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ON SUPERQUADRATIC ELLIPTIC SYSTEMS

DJAIRO G. DE FIGUEIREDO AND PATRICIO L. FELMER

Abstract. In this article we study the existence of solutions for the elliptic
system

a       dH, *       o-Au =—(u,v,x)   in ii,
ov

-Av =-(u,v,x)   in il,
duK '

u = 0,    v = 0   on oil
where ß is a bounded open subset of R^ with smooth boundary d£l, and
the function H : R2 x Í2 —► R , is of class C1 . We assume the function H has
a superquadratic behavior that includes a Hamiltonian of the form

2       11
H(u, v) = \u\a + \v\ß   where 1 - — < - + -¿ < 1 with a > 1, ß > 1.

Naß

We obtain existence of nontrivial solutions using a variational approach through
a version of the Generalized Mountain Pass Theorem. Existence of positive
solutions is also discussed.

0. Introduction

This paper is devoted to the study of existence of solutions for certain su-
perquadratic elliptic systems of the form

d M
(0.1) -Au = -z— (u, v, x)   inQ,dv

d M
(0.2) -Av — —— (u, v , x)   inQ,du
(0.3) w = 0,    v = 0   or\d¿i,

where Q is a bounded_open subset of RN , with smooth boundary d¿l, and
the function 77 : R2 x ¿l —► R, which we call the Hamiltonian, is of class C1.

For easy reference later on we call the above problem (ES). The term "su-
perquadratic" used here comes from hypothesis (H2) on the Hamiltonian (see
it in the sequel, as well as Remark 0.5). Such a condition actually takes into ac-
count the coupling of the system. It does not imply that both equations in (ES)
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100 D. G. DE FIGUEIREDO AND P. L. FELMER

are superquadratic, but it is implied by that, which follows from a condition
like

dhf dhf
(0.4) (S)   — (u, v, x) -u + — (u, v, x) -v > pH(u, v, x) > 0

for all (u, v) G M2\{(0, 0)} , x G Q, and p > 2. Observe that (S) is a special
case of (H2). We should mention that Benci and Rabinowitz [2] have already
considered a special case of (ES) when both equations are superlinear, namely

-Aw = (w2 + z2)^s-x)l2w,     -Az = -(w2 + z2f~x^2z,

where 5 > 1. Such a system is of the form

(0.5) -Aw

(0.6) -Az

which is equivalent to our system (ES). In studying (0.5) and (0.6) Benci and
Rabinowitz used the Generalized Mountain Pass Theorem in its infinite dimen-
sional setting.

Recently in [4] Clement, de Figueiredo and Mitidieri studied a case of (ES)
including Hamiltonians satisfying

(0.7) H(u,v) = \u\a + \v\"

where i + \ < 1, a > 1 and ß > 1, but where the case a < 2 is allowed. Thus
not satisfying (S). In [4] a priori estimates for positive solutions were obtained
and then degree theory arguments were used to prove the existence of positive
solutions for (ES). In another work, Clement, de Figueiredo and Mitidieri [5]
have considered some classes of superlinear elliptic systems with growth that
allows the use of inequalities of the Hardy-Sobolev type, and have obtained a
priori bounds for positive solutions.

Some other class of superlinear elliptic systems were also considered by Souto
[13]. He used the techniques introduced by Gidas and Spruck [8] in order to
obtain a priori bounds for positive solutions, and by degree theory existence of
positive solutions was established. Sublinear systems with a Hamiltonian form
were discussed in Costa and Magalhäes [3].

In this paper we consider superquadratic Hamiltonians using a variational
approach. This allows us to extend the results in [2 and 4]. This kind of
Hamiltonian was studied recently by Felmer [6] in the context of Hamiltonian
systems.

Next we describe our results in a more precise way. On the Hamiltonian 77
we will consider the following hypotheses:

(HO) 77: R2 x Q -> R is of class C1.
(HI) H(u,v,x)>0 for all (u, v, x) e R2 x Q.

