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On Sums of Products of Horadam Numbers
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ABSTRACT. In this paper we give formulae for sums of products of two Horadam type
generalized Fibonacci numbers with the same recurrence equation and with possibly dif-
ferent initial conditions. Analogous improved alternating sums are also studied as well
as various derived sums when terms are multiplied either by binomial coefficients or by
members of the sequence of natural numbers. These formulae are related to the recent
work of Belbachir and Bencherif, Cerin and Cerin and Gianella.

1. Introduction

The generalized Fibonacci sequence {w,} = {wy,(ag, bo; p, q)} is defined by
wo = ag, wi=by, Wnp=pWp-1—qUWn—2 (n>2),

where ag, by, p and ¢ are arbitrary complex numbers, with ¢ # 0. The numbers w,,
have been studied by Horadam (see, e.g. [10]). A useful and interesting special cases
are {U,} = {w,(0, 1; p, ¢)} and {V,,} = {w,(2, p; p, ¢)} that were investigated by
Lucas [11].

For integers a > 0, ¢ >0, j >0,b>0and d > 0, let P; = Ug14;Uctq,

Qj =Ustbj Vera; and Rj; = Voypj Verqj. In [1] some formulae for the sums
Z?:O P, Z?:o Qj> Z;'Lzo Rj, Z?:o (=1)! P, Z;'Lzo (-1)7Q; and Z?:o (—1)7 R,
have been discovered in the special case when b = d = 2 and ¢ = £1. Even in these
restricted case they gave unification of earlier results by Cerin and by Cerin and
Gianella for Fibonacci, Lucas, Pell and Pell-Lucas numbers (see [3] — [9]).

In [2] the author eliminated all restrictions from the article [1] on b, d and ¢ (ex-
cept that ¢ # 0). Some other types of sums have also been studied like the improved
alternating sums (when we multiply terms by increasing powers of a fixed complex
number), the sums with binomial coefficients and sums in which we multiply terms
by increasing natural numbers.

The goal in this paper is to extend these results to Horadam type generalized
Fibonacci numbers. Even in this more general case these sums could be evaluated
using the sum of a geometric series.
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2. Sums of products of two Horadam numbers

We first want to find the formula for the sum

n
Uy = Z Watbj(ao, bo; P, q) Wetaj(co, dos P, q)
=0

when ag, bg, co, dg, p and ¢ # 0 are complex numbers andn > 0,a >0,¢> 0,0 >0
and d > 0 are integers.

A - A

Let o and 3 be the roots of 22 — px + ¢ = 0. Thenoz:l% and g = pT’

where A = /p2 —4q. Moreover, a —f=A, a+ B =p, a8 =q and the Binet

forms of w,,, U, and V,, are

b _ n _b n n __ 2An
w, = ( 0 aOB)a +((L00l O)ﬂ ’ Un _ a B , Vn :an+ﬂn’
a—pf a—pf
if a # 3, and
w,, = a”_l(aoa +n(bp — ap @), U, =na""1, Vo =2a",

if a=p.

Let Al :bo—aoa, A2 :dQ_COOé, Bl :aoﬁ—bo, B2 :Coﬂ—do. Let
E=a"" F=a"p? G=0a?pland H = . Let e = a®t¢ B, By, f = a® 3¢ A By,
g=a‘B*A; By and h= 3T¢A; A,. When E # 1, for any integer n >0, let

Entl 1
E, = -1 We similarly define F,, G,, and H,,. On the other hand, when
ab(n+1) _ Bb(nJrl) ab(nJrl) _ ﬂb(n+1)
and b} =

abn(ab — Bb) Bon(ab — Bb)
We similarly define d,, and d;. For any integer n >0, let A\, =n+1. Let
T = aote2,

Let Cl :A1a+a0a, CQ = AQC"‘COO{, K1 = bdAlAQ, Kg = 0102 and
Koy =0A1Cy+dA>Cy. Let Ky = K1 + Ky + K3.

Let K, M, N and Pben(2n+1) K; +3n Ky + 6 K3,

ab # b, for any integer n > 0, let b,, =

2B — (202 +2n— 1) E"? + (n+ 1)2 B — B(E+ 1),

nE"S —Q2n+ 1) E"? + (n+1)E" + B(E - 1),
En+3 _ 2En+2 4 En+1 o (E o 1)2.

KT
Theorem 1. (a) When A =0 and E =1, then ¥y = u

6
T[K M+ Ky, N + K3 P]
(B —-1)° '

(b) When A =0 and E # 1, then Uy =
Proof. (a) Recall that when A = 0, then

Watvj(ao, bo; p, q) = a* IV Ay j+ C]
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and
wetaj(co, bo; p, q) = a“ T [d Ay j+ Ca].

Since, E = a®t? = 1, we see that the product

Watb5(a0, bo; P, q) Weraj(co, do; p, q)

is equal to
T [Kij>+Kyj+Ks].

n(n+1) n(n+1)(2n+1)

I and Z?:O j2 = 6 ) lt

From Z;'L:o l=n+1, Z;'L:o Jj=
follows that ¥ has the above value.
(b) Since A = 0, the product

Wartb (a0, bo; P, q) Werdj(co, do; P, q)

is equal to
TE [Kij>+Kyj+Ks].
T W oo N Wow M
from 2o B = gy 2o I = gy and 2o PP T
it follows that ¥, has the above value. O

The following theorem covers for the sum ¥; the cases when A # 0. It uses
Table 1 that should be read as follows. The symbols B and [J in column E mean
E#1 and E=1. In column b they mean o’ # 3* and o’ = 3°. In columns F,
G, H and d they have analogous meanings. The third subcase should be read as
follows: When (A #0), E=1and a® = 8°, then G =1 and H = F and for F # 1
the product A% ¥, is equal to A\, (e +g) + F,, (f + h).

Theorem 2. When A # 0, then Table 1 gives the value of A2U,. In all other
cases the product A2y is equal to \, (e + f + g+ h).

Proof of row 1. When A # 0, we have

[a® By (o) + B AL (8°) ]

B =

Watb (@0, bo; P, q) = —

and

wc+dj(COa do; p, q) = — [Oéc By (ad)j + B¢ Az (ﬂd)j} .

Hence, the product wqs (a0, bo; p, ) Wetaj(co, do; p, ) is equal to

eEl  fFI  gG' hHI
Az P Az TAr T AT

From E?:o Ei=E, weget AU, =eE, + fF,+9gG,+hH,. O
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E|F[G|H]b]d A2y,
1 |m|m e . Ene+FE,f+Gng+ Hyh
2 10| ”m H N e+ F,f+b,g+Hph
3|O/m|X]|F O (e +g)+ Fn(f +h)
4 | O R B \e+d,f+Gog+H,h
50| X | m|G O] e+ f)+Gnlg+h)
6 | 0|0 X (see 5)
7| O O X (see 3)
s [ O O B M\(e+g) +di(f+h)
9 | O 0O B MN(et+h)+d,f+dig
0/ w0 . [ Ene+ M f+Gng+byh
11|m0OlF|X|O En(e+g)+ M\(f +h)
12 O/m|m B det+ N f+Grg+Hyh
B X|[O|/m|G O] Mle+f)+Gnlg+h)
14 Ol 0O B diet+ ) N(f+g) +dnh
15 O O X (see 11)
16 O O ] di(e+g) +M\(f+h)
17 | BEEEE BN | bye+EFnf+M Mg+ Hph
B |IX|(m|[O|F|O Mle+g)+F,(f+h)
9/m |0 B E.et+tF,f+M\g+d,h
20/m|F |0 KX O E.le+f)+Mlg+h)
21 OololmX bi(e+ f)+ (g +h)
22 [ m CREERE Epe+b f4+Gng+\h
2| mM|X|[E|[O[DO En(e+9) +M\(f +h)
24 | m | | O B Eet+F,f+dig+Mh
25 W | F | X | O O] Enle+f)+A(g+h)

Table 1: The product A2 ¥; when A # 0.
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Proof of row 2. When A # 0 and E = o**? =1, we get

e fFI g (8 hHI
Wa+b (a0, bo; P, q) Werdj(co,do; P, q) = Az + AT + AZ (ab + N

b\ J
From 7 (1=, >0, FJ = F, and > im0 <ﬁb> = b, (for a® # %), it follows
o

that A2U; =e), + fF, +gb, +hH,. O
Proof of row 3. When A # 0, E = o*% =1 and o’ = 3, then

G=pal=ata’=E=1
and H = p° 8% = o 8% = F. Hence,

etg (f+h)FI
wa+bj(a07 bo; p, Q) chrdj(CO» do; p, CI) = A2 + ( AQ) .

From Y77 (1=, and Y7 F7 = F, (for F # 1, of course), it follows that the
product A2 ¥y is equal to (e + g) A, + (f + h) F,. O

The missing case in the Table 1 after the third row is clearly when F =1,
a® = 8% and F = 1. The above product is

etf+g+h
’(U(L+bj(a07 bOa P, Q) w0+dj(60, do7 D, q) = T7

so that A2W; = \,(e+ f+ g+ h). The selection p=0, ¢g=—1, b=2 and d = 2
shows that this case can actually happen.

Vot AU i gn _ Vo= AU

Notice that a™ =
otice that o 5 5

for A#0 and o" =" =

U, v .. .
Ti = 7" for A = 0. Hence, it is clear that each of the above expressions for the

n

sum ¥y could be transformed into an expression in Lucas numbers U,, and V,, (or

U, and V,,). In most cases these formulae are more complicated then the ones given

above. This applies also to other sums that we consider in this paper.

3. Sum with binomial coefficients

In this section we consider the sum

n
n
Uy = Z (]) Watb (a0, bo; P, q) Weraj(co, do p, q),
j=0

when aq, by, cg, dg, p and g # 0 are complex numbers and n > 0,a > 0,c¢>0,b >0
and d > 0 are integers.
Let VandUbenE [(nE+ 1)Ky + (E+1)Ks] + (E+ 1) Ky and E K4 + K.



488 Zvonko Cerin

Theorem 3. (a) When A =0, then

T Ks, ifn=0,
Uy = TU, ifn=1,
T(E+1)"2V, ifn>2,

(b) When A # 0, then

(E+D)"e+ (F+ )" f+(G+ )" g+ (H+ )" h

U, = >
Proof. (b) Since
n n\ eE! + fF/ +9Gi +hHI
i Wa+b (a0, bo; P, @) Werdaj(co, do; p, q) = p A2 )

from 37, (%) B/ = (E + 1), it follows that W5 indeed has the above value. [

4. The improved alternating sums, I

In this section we consider the sums obtained from the sums ¥; and ¥4 by
multiplication of their terms with the powers of a fixed complex number k. When
k = —1 we obtain the familiar alternating sums. More precisely, we study the sums

n
U3 =Y K wais;(ao, bo; p, q) weraj(co, do: p, q),
i=0

n
- (n
U= K (j) Wa+tb (@0, bo; P, q) Wetaj(cos dos p, q),
=0

when ag, bg, o, dg, p and g # 0 are complex numbers and n > 0,a > 0,¢>0,b >0
and d > 0 are integers.

Let E=katt? F=ka®B G=ka?p’ and H = k3T When E # 1, for

n+1 _ 1

-1 We similarly define F,,, G,, and H,.

In this section we can assume that k # 1 and k # 0 because the case when k = 1
was treated earlier while for £ = 0 all sums are equal to zero.

With this new meaning of the symbols E, F, G and H we have the following
result.

any integer n > 0, let E,, =

Theorem 4. (a) The values given in Theorems 1 and 2 express the sum V3. In
particular, when A # 0, then the Table 1 gives the values of A? V3. In all other
cases the product A2 V3 is equal to \,(e + f + g+ h).

(b) The values given in Theorem 8 for the sums Vo express also the sum Uy.



On Sums of Products of Horadam Numbers 489

Proof. (b) Since

(n n\ eBEl+ fFi+gGI+hHI
K\ ) wats j(ao, bo; p, @) Wetdj(cos dos ps q) = | . f Qg ;
J J A
from 377, (%) B/ = (E+1)", it follows that W, indeed has the same expression
as the sum Ws. O

5. Terms multiplied by natural numbers

In this section we study the sums

Vs = Z (J + 1) watpj(ao, bo; p, @) Wetaj(cos do; p, q),
=0

M:

) n
\IJG = (.7 + 1) (]) wa+bj(a07 b07 D, q) wC+dj(607 dOa b, Q)»
§=0
when ayg, by, co, dg, p and g # 0 are complex numbers and n > 0,a > 0,¢>0,b >0
and d > 0 are integers.
Let E =o't F=a*B%, G =a?pb, H=p" Let e = % By By,
f=a*BAy By, g=a°B* Ay By, h=3%t¢A; A>. When E # 1, for any integer
1 En+2 _ 2 En+1 1

n>0,let B, = (n+1) & (nl—)l; ) + . We similarly define F,,, G,, and
H,. On the other hand, when a® # 3, for any integer n > 0, let

ab(n+2) + (TL 4 1)Bb(n+2) _ (n + 2)ab ﬁn-i—l
O(bn(Oéb _ Bb)Q

b, =

and

5b(n+2) + (n + 1)ab(n+2) _ (n 4 2)Bb an Tl

Bon(ab — Bb)2
1 2
We similarly define d,, and d}. For any integer n > 0, let \,, = %

Let M and N denote n E"3 [n(n+1)E — (3n%+6n—1)] + (n+2)
B! [(3n2+3n—2)E— (n+ 1)2} Y2E(2E+1) and
(E—-1)[n(n+1)E"3—2n(n+2) E"2+(n+2) (n+ 1) E"*'—2F] .

by =

Theorem 5. (a) When A =0 and E = 1, then the sum U5 is equal to

AT [n(3n+1) Ky +4n Ky + 6 K3 ]
; .

(b) When A =0 and E # 1, then the sum U5 is equal to

T
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Proof. (b) Since A =0, we have

(4 + 1) watbj(ao, bo; P, q) Wetaj(co, do; p, q)
=@+ (@7 [bAL+C) (T [d Ay + Ca))
=(+1)TE [Kij>+K2j+Ks3].
N

From Z;'L:O (+1)E = E,, Z;'L:O J+1)E = (E-Dt and
2 .
V) = ——
> G+ E-0
7=0
it follows that W5 has the above value. O

Theorem 6. When A # 0, then the Table 1 gives the values of A2 Us. In all other
cases the product A% W5 is equal to \,(e + f + g+ h).

Proof of row 1 in Table 1 for ¥5. When A # 0, we have
(J + 1) Wa+b (a0, bo; p; q) Wetaj(cos dos p, q)
1 . ) 1 ) )
=U+1 (A [By a7 4 44 5““”]) <A [Bo a4 + A, /BCerJ])

. eEl  fFI  gG'  hHI
:(J+1)(A2 + A2 + A2 + A2>'

From Y77 (j + 1)E' = E,, we get A2VUs =¢FE, + fF, +9G, + hH,. O

For any integer n > 0,let E = (n+ 1) E+ 1, E* = E (E+1)"~!. We define
EFrx, Gy, H:, Fr*, Gr* and H'* similarly. Let

M=nE(E+1)""%E3, ,+E, B} ), N=nBE(E+1)"(E;+1).
Theorem 7. (a) When A =0, then

T Ks, ifn=0,
¥, = T[2E K, + K3], ifn=1,
T[3E*(Ky+ K2 +3K1)+4FEK,+ Ks], ifn=2,
T[MK,+ NKy+ E*Ks], ifn>3.

(b) When A #0, then A2 Wg = EX* e + F* f + G5 g + H* h.
Proof. (b) Since

. n
(J+1) <j) Watb (a0, bo; P, q) Weraj(co, do; p, q)

1 . ) ) )
:E(j+1) <7;> (eE) +fF +9gG +hH),
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from 37 (7 +1) (j) B = E};*, it follows that A® Ws indeed has the above value.
g

6. The improved alternating sums, II

In this section we study the following sums obtained by multiplying the terms
of the sums U5 and Wg with the powers of the fixed complex number k. Of course,
for k =1, we get the sums U5 and Ug from the sums ¥, and Us.

Ur =k (j+ 1) wayn (a0, bo; P, @) Weyaj(co, do; p, q),
=0

n o n
Us=> K (j+1) <J> Wa+b (a0, bo; P, ) We+aj(co, do; P, q),
=0

when ag, by, co, dg, p and g # 0 are complex numbers and n > 0,a > 0,¢> 0,0 >0
and d > 0 are integers.

Let E=kattY F=katp?, G=ka?p’ and H = kB**Y. When E # 1, for
(n+1DE"2 — (n+2)E"H +1
(B —1)?

F,, G, and H,,. On the other hand, when o’ # 3%, for any integer n > 0, we define
b, and b}, as in the previous section. We similarly define d,, and d;,. In this section

1 2
A, is again w
2
Theorem 8. The expressions for Vs in Theorems 5 and 6 describe also the sum

U, (with the new meaning of E, F, G and H).

any integer n > 0, let F, = . We similarly define

Theorem 9. The expressions for Ug in Theorem 7 describe also the sum Vg (with
the new meaning of E, F, G and H).
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