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Abstract. A graph G with p vertices and q edges, vertex set V (G) and edge set E(G),
is said to be super vertex-graceful (in short SVG), if there exists a function pair (f, f+)
where f is a bijection from V (G) onto P , f+ is a bijection from E(G) onto Q, f+((u, v)) =
f(u) + f(v) for any (u, v) ∈ E(G),

Q =

{

{±1, . . . ,± 1
2
q}, if q is even,

{0,±1, . . . ,± 1
2
(q − 1)}, if q is odd,

and

P =

{

{±1, . . . ,± 1
2
p}, if p is even,

{0,±1, . . . ,± 1
2
(p − 1)}, if p is odd.

We determine here families of unicyclic graphs that are super vertex-graceful.

Keywords: graceful, edge-graceful, super edge-graceful, super vertex-graceful, amalga-
mation, trees, unicyclic graphs

MSC 2010 : 05C78

1. Introduction

All graphs in this paper are finite simple graphs with no loops or multiple edges.

A graph G with p vertices and q edges is graceful if there is an injective mapping

f : V (G) → {0, 1, . . . , q} such that f∗ : E(G) → {1, 2, . . . , q} defined by f∗((u, v)) =

|f(u) − f(v)| is surjective. Graceful graph labelings were first introduced by Alex

Rosa around 1967 as a means of attacking the problem of cyclically decomposing a

complete graph into other graphs. A well-known conjecture of Ringel and Kotzig

is that all trees are graceful. Since Rosa’s original article, more than six hundred

papers have been written on graph labelings (see [2]).
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A dual concept of graceful labeling on graphs, known as edge-graceful labeling,

was introduced by S. P. Lo [17] in 1985. G is said to be edge-graceful if the edges

are labeled by 1, 2, . . . , q so that the vertex sums are distinct mod p.

A necessary condition for edge-gracefulness is (Lo [17])

q(q + 1) ≡
p(p − 1)

2
(mod p).

Finding edge-graceful labelings of graphs is related to solving a system of linear

Diophantine equations. In general it is difficult to find an edge-graceful labeling of a

graph. Several classes of graphs have been shown to be edge-graceful [10], [11], [12],

[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]. For a survey of result on these

labelings, see Gallian [2].

Lee [7] conjectured that all odd-order trees are edge-graceful. In [19] the concept

of super edge-graceful graph was introduced to work on this conjecture.

The first author introduced super vertex-gracefulness, a dual concept of super

edge-gracefulness in [8]. Consider a graph G with vertex set V (G) and edge set

E(G), p = |V (G)| and q = |E(G)|. G is said to be super vertex-graceful (in short

SVG), if there exists a function pair (f, f+) which assigns integer labels to the vertices

and edges such that both f : V (G) → P and f+ : E(G) → Q are onto, f+((u, v)) =

f(u) + f(v) where (u, v) ∈ E(G),

Q =

{

{±1, . . . ,± 1
2q}, if q is even,

{0,±1, . . . ,± 1
2 (q − 1)}, if q is odd,

and

P =

{

{±1, . . . ,± 1
2p

}

, if p is even,

{0,±1, . . . ,± 1
2 (p − 1)}, if p is odd.

Figure 1 shows that the star St(4) is SVG. From [8], St(5) is not.

0

−1

−2 2

1−1

−2 2

1

SVG NetSVG

Figure 1

In [8], Lee showed that every graph is an induced subgraph of a super vertex-

graceful graph. From this, one could conclude that there does not exist a Kuratowski
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type characterization for super vertex-graceful graphs. In [9], the first and second

authors considered trees that are SVG. In this paper we will show that any ring-worm

is an induced subgraph of an SVG ring-worm.

The present paper was motivated by the desire to determine the structure of super

vertex-graceful unicyclic graphs. At present, no characterization of SVG unicyclic

graphs is known. An open problem on super vertex-graceful unicyclic graphs is

proposed at the end of the last section.

2. Super vertex-graceful unicyclic graphs of order at most 6

In [8], Lee showed that

Theorem 2.0. If G is an SVG (p, q)-graph with vertex labeling f and degree

sequence {d(vi) : i = 1, 2, . . . , p}, then
∑

(d(vi) − 1)f(vi) = 0.

We can apply this result and exhaustion to show

Theorem 2.1. The unicyclic graph of order 3 is SVG. Both unicyclic graphs of

order 4 are non-SVG. Among the 5 unicyclic graphs of order 5, only three are SVG.

1 0

−1

1

−10

p = 3 p = 4

−2 2

1−1

0

0

2−2

1−1

1 −1

2−2

0

0

2−2

1−1

1

−2

0 2

−1

−1

−2

2

1

0

p = 5

Figure 2
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Theorem 2.2. Among the 13 unicyclic graphs of order 6, only two are SVG.