Let us consider real constants p>a>p-\>0 and q>ß>q-l>0

dH.
= dw-{W>Z>xh

dH. .
= -—-(w,Z>x)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SUPERQUADRATIC ELLIPTIC SYSTEMS 101

such that

(0 - + -5 < 1 >a     £
2

<1 + AT'K1+ï)MM}
(in)--^ < 1   and   -- < 1.

P    ß q   a
In this paper we will always assume ./V>3.IfJV = 2or./V=l less restrictive
assumptions can be made.

Furthermore, in case N > 5 we also impose
(iv)

With these constants a, ß , p , q satisfying the above conditions (i)-(iv) we
now state the further hypotheses on the Hamiltonian 77 :

(H2) There exists R > 0 such that
1 àH. , 1 dH, .      ^ „, ,    A
--r— (u, V , x) -U+ -¿-¿—(u, v, x)-v > H(u, v, x) > 0
a du ß ov

for all (u,v) eM2 , \(u,v)\>R and x G Q.

(H3) There exists r > 0 and ax > 0 such that

H(u,v,x)<ax(\u\a + \v\ß)   if \(u, v)\ <r
and

(H4) There exists a2 > 0 such that
1077

dH. .-^(u,v,x)

<fl2(|«|,'"1 + |«|(p~1),/l' + l),

<a2(\v\"-1 + \u\i'¡-x)p''1 + l).

Our first existence results consider the concept of strong solution. In our situa-
tion we have
Definition 0.1. We say that (u ,v) is a strong solution of (ES) if

u e ^2.W(p-D(Q)n Wx'pl{p-X)(¿l),    v G ir'2'"(«-1)(Û)nlr'01',/('-"(û)

and (u, v) satisfies (0.1) and (0.2) a.e. in Q.
We will prove the following results.

Theorem 0.1. If 77 satisfies (H0)-(H4) then system (ES) possesses at least one
strong solution.
Theorem 0.2. If 77 satisfies (H0)-(H4) and 77 is independent of x G Q then
(ES) possesses at least one nontrivial strong solution.
Remark 0.1. When we assume more regularity on the Hamiltonian 77, using
standard arguments, it can be proved that strong solutions are indeed classical
solutions. See [9]. In this direction a hypothesis to consider is
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102 D. G. DE FIGUEIREDO AND P. L. FELMER

(HO') 77 : R2 x Q -» R is of class C1 'e.

When some more assumptions are considered in 77 we also obtain a result on
existence of positive classical solutions.

Theorem 0.3. If 77 satisfies (HO'), (H1)-(H4) and also

(H5) dH(u,v_,x)/du>0, dH(u, v, x)/dv > 0 for all (u, v) G R2, u>
0, v>0, x gQ,

(H6)dH(u,v,x)/du = 0, dH(u,v,x)/dv = 0 ifu = 0orv = 0.

Then (ES) possesses at least one positive solution (u, v) with u(x) > 0, v(x) >
0 ifxe¿l.

Next we make some remarks about the hypotheses we considered.

Remark 0.2. Since £ > 1 and i > 1 we have from (ii) that

a     ß     p     q N

The first inequality above expresses the superquadratic character of the
Hamiltonian 77, as said before. The last inequality expresses the subcritical
character of the system, as already pointed out in [4]. It seems however that
these minimal assumptions do not suffice. Some further control on the constants
a, ß , p , q as expressed in (ii) and (iii) seems to be necessary.

Remark 0.3. Besides the critical curve £ + i > 1 - j¡ , in case N >5 we have
two extra critical lines as given by (iv).

Remark 0.4. If a = p, ß = q then (i) and (ii) simply express

aß N

and (iii) trivializes. Condition (iv) becomes

1      N-4        1      JV-4
p >   2N   '     q >    2N   '

see [4].

Remark 0.5. It follows from (H2) that there are constants cx > 0 and c2 > 0
such that

(0.8) 77(w,t;,x)>ci(|M|a + M^)-C2.

