable constant. They coincide for the particular instance 

ƒÉ=1/2 with the Legendre polynomials, for ƒÉ=0 with the Tchebychef 

polynomials of the first kind, and for ƒÉ=1 with the Tchebychef poly-

nomials of the second kind. Furthermore, one has with respect to the 

weight function (1-x2)ƒÉ-l/2

Thus, the projections {Pk},

(4.7)

are mutually orthogonal in

(4.8)

Since {CƒÉk} is a Schauder basis in XƒÉp if ,(2ƒÉ+1)/ƒÉ) 

(cf.[16]) and since {CƒÉk} is a Cesaro basis inXƒÉp if, 

(2ƒÉ+1)/(ƒÉ-1)) for ƒÉ•†1 and for all p, l•…p< •‡, if 0•…ƒÉ<1 (cf.[2]), 

all the other properties required for {Pk} are satisfied. 

Let us mention that for ultraspherical polynomials there exists a 

strengthening of Theorem 3.1 analogously to theMarcinkiewicz result, 

due to Muckenhoupt-Stein [15]: ƒ¿•¸s is multiplier in XƒÉ'p,

if

It would be interesting to know if these conditions are also sufficient in 

the Laguerre and Hermite series case, and how they may be related to 

the multiplier problem of general expansions oftype (2.1) in case of 

strong convergence of the partial sums. 

4.4 Laguerre series. Let X=Lp(0,•‡), 1•…p<•‡, or C[0,•‡) with 

and consider the Laguerre polynomials of order 

ƒ¿ >-1 defined by

Setting
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it is known that ƒÓk(ƒ¿) is an orthonormal system on (0,•‡). Thus the 

projections

are mutually orthogonal. Furthermore, Askey-Wainger [3] for ƒ¿>0 and 

Muckenhoupt [14] for ƒ¿>-1 have shown that the partial sums are 

uniformly bounded and converge to f for 4/3<p< 4. Furthermore, 

Poiani [15a] has recently shown the uniform boundedness of the Cesaro 

mean operators for 1•…p•…•‡ if ƒ¿>0, and if 

-1<ƒ¿•…0. Hence 

COROLLARY 4.4. Let {Pk(ƒ¿)} be as above, and Rk(n), Wk(n) be given by 

(4.1), (4.2) respectively. Then

i) 
ii)

for all X-spaces in case ƒ¿>0, otherwise restricted as indicated above. 

A statement analogous to Corollary 4.4 may be formulated for the 

Hermite series case. 
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