1

2

−1

−2

−3

3

3

1−3

−1

−2

2

−1 3

−2

−32

1

2

1−3

−23

−1

Figure 3

3. Construction theorems of SVG unicyclic graphs

We can construct certain SVG unicyclic graphs from SVG trees.

Theorem 3.1. Let G be a super vertex-graceful tree of odd order. If f is an SVG

vertex labeling of G, and two vertices u and v have labels f(u) = −f(v), then the

new uncyclic graph obtained by connecting u and v in G is SVG.
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Example 1. The following tree is SVG with 7 vertices. Applying the above

result, we can obtain three SVG unicyclic graphs (Figure 4).

0 −1 2 1 −3

−2 3

−1 1 3 −2

−3
2

0 −1 2 1 −3

−2 3

−1 1 3 −2

−3 2
0

0 −1 2 1 −3

−2 3

−1 1 3 −2

−3
2 0

0 −1 2 1 −3

−2 3

−1 1 3 −2

−3
2

0

Figure 4

For a graph G, we denote by D(G) the resulting graph upon deleting all its ver-

tices of degree one. A caterpillar is a tree T such that D(T ) is a path. Similar to

caterpillars in trees, we introduce the concept of ring-worms among unicyclic graphs.

A ring-worm is a unicyclic graph Un(a1, a2, . . . , an) such that D(Un(a1, a2, . . . ,

an)) = Cn and ai > 0 for i = 1, . . . , n. A ring-worm is shown in Figure 5. We

can view Un(a1, a2, . . . , an) as S1 ∪ S2 ∪ . . . ∪ Sn, where Si is the star with V (Si) =

{ci, xi,1, xi,2, . . . , xi,ai
}, center ci, and ai + 2 edges, and in each case Si shares an

edge with Si+1. The cycle with vertices {c1, c2, . . . , cn} will be called the spine of

Un(a1, a2, . . . , an). This ring-worm has n + a1 + a2 + . . . + an vertices and n + a1 +

a2 + . . . + an edges. Notice that c1 and cn are connected.

c1

c2 c3 cn−1 cn

x1,a1

x1,2
x1,1

x2,a2

x2,2

x2,1 xn,an

xn,2

xn,1

x3,a3

x3,1 xn−1,an−1

xn−1,1

Figure 5

5



Figure 6 shows the two ring-worms U3(1, 2, 3) and U4(2, 2, 2, 2).

c1

c2 c3

x1,1

x2,1

x2,2 x3,1

x3,2

x3,3

U3(1, 2, 3)

c1 c2

c3c4

x1,1

x1,2 x2,1

x2,2

x3,1

x3,2x4,1

x4,2

U4(2, 2, 2)

Figure 6

Extending the definition, we will use [d]b as the notation that b paths of length d

are appended to a vertex of the spine.

Corollary 3.2. The ring-worm U2k+1(1, 1, 02k−1) is SVG for all k > 1.

P r o o f. Let V (P2k+3) = {c1, c2, . . . , c2k+3}. It is shown in [8] that the path Pn

is super vertex-graceful for all odd n > 3. (See Figure 7 for some examples.) By

Theorem 3.1, we obtain the result by joining the vertices c2 and c2k+2. �

P3−1 0 1
−1 1

P51 −2 0 2 −1
−1 −2 2 1

P7−2 1 −3 0 3 −1 2
−1 −2 −3 3 2 1

Figure 7

Corollary 3.3. The unicyclic graph U2k+1([d − 1], [d − 1], 02k−1) formed by ap-

pending a path of length d− 1 to each of two adjacent vertices of the cycle C2k+1 is

SVG for all d > 2 and k > 1.

P r o o f. Let V (P2k+2d−1) = {c1, c2, . . . , c2k+2d−1} and let the path P2k+2d−1 be

labeled as in Figure 7. By Theorem 3.1, we see that U2k+1([d], [d], 02k−1) obtained

by joining the vertex cd with c2k+d is SVG. �

However, a unicyclic graph obtained by appending an edge to a cycle is not SVG.

6



Theorem 3.4. The ring-worm Un(1, 0n−1) is not SVG for all n > 3.

P r o o f. Let V (Un(1, 0n−1)) = {c1, x1,1, c2, . . . , cn}. If Un(1, 0n−1) is SVG with a

SVG labeling f , then by Theorem 2.0, we have 2f(c1)+f(c2)+f(c3)+. . .+f(cn) = 0.

However, we have f(V (Un(1, 0n−1))) = P and so f(c1)+f(x1,1)+f(c2)+f(c3)+. . .+

f(cn) = 0. Subtracting the equations, we obtain f(c1) − f(x1,1) = 0, i.e., f(c1) =

f(x1,1), which contradicts that f is a bijection. Hence the ring-worm Un(1, 0n−1) is

not SVG. �

In [8], it was shown that one could obtain many super vertex-graceful graphs of

odd order by the following construction.

Theorem 3.5. Let G be a super vertex-graceful graph of odd order. If two

edges are appended to the vertex of G with label 0, then the new graph is super

vertex-graceful.

Let (G1, u) and (G2, v) be two graphs with fixed vertices u, v respectively.

The amalgamation of (G1, u) and (G2, v) is the graph which is the disjoint union

of G1 and G2 with u and v identified. We will denote the resulting graph by

Amal((G1, u), (G2, v)). It is obvious that u is a cut-vertex of the amalgamation. We

will leave out u or v if the context is clear.

We can extend the above result as follows:

Corollary 3.6. Let G be a super vertex-graceful graph of odd order and with ver-

tex u labeled 0. The amalgamation Amal((G, u), St(2k, c)) of (G, u) and (St(2k), c),

where c is a center of the star, is super vertex-graceful for all k > 1.

Theorem 3.7. The unicyclic graph Amal(C2n+1, St(2k, c)) is SVG for all n > 1

and k > 1.

4. Super vertex-graceful unicyclic graphs of diameter 2 and 3

Recall that a tree is called a spider if it has a center vertex c of degree k > 1 and

each other vertex either is a leaf or has degree 2. Thus a spider is an amalgamation

of k paths with various lengths. If it has x1 paths of length a1, x2 paths of length

a2, . . ., we denote the spider by SP(ax1

1 , ax2

2 , . . . , axm
m ) where a1 < a2 < . . . < am and

x1 + x2 + . . . + xm = k. (See Figure 8.)

In [8], it was shown that

Example 2. A star St(n) is super vertex-graceful if and only if n is even.
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SP(13)

SP(132231)

Figure 8

We observe that all SVG trees of diameter 2 can be constructed through amalga-

mation of St(2k) and St(2). (See Figure 9 for examples.)

0

−1 −2 1

2

−1
−2 1

2

0

−1 −2 −3 2 1

3

−1 −2
−3 2 1

3

Figure 9

Theorem 4.1. The SVG uncyclic graphs of diameter 2 have the form U3(1
2k, 02)

where k > 1.

P r o o f. We show that the unicyclic graph Amal(C3, St(m, c)) is SVG if and

only if m is even.

If m is even, the result follows from Corollary 3.6. If m is odd, then the graph has

an even number of vertices and edges, and thus 0 can be neither a vertex label nor

an edge label. The center of St(m, c) is adjacent to every other vertex. No matter

what its label is, it must be adjacent to the vertex with its negative label, giving an

edge label of 0. �

Theorem 4.2. The unicyclic graph U3(1
2, 2k) of diameter 3 is SVG for all k > 1.

P r o o f. In [22], we showed that the spider SP(12k, 22) is SVG. Applying Theo-

rem 3.1, we conclude that U3(1
2, 2k) is SVG for all k > 1. (See Figure 10.) �

Theorem 4.3. The unicyclic graph U3(1
2, (2k)[2]2) of diameter 3 is SVG for all

k > 1.

P r o o f. (See Figure 11.)
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−3
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3
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(a) SP(12,22)

3
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1

2

0

−1
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−2

3

2

−1
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(b) SP(12k,22)

3

−2

1

2

0

−1

−3

1

−2

3

2

−1

−3

0

(a) U3(1
2,2)

3

−2

1

2

0

−1

−3 −4 4 −(k+2) k+2

1

−2

3

2

−1

−3

0

−4 4
−(k+2)

k+2

(b) U3(12,2k)

Figure 10

0

−1 3 −3 1

−2 −4 4 2

−5 5 −(k+4) k+4

−3 −1 1 3

−2
−4 4 2

−5 5

0

−1 3 −3 1

−2 −4 4 2

−5 5 −(k+4) k+4

−3 −1 1 3

−2
−4 4 2

−5 5

0

Figure 11

Theorem 4.4. The unicyclic graph U4(0
3, m) of diameter 3 is not SVG for any

even m > 2.

P r o o f. Let V (U4(0
3, m)) = {c1, x1,1, . . . , x1,m, c2, c3, c4}. If U4(0

3, m) is SVG

with a SVG labeling f , then by Theorem 2.0, we have (m+1)f(c1)+ f(c2)+ f(c3)+

f(c4) = 0. However, we have f(V (U4(0
3, m))) = P and so f(c1) + f(x1,1) + . . . +

f(x1,m) + f(c2) + f(c3) + f(c4) = 0. Subtracting the two equations, we obtain

mf(c1)− f(x1,1)− . . .− f(x1,m) = 0, i.e., mf(c1) = f(x1,1) + . . . + f(x1,m). If m is

even, then 0 is not in P . The center c1 of St(m, c1) is adjacent to every other vertex
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except c3. Thus f(c3) = −f(c1). No matter what its label is, it must be adjacent

to a vertex with a label making the induced edge label having magnitude exceeding
1
2m + 2. Hence the ring worm U4(0

3, m) is not SVG. �

Thus, there are infinitely many trees of diameter 3 that are not SVG.

5. Super vertex-graceful unicyclic graphs of diameter 4

There exist infinitely many unicyclic graphs of diameter 4 that are SVG.

Theorem 5.1. The unicyclic graph U3(0
2, (2n)[2]2) is SVG for all n > 0.

Figure 12 shows an example of the construction.

−1 −2 0 −2 1

−3 3 4 −4

1 2 −2 −1

−3
3 −4

4

CT(5;02,4,02)

−1 −2 0 −2 1

−3 3 4 −4

1 2 −2 −1

−3
3 −4

4

0

U3(0
2,2[2]2) is SVG

Figure 12

Theorem 5.2. The unicyclic graph U4(0
2, 1, (2n)[2]) is SVG for all n > 1.

P r o o f. (See Figure 13.) �

Theorem 5.3. The unicyclic graph U4(0, 12, 2n + 1) is SVG for all n > 0.

P r o o f. (See Figure 14.) �

Theorem 5.4. The unicyclic graph U4(0
2, 1, (2n)[2]) is SVG for all n > 1.

P r o o f. (See Figure 15.) �

Theorem 5.5. The unicyclic graph U4(0
3, (2n + 1)[2]2) is SVG for all n > 0.

P r o o f. (See Figure 16.) �

Theorem 5.6. The unicyclic graph U5(0
4, (2n)[2]2) is SVG for all n > 1.

P r o o f. (See Figure 17.) �

10



2

−1

4

−2

1

3

0

−3

−4

1

−1

2

−2

4

3

−3

−4

(a) SP(12,23)

2

−1

4

−2

1

3

0

−3

−4 −5 5 −(n+3) n+3

1

−1

2

−2

4

3

−3

−4
−5 5

−(n+3)
n+3

(b) SP(12n,23)

2

−1

4

−2

1

3

0

−3

−4

1

−1

2

−2

4

3

−3

−4

0

(a) SP(12,23)

2

−1

4

−2

1

3

0

−3

−4 −5 5 −(n+3) n+3

1

−1

2

−2

4

3

−3

−4
−5 5

−(n+3)
n+3

0

(b) SP(12n,23)

Figure 13
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6. SVG unicyclic graphs with large diameters

In this section we show that we can have SVG unicyclic ring-worms with arbitrarily

large diameters.

Theorem 6.1. U2m+1((2n)2m+1) is SVG for any m > 1 and n > 0.

P r o o f. Consider n = 0. U2m+1((2n)2m+1) is simply the cycle C2m+1. We use

the SVG labeling in [19]. Let the vertices of the cycle be v0, v1, v2, . . . , v2m, in this

order. Define vertex labels by f(v2i) = i, for i = 0, . . . , m, and f(v2i+1) = −m + i,

for i = 0, . . . , m − 1.

Consider n = 1. We add a pair of edges to each of the vertices of C2m+1. To

be SVG, we need additional vertex labels and additional edge labels ±(m + 1),

±(m + 2), . . . ,±(3m + 1).

We pair the numbers m+1, m+2, . . . , 3m+1 as follows. Pair m+1 with 2m+1,

2m + 2 with 3m + 1, m + 2 with 2m, 2m + 3 with 3m, m + 3 with 2m − 1, 2m + 4

with 3m − 1, . . . Note that the differences between the pairs are m, m − 1, m − 2,

m−3, m−4, m−5, . . . respectively. Since we have (2m+1) numbers in this sequence,

we will eventually have m pairs of numbers, with differences from m to 1 inclusive,

and one number will be left by itself.

Now we begin labeling the new vertices. The two new vertices adjacent to the

one labeled-m on the cycle are labeled (m + 1) and −(2m + 1), giving edge labels

2m + 1 and −(m + 1). The two new vertices adjacent to the one labeled −m on

the cycle are labeled −(m + 1) and (2m + 1), giving edge labels −(2m + 1) and

m + 1. The two new vertices adjacent to the one labeled m − 1 on the cycle are

labeled (2m + 2) and −(3m + 1), giving edge labels 3m + 1 and −(2m + 2). The

two new vertices adjacent to the one labeled −(m − 1) on the cycle are labeled

−(2m + 2) and (3m + 1), giving edge labels −(3m + 1) and 2m + 2. In general, for

the two new vertices adjacent to the one labeled k on the cycle, and for the two new

vertices adjacent to the one labeled-k on the cycle, we use ± (the pair of numbers

found in the previous paragraph that have difference k), with the signs arranged so

that the four new vertex labels are the same as the four new edge labels. Finally

the two new vertices adjacent to the one labeled 0 on the cycle are labeled ± (the

remaining number in the previous paragraph), with the same numbers as the new

edge labels.

In general, by continuing this process another (n − 1) times, we obtain an SVG

labeling for U2m+1((2n)2m+1). �
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Corollary 6.2. U2m+1((2n)2m, 2n+ 2k) is SVG for any m > 1, n > 0, and k > 0.

P r o o f. Use the above Theorem to construct an SVG labeling for U2m+1 ×

((2n)2m+1). Use Theorem 3.5 to add an even number of edges to the vertex on the

spine that is labeled 0. �

Theorem 6.3. U6(1, 0, 1, 1, 0, 1) is SVG.

P r o o f. The following diagram gives an SVG labeling. �

1

2

3

−1

−2

−3

4

−5

−4

5

3

5

2 −3

−5

−2 1

−4

−1

4

v1

v2

v3

v4

v5

v6

u6

u1

u3

u4

Figure 18

Theorem 6.4. U4k+2(1
k, 02, 1k−2, 2, 1k, 02, 1k−2, 2) is SVG for any k > 2.

P r o o f. Let the vertices on the spine be v1, v2, . . . , v4k+2, in this order. There is

one pendant edge at each of v1, v2, . . . , vk, vk+3, vk+4, . . . , v2k, v2k+2, v2k+3, . . . , v3k+1,

v3k+4, v3k+5, . . . , v4k+1. There are two pendant edges at each of v2k+1 and v4k+2. Let

the pendant edges be (u1, v1), (u2, v2), . . ., (uk, vk), (uk+3, vk+3), (uk+4, vk+4), . . .,

(u2k, v2k), (u2k+2, v2k+2), (u2k+3, v2k+3), . . ., (u3k+1, v3k+1), (u3k+4, v3k+4), (u3k+5,

v3k+5), . . ., (u4k+1, v4k+1), (a2k+1, v2k+1), (b2k+1, v2k+1), (a4k+2, v4k+2), and (b4k+2,

v4k+2).

Label the vertices v1, v2, . . . , v2k+1 by 1, 2, . . .2k + 1. Label the vertices v2k+2,

v2k+3, . . . , v4k+2 by −1,−2, . . . ,−(2k + 1). Label the vertices u1, u2, . . . , uk by

−(4k + 1),−4k, . . . ,−(3k + 2). Label the vertices uk+3, uk+4, . . . , u2k by −(3k + 1),

−(3k + 2), . . . ,−(2k + 4). Label the vertices u2k+2, u2k+3, . . . , u3k+1 by (4k + 1),

4k, . . . , (3k + 2). Label the vertices u3k+4, u3k+5, . . . , u4k+1 by (3k +1), (3k + 4), . . . ,

(2k + 4). Label a2k+1 and b2k+1 by −(2k + 2) and −(2k + 3). Label a4k+2 and b4k+2

by 2k + 2 and 2k + 3. Thus the vertex labels are ±1,±2, . . . ,±(4k + 1).

A direct calculation shows that the edges on the spine, (v1, v2), (v2, v3), . . . ,

(v4k+2, v1) have labels 3, 5, 7, . . . , 4k + 1, 2k,−3,−5,−7, . . . ,−(4k + 1),−2k. The

following table gives the labels of the pendant edges.
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Pendant edges Labels

(u1, v1) −4k

(u2, v2) −(4k − 2)

. . .

(uk, vk) −(2k + 2)

(uk+3, vk+3) −(2k − 2)

(uk+4, vk+4) −(2k − 4)

. . .

(u2k, v2k) −4

(u2k+2, v2k+2) 4k

(u2k+3, v2k+3) 4k − 2

. . .

(u3k+1, v3k+1) 2k + 2

(u3k+4, v3k+4) 2k − 2

(u3k+5, v3k+5) 2k − 4

. . .

(u4k+1, v4k+1) 4

(a2k+1, v2k+1) −1

(b2k+1, v2k+1) −2

(a4k+2, v4k+2) 1

(b4k+2, v4k+2) 2

Thus the edge labels are ±1,±2, . . . ,±(4k + 1). �

Theorem 6.5. U4(1, 0, 1, 0), U8(0, 1, 1, 2, 0, 1, 1, 2), U12(0, 2, 0, 0, 1, 3, 0, 2, 0, 0,

1, 3), and U16(0, 1, 1, 1, 0, 1, 1, 3, 0, 1, 1, 1, 0, 1, 1, 3) are SVG.

P r o o f. The following diagrams give SVG labelings for the above graphs. �

−2 −1

1 2

3

−3

−3

3

2

1−1

−2

U4(1,0,1,0)

−5 −3 −2 −1

1 2 3 5

7
6 −4 8

−7
−64−8

−8 −5 −3

3 5 8

−4 4

2
1 −7 6

−2

−17−6

U8(0,1,1,2,0,1,1,2)

15



−7 −5 −4 −3 −2 −1

1 2 3 4 5 7

11

9
8 −6 10 12

−11

−9
−86

−10−12

−12 −9 −7 −5 −3

3 5 7 9 12

−6 6

4

2
1 −11 8 −10

−4

−2

−111−8−10

U12(0,2,0,0,1,3,2,0,0,1,3)

−9 −7 −6 −5 −4 −3 −2 −1

1 2 3 4 5 6 7 9

13

11
10 −8 12 14 15 16

−13

−11
−108−12−14−15−16

−16 −13 −11 −9 −7 −5 −3

3 5 7 9 11 13 16

−8 8

4

2
1 −15 6 10 12 14

−4

−2

−115−6−10−12−14

U16(0,1,1,1,0,1,1,3,0,1,1,1,0,1,1,3)

Theorem 6.6. U4k(0, 1k−1, 02, 1k−5, 2, 1, 3, 0, 1k−1, 02, 1k−5, 2, 1, 3) is SVG for any

k > 5.

P r o o f. Let the vertices on the spine be v1, v2, . . . , v4k, in this order. There is one

pendant edge at each of v2, v3, . . . , vk, vk+3, vk+4, . . . , v2k−3, v2k−1, v2k+2, v2k+3, . . . ,

v3k, v3k+3, v3k+4, . . . , v4k−3, v4k−1. Let the other ends of these pendant edges be u2,

u3, . . ., uk, uk+3, uk+4, . . ., u2k−3, u2k−1, u2k+2, u2k+3, . . ., u3k, u3k+3, u3k+4, . . .,

u4k−3, u4k−1 respectively. There are two pendant edges at each of v2k−2 and v4k−2.

Let the other ends of these pendant edges be a2k−2, b2k−2, and a4k−2, b4k−2 respec-

tively. There are three pendant edges at each of v2k and v4k. Let the other ends of

these pendant edges be c2k, d2k, e2k, and c4k, d4k, e4k respectively.

The vertices are labeled as follows.

Vertices Labels

v1, v2, . . . , v2k−1 1, 2, . . .2k − 1

v2k 2k + 1

v2k+1, v2k+2, . . . , v4k−1 −1,−2, . . . ,−(2k − 1)

v4k −(2k + 1)

u2, u3, . . . , uk −4k,−(4k − 1), . . . ,−(3k + 2)

uk+3, uk+4, . . . , u2k−3 −(3k + 1),−(3k + 2), . . . ,−(2k + 7)

u2k−1 2k

u2k+2, u2k+3, . . . , u3k 4k, (4k − 1), . . . , (3k + 2)
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u3k+3, u3k+4, . . . , u4k−3 (3k + 1), (3k + 2), . . . , (2k + 7)

u4k−1 −2k

a2k−2 −(2k + 6)

b2k−2 −(2k + 4)

a4k−2 2k + 6

b4k−2 2k + 4

c2k −(2k + 2)

d2k −(2k + 3)

e2k −(2k + 5)

c4k (2k + 2)

d4k (2k + 3)

e4k (2k + 5)

Thus the vertex labels are ±1,±2, . . . ,±4k.

A direct calculation shows that the edges on the spine, (v1, v2), (v2, v3), . . .,

(v4k, v1) have labels 3, 5, 7, . . . , 4k − 3, 4k, 2k,−3,−5,−7, . . . ,−(4k − 3),−4k,−2k.

The following table gives the labels of the pendant edges.

Pendant edges Labels

(u2, v2) −(4k − 2)

(u3, v3) −(4k − 4)

. . .

(uk, vk) −(2k + 2)

(uk+3, vk+3) −(2k − 2)

(uk+4, vk+4) −(2k − 4)

. . .

(u2k−3, v2k−3) −10

(u2k−1, v2k−1) 4k − 1

(u2k+2, v2k+2) 4k − 2

(u2k+3, v2k+3) 4k − 4

. . .

(u3k, v3k) 2k + 2

(u3k+3, v3k+3) 2k − 2

(u3k+4, v3k+4) 2k − 4

. . .

(u4k−3, v4k−3) 10

(u4k−1, v4k−1) −(4k − 1)

(a2k−2, v2k−2) −8

(b2k−2, v2k−2) −6

(a4k−2, v4k−2) 8

(b4k−2, v4k−2) 6
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(c2k, v2k) −1

(d2k, v2k) −2

(e2k, v2k) −4

(c4k, v4k) 1

(d4k, v4k) 2

(e4k, v4k) 4

Thus the edge labels are ±1,±2, . . . ,±4k. �

7. A general construction of SVG graphs and

some unsolved problems

In this last section we consider a general construction of SVG graphs and apply

this construction to unicyclic graphs.

Theorem 7.1. Let i, j, and k be any positive integers. Consider a graph G with

any vertex labeling (not necessarily SVG) with −i and j as two vertex labels. Then

we can add 2(i + j) vertices and 2(i + j) edges to G, so that both the new vertex

labels and the new edge labels are ±(k + 1),±(k + 2), . . . ,±(k + i + j). Moreover,

if G is a tree (respectively unicyclic), then the new graph is also a tree (respectively

unicyclic).

P r o o f. First assume that j > i. To the vertex with label −i, append 2j

edges. The new vertices are labeled −(k + 1),−(k + 2), . . . ,−(k + i),±(k + i + 1),

±(k + i + 2), . . . ,±(k + j), k + j + 1, k + j + 2, . . . , k + i + j. The new edge labels are

−(k + i + 1),−(k + i + 2), . . . ,−(k + 2i),−(k + 2i + 1),−(k + 2i + 2), . . . ,−(k + i +

j), k + 1, k + 2, . . . , k − i + j, k − i + j + 1, k− i + j + 2, . . . , k + j. To the vertex with

label j, append 2i edges. The new vertices are labeled k + 1, k + 2, . . . , k + i,−(k +

j + 1),−(k + j + 2), . . . ,−(k + i + j). The new edge labels are k + j + 1, k + j +

2, . . . , k + i + j,−(k + 1),−(k + 2), . . . ,−(k + i).

Now assume that j 6 i. To the vertex labeled −i, append 2j edges. The new

vertices are labeled −(k + 1),−(k + 2), . . . ,−(k + j), k + i + 1, k+ i + 2, . . . , k + i + j.

The new edge labels are −(k+i+1),−(k+i+2), . . . ,−(k+i+j), k+1, k+2, . . . , k+j.

To the vertex with label j, append 2i edges. The new vertices are labeled k + 1, k +

2, . . . , k+j,±(k+j+1),±(k+j+2), . . .±(k+i),−(k+i+1),−(k+i+2), . . . ,−(k+i+j).

The new edge labels are k+j+1, k+j+2, . . . , k+2j, k+2j+1, k+2j+2, . . . , k+ i+

j,−(k+1),−(k+2), . . . ,−(k+i−j),−(k+i−j+1),−(k+i−j+2), . . . ,−(k+i). �

This construction can be applied to build SVG unicyclic graphs from any SVG

unicyclic graph, and to build SVG trees from any SVG tree with an odd number of
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vertices. In the former case, the vertex and edge labels are the same. In the latter

case, the vertex and edge labels are the same, except that there is an additional

vertex with label 0.

Corollary 7.2. U3(2k + 1, 2k + 1, 0) is SVG, for any k > 0.

P r o o f. From the diagram below, U3(1, 1, 0) is SVG.

0 2

−2

−1

1

2 1

−1

0−2

c1 c2

c3

x2,1

x3,1

Figure 20

Repeatedly apply the construction to add a pair of edges to the vertex labeled −1

and a pair of edges to the vertex labeled 1. �

Corollary 7.3. U3(2k + 1, 2k + 1, 2m) is SVG, for any k, m > 0.

P r o o f. To the graph in Corollary 7.2, repeatedly add pairs of edges to the

vertex labeled 0, using ± (the next greater integer from the current labeling) as the

new labels. �

Corollary 7.4. U3(1, 4k + 1, 2k) is SVG, for any k > 0.

P r o o f. From the diagram below, U3(1, 1, 0) is SVG.

−2 1

0

−1

2

−1 0

2

1−2

c1 c2

c3

x2,1

x3,1

Figure 21

Repeatedly apply the construction to add two edges to the vertex labeled −2 and

four edges to the vertex labeled 1. �
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Corollary 7.5. U3(2m + 1, 4k + 1, 2k) is SVG, for any k, m > 0.

P r o o f. To the graph in Corollary 7.4, repeatedly add pairs of edges to the

vertex labeled 0. �

Corollary 7.6. U6(1+x1, x2, 1+x3, 1+y1, y2, 1+y3) is SVG, for any non-negative

even integers x2, x3, y2, y3, if x1 = 2y2 + 3y3, and y1 = 2x2 + 3x3.

P r o o f. By Theorem 6.3, U6(1, 0, 1, 1, 0, 1) is SVG. Apply the construction to

the vertex labeled 1 and the vertices labeled −2 and −3 on the spine, and then apply

the construction again to the vertex labeled −1 and the vertices labeled 2 and 3 on

the spine. �

Corollary 7.7. If k > 2, U4k+2(1 + x1, 1 + x2, 1 + x3, . . . , 1 + xk, xk+1, xk+2, 1 +

xk+3, 1 + xk+4, . . . , 1 + x2k, 2 + x2k+1, 1 + y1, 1 + y2, 1 + y3, . . . , 1 + yk, yk+1, yk+2, 1 +

yk+3, 1 + yk+4, . . . , 1 + y2k, 2 + y2k+1) is SVG for any non-negative even integers

x2, x3, . . . , x2k+1, y2, y3, . . . , y2k+1, if x1 = 2y2 + 3y3 + . . . + (2k + 1)y2k+1, and y1 =

2x2 + 3x3 + . . . + (2k + 1)x2k+1.

P r o o f. By Theorem 6.4, U4k+2(1
k, 02, 1k−2, 2, 1k, 02, 1k−2, 2) is SVG for any

k > 2. Apply the construction to the vertex labeled 1 and each of the negatively

labeled vertices (other than −1) on the spine, and then apply the construction again

to the vertex labeled −1 and each of the positively labeled vertices (other than 1)

on the spine. �

Corollary 7.8.

(1) U4(1 + x1, x2, 1 + y1, y2) is SVG for any non-negative even integers x2 and y2,

if x1 = 2y2, and y1 = 2x2.

(2) U8(x1, 1+x2, 1+x3, 2+x4, y1, 1+y2, 1+y3, 2+y4) is SVG for any non-negative

even integers x2, x3, x4, y2, y3, y4, if x1 = 2y2+3y3+5y4, and y1 = 2x2+3x3+5x4.

(3) U12(x1, 2 + x2, x3, x4, 1 + x5, 3 + x6, y1, 2 + y2, y3, y4, 1 + y5, 3 + y6) is SVG for

any non-negative even integers x2, x3, x4, x5, x6, y2, y3, y4, y5, y6, if x1 = 2y2 +

3y3 + 4y4 + 5y5 + 7y6 , and y1 = 2x2 + 3x3 + 4x4 + 5x5 + 7x6.

(4) U16(x1, 1+x2, 1+x3, 1+x4, x5, 1+x6, 1+x7, 3+x8, y1, 1+y2, 1+y3, 1+y4, y5, 1+

y6, 1+y7, 3+y8) is SVG for any non-negative even integers x2, x3, x4, x5, x6, x7,

x8, y2, y3, y4, y5, y6, y7, y8, if x1 = 2y2 + 3y3 + 4y4 + 5y5 + 6y6 + 7y7 + 9y8, and

y1 = 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 9x8.

P r o o f. Use the labelings in Theorem 6.5, apply the construction to the vertex

labeled 1 and each of the negatively labeled vertices (other than −1) on the spine,

and then apply the construction again to the vertex labeled −1 and each of the

positively labeled vertices (other than 1) on the spine. �
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Corollary 7.9. If k > 5, U4k(x1, 1 + x2, 1 + x3, . . . , 1 + xk, xk+1, xk+2, 1 +

xk+3, 1 + xk+4, . . . , 1 + x2k−3, 2 + x2k−2, 1 + x2k−1, 3 + x2k, y1, 1 + y2, 1 + y3, . . . , 1 +

yk, yk+1, yk+2, 1+yk+3, 1+yk+4, . . . , 1+y2k−3, 2+y2k−2, 1+y2k−1, 3+y2k) is SVG for

any non-negative even integers x2, x3, . . . , x2k, y2, y3, . . . , y2k if x1 = 2y2 +3y3 + . . .+

(2k − 1)y2k−1 + (2k + 1)y2k, and y1 = 2x2 + 3x3 + . . . + (2k − 1)x2k−1 + (2k + 1)x2k.

P r o o f. By Theorem 6.6, U4k(0, 1k−1, 02, 1k−5, 2, 1, 3, 0, 1k−1, 02, 1k−5, 2, 1, 3)

is SVG for any k > 5. Apply the construction to the vertex labeled 1 and each

of the negatively labeled vertices (other than −1) on the spine, and then apply the

construction again to the vertex labeled −1 and each of the positively labeled vertices

(other than 1) on the spine. �

Theorem 7.10. Any ring-worm is an induced subgraph of an SVG ring-worm.

P r o o f. Consider any ring-worm with spine Cn. If n is odd, use Theorem 6.1.

If n is divisible by 4, use Corollary 7.8 or 7.9. If n is divisible by 2 but not by 4,

use Corollary 7.6 or 7.7. In each case, simply add sufficiently many pendant edges

to the given ring-worm to use the Theorem or Corollary. �

We list here an unsolved problem and a conjecture for future research.

Problem. Characterize ring-worms which are non-SVG.

Conjecture. Any unicyclic graph is an induced subgraph of an SVG unicyclic

graph.
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