For a proof see [6].
Our Theorem 0.3 generalizes Theorem 3.1 in [4]. Let f,g:R-*R func-

tions satisfying the hypothesis of Theorem 3.1 in [4]. Then we can define a
Hamiltonian

(0.9) H(u,v) = G(u) + F(v)
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SUPERQUADRATIC ELLIPTIC SYSTEMS 103

with G(u) = /0" g(s) ds and F(v) = J0V f(s) ds. This Hamiltonian satisfies our
hypotheses. In particular it satisfies (H5) and (H6).

1. THE VARIATIONAL FORMULATION OF (ES)

In this section we set up the functional analytic framework needed to study
problem (ES) from the variational point of view. We also give the variational
formulation of (ES).

We shall work with spaces Es, which are obtained as the domains of frac-
tional powers of the operator

-A : 771 (Q) n 770' (Q) C L2(Q) -► L2(Q)
where A denotes the Laplacian and 772(Q), 77q(Q) are the usual Sobolev
spaces. Namely Es — D((-A)sl2) for 0 < s < 2, and the corresponding
operator is denoted by As

AS:ES -► L2(Q).
The spaces Es are Hubert spaces with inner product

(1.1) (u, v)Es= [ AsuAsvdx
Ja

and associated norm

(1.2) \\u\\2Es= [ \Asu\2dx.
Ja

It is known that these spaces are indeed Sobolev spaces of fractional power as
defined by interpolation, see Lions and Magenes [10]. In particular we have

£S = 77Î(Q)   if0<5<±,    £1/2c771/2(Q),

Es = {u G 77*(Q) | u = 0 on d¿l)   iî\<s<2, s¿\,    and
E*'2 c {u G 773/2(Q) | u = 0 on 0Q}.

See also the results in Fujiwara [7].
If we consider a basis of L2(Q) constituted by eigenfunctions {</>„} of

-A0 = A</>   inQ,        0 = 0   onöQ
with associated eigenvalues {Xn} , then we have the following characterization
of Es and As. If u e L2(¿1) we write u = Y^LX an<j)n its Fourier series with
respect to the basis {</>„}. Then

71 = 1

(1.3) Es = iu<EL2(¿l)

and
oo

(1.4) Asu = YÀ»2a"<t>"
n=l

for all ue Es. Now it is easy to see Poincaré's inequality for the operator As

(1.5) \\Asu\y(a)>kf\\u\y(Q)   VueE*
where Xx is the first eigenvalue of -A.

The fractional order spaces have the following important embedding prop-
erty.
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104 D. G. DE FIGUEIREDO AND P. L. FELMER

Theorem 1.1. Given s > 0 and o > 1 so that ¿ > ¿ - j¡ then the inclusion map
i : Es -* L"(¿í) is well defined and bounded. If above we have strict inequality
then the inclusion is compact.

The proof of this theorem is based on interpolation and the Kondrachov
Theorem. See the article of Persson [11] for a proof.

With these preliminaries about the Laplacian and the spaces we can now
define the functional associated to (ES). Let us consider first the quadratic part.
For numbers 5 > 0 and t > 0 with s + t = 2 we define the Hubert space
E = Es x E' and the bilinear form B : E x E -* R by the formula

(1.6) B((u,v),((j),\p))= [ A'uÄyf + A'fA'vdx.
Ja

Using the Cauchy Schwarz inequality and (1.2) it is easy to see that B is contin-
uous. We also see that B is symmetric. Then B induces a self adjoint bounded
linear operator L : 7s —> £ so that

(1.7) B(z,n) = (Lz,n)E
for all z, r\ e E. Here and in what follows (•, -)e denotes the inner product in
E induced by (•, •)# and (•, •)£< on the product space E in the usual way.
We can also define the quadratic form Q : E -> R associated to B and L as

(1.8) Q(z) = \(Lz ,z)E= I AsuA'v dx
1 Ja

for all z = (u, v) G E. A more explicit formula for L will be needed in the
future.

Proposition 1.1. The operator L defined above can be written as
(1.9) L(u, v) = ((As)-xA'v, (Al)-xAsu).

Proof. If z = (u, v), n = (<f>, y/) e E and we write L(z) = (w, y) then we
have

(1.10) (L(z),ri)E = ({w,y),(<P,V))E= [ A'wA't + A'yA'y/dx.
Ja

On the other hand, from (1.6) we have

(1.11) (L(z),n)E= [ AsuA'ii/ + As4>A'vdx.
Ja

Taking y/ = 0 in (1.10) and (1.11) we obtain

(1.12) [ As<f>(A'v-Asw)dx = 0   \/(f>€Es.
Ja

Using that As is an isomorphism onto L2(Q) we conclude the equality A'v -
Asw = 0 from where w = (As)~xA'v .

If we take 0 = 0 in (1.10) and (1.11) we obtain in a similar way y =
(A')-xAsu.   D

In what follows we write A~s = (As)~l. Next we consider the eigenvalue
problem
(1.13) Lz = Xz   inE.
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SUPERQUADRATIC ELLIPTIC SYSTEMS 105

Using Proposition 1.1 we can write (1.13) in equivalent form as

(1.14) A~sA'v = Xu,
(1.15) A~'Asu = Xv,

where z — (u,v). Since the operators As and A' are isomorphisms X cannot
be zero. Then isolating u in (1.14) and substituting in (1.15) yields

(1.16) v=X2v

whence it follows that X = 1 or X = -1. The associated eigenvectors are

(1.17) forA=l,     (u,A~'Asu)   V« G Es

and
(1.18) forA = -l,     (u,-A~'Asu)   Vu G 7±*.

We can define the eigenspaces

E+ = {(u,A~'Asu)\ueEs}

and
E~ = {(u,-A~'Asu)\ueEs}

which give a natural splitting E = E+ © E~. The spaces E+ and E~ are
orthogonal with respect to the bilinear form B, that is

(1.19) 5(z+,z-) = 0   Vz+G7i+,  z' GE~.

We also find that

(1-20) i||z||2=ß(z+)-ß(z-)

where z = z+ + z~ , z±çiE± .

Next we define the functional associated to the Hamiltonian.   Using the
growth hypothesis (H4) and integrating we obtain

(1.21) H(u,v,x)< |77(0, v,x)\ + a2(\u\»-x + \v\Ip-Wp + l)|w|

and

(1.22) |77(0, v, x)\ < |77(0, 0, x)| + a2(\v\" + \v\).
Young's inequality implies

(1.23) \v\b-lWP\u\ < ^ + fcillvl«.
p P

From (1.21)—( 1.23) we obtain

(1.24) \H(u,v,x)\<c2(\u\p + \v\i) + c3
for certain constants c2 and c3. Now we will choose the numbers s and t
defining the orders of the Sobolev spaces involved. From inequality (ii) in the
Introduction we see the existence ofs,iGR, s + t — 2 such that
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106 D. G. DE FIGUEIREDO AND P. L. FELMER

and

Using (iii) and (iv) if N > 5, we can choose s > 0 and t > 0. From the fact
that I > 1 and $ > 1 we find, following from (1.25) and (1.26) that

,« *^ 1      1      5 1      1      t
1.27 - > x - -JT7   and   - > « - —.

p     2     N q     2     N
These   last   inequalities  and  Theorem   1.1   give  the   compact  inclusions
Es -> LP(il), £' -» L«(Q). Then using (1.24) we can define the functional
St : E — R as

(1.28) ßT(u,v)= [ H(u(x),v(x),x)dx.
Ja

Proposition 1.2. The functional St defined above is of class Cx and its derivative
is given by

P   í-i TT £ï IT
(1.29) St'(u,v)(4>,y/)= j ~(u,v,x)<j>+—(u,v,x)y/dx

for all (u, v), (<p, y/) G E. Moreover St' : E —► E is a compact operator.
Proof. The expression given at the right-hand side of (1.29) is well defined. In
fact, from the growth hypothesis (H4) we have

(1.30) f\^-(u,v,x)(j> dx <a2 [(\u\p-x + \v\^-1^'" + l)\(f>\dx.
Ja\du Ja

Using Holder inequality and embeddings

(1.31) / \^-(u,v,x)ct> dx<a2(\\u\\pElx + \\vfEr')qlP + \)\\<t>\\E*.Ja I au
In a similar way we obtain an inequality for the derivative with respect to v .
Thus %"(u, v) is well defined and bounded in E.

Next, usual arguments give that %? is Fréchet differentiable, St' is contin-
uous and, as a consequence of the Sobolev embeddings, St' is also compact.
See [12] for example.   D

Now we can define a functional <I> : E —► R as

(1.32) <&(z) = Q(z)-St(z)   VzeE.
O is a functional of class C1 and by previous considerations it has the structure
needed to apply minimax techniques. See (3.6).

Definition 1.1. We say that z = (u, v) G E - Es xE* is an (s, i)-weak solution
of (ES) if z is a critical point of <E>. In other words, if for all n = (cf>, y/) G
Es x El we have

Í d H dhf
(1.33) / AsuA'y/ + As4>A'v - -=— (u, v, x)<f>- -^— (u, v, x)y/dx = 0.

Ja ou "^

The next theorem gives a regularity result for (s, i)-weak solutions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SUPERQUADRATIC ELLIPTIC SYSTEMS 107

Theorem 1.2. If (u, v) G Es x E' is an (s, t)-weak solution of (ES) then u G
W2'P/<p-l)(G) n Wx'p/{p-x\¿l), v g W2-9/ü-V(Sl) n W0x>ql{q-X)(¿l) and

d ff
(1.34) -Au = — (u,v,x),

d ff
(1.35) -Av = — (u,v,x)

a.e. in Q. In other words (u, v) is a strong solution of (ES).
Proof Let us consider y/ = 0 in (1.33), then

(1.36) [ A'vAs4>dx= [ ^-(u,v,x)(f)dx
Ja Ja ou

for all (j> G Es. If (¡> G 772(Q) n H¿ (Q) then we have

(1.37) / A'vA'tdx = I vA2<j)dx = - / vA<f>dx.
Ja Ja Ja

On the other hand, using estimates following from (H4) we find

^¡(u(x),v(x),x)eLpl^-x\¿l),

and then from basic elliptic theory there exists one function w G W2'pl(P~x\¿l)
nwx'p/{p~x)(¿l) suchthat

d H
(1.38) -Aw = — (u(x),v(x),x),

see Gilbarg and Trudinger [9]. Following from (1.27)
1 p- 1 _ s_    p- 1 _ _2_
2 >    p        N>    p        Ñ

so that from the embedding theorem of Sobolev w G L2(Q) (see [1]). Thus we
have

(1.39) / -^—(u,v,x)(j)dx = - I Aw(j)dx = - \ wAódx
Ja du Ja Ja

for all (f> G 772(Q) n 7701(Q). Next, from (1.37) and (1.39) we obtain

(1.40) [(v-w)A(pdx   V0G772(Q)n77o1(Q)
Ja

from where it follows that v = w . We have obtained that v G W2'pl^~x\¿l) n
t^i,W(p-i)(q)   Finally, since v - w we conclude that v satisfies (1.35).

We can do the same reasoning for u.   D

2. Palais Smale and geometric conditions
In this section we further study the functional <P. We prove the Palais Smale

condition for O and then obtain the geometric situation of the Generalized
Mountain Pass Theorem.
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108 D. G. DE FIGUEIREDO AND P. L. FELMER

Proposition 2.1. <I> satisfies the Palais Smale condition.
Proof. Let {z„} be a sequence in E so that

(2.1) |<D(z„)| <candO'(z„)-+0,     as n -* oo.

We prove first that (2.1) implies that {z„} is bounded. From (2.1) there is a
sequence {e„} converging to 0 so that

(2.2) W(zn)n\<en\\n\\E   VneE.

Taking
aß   fl        1    \ , , ,

rin = -—s   -un, -¿vn    ,    where z„ = (un, vn),
a + ß \a        ß    )

and using (2.1) we find

c + en\\n„\\E>^(zn)-^'(zn)r]n = -^—- / --— («„ , v„ , x)u„a + ß Ja a du
1 d ff

(2.3) +-ß—(un,vn,x)vn-H(un,v„,x)dx

+ í^hjj - 0 / H(u„,v„,x)dx.
Using (H2) we find a constant cx so that

(2.4) cx(\ + \\zn\\E)> [ H(un,vn,x)dx.
Ja

and then, using (0.8) we obtain a constant c3 such that

(2.5) / KP + \vn\>dx < c2(\ + \\u„\\Es + \\vn\\E<).
Ja

Next, let us consider n = (0,0) with (¡> e Es. Then from (2.2)
i  /■ /• i ßij

(2.6) / As<j)A'v„dx\< / \—-(u„,vn,x)(t> dx + e„\\(j)\\Es.
\Ja I     Ja\ou

We estimate these terms next. From (1.25) and Theorem 1.1 we find

(2.7) II^I!l«/(«-p+')(íí) < cx\\<j>\\E,
then, using Holder inequality with a - a/(p - 1), b = a/(a-p+ 1) we obtain

(2.8) j \un\p-x\<t>\dx < ciKIIE^IMI*.

From (iii) in the Introduction and (1.25) we have

1 _^HÍi> I_i.
p    ß     2     N

and then Theorem 1.1 implies the embedding of Es into z/W(/>p-(/>-i)«)(Q) .
This fact together with Holder inequality with a = /?/?/(p - \)q and 6 =
ßpl(ßp-(p-^)q) yields

(2.9) / i^i^-'^i^irfx < c2\\vn\\{[;(l)qipM\\v.
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SUPERQUADRATIC ELLIPTIC SYSTEMS 109

Finally, again using Theorem 1.1

(2.10) [ \<P\dx<c3W\E¡.
Ja

Putting together (H4), (2.6), (2.8)-(2.10) we obtain

(2.11) I / A'M'vndxl < c4(\\uHrL:;a) + KHg,-^' + 1)Me>
for all 0 G Es, from where it follows

(2.12) \\v„\\E, < c4(\\u„\f-;Q) + \\vn\\%-n]q/p + 1).
By an analogous reasoning

(2.13) Hif.,11* < CsdlVnW^ + \\un\\%-(af/9 + 1).
Replacing (2.12) and (2.13) into (2.5) we obtain
(2.14)

\\u„\\e> + \\v„\\ei
< c6(\\u„w%-x)ia+\\vn\\%-x^pß+iiM„nri)p/ío+\K\\%-iyp+1).

Since the exponents in the right-hand side of (2.14) are all less that 1, by the
basic assumptions we made on a, ß , p and q, we find that the sequence {z„}
is bounded in E.

From here on a usual argument based on the compactness of St' and the
invertibility of L gives the existence of a subsequence of {z„} that converges
in E.   D

We will consider now the study of the geometric characteristics of <ï> leading
to the Generalized Mountain Pass Theorem.

We will define subsets S and Q so that
(IS) There exists ô > 0 such that

(2.15) <D(z)>c5   VzgS.
(IQ) O(z) <0 VzGoß.
Where dQ denotes the boundary of Q relative to a certain subspace of E.

It is shown also that 5 and dQ link in the sense of Benci and Rabinowitz.
For later reference we state a preliminary lemma giving the expressions of

the projections over E± .

Lemma 2.1. The orthogonal projections 7>± : E -» E± are given by the formula
(2.16) P±(u, v) = \(u ± A-'A'v, v ± A~'Asu).
Proof. Direct from definitions.   D

Now we choose numbers p > 1, v > 1 such that

(2.17) - < —i—   and   -^ <
a     p + v ß     p + f'

Proposition 2.2. There exist p>0 and ô > 0 such that if we define
S = {(p»-xu, pv~xv) 11|(», «)|| = p, (u, v) G E+}

then (IS) is satisfied.
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110 D. G. DE FIGUEIREDO AND P. L. FELMER

Proof. Let z = (u, v) e E+ and put z = (p^u, pv~{v). Recall that v =
A~'Asu and equivalently u = A~sA'v . We have

(2.18) Q(z) = / p^~xAsupv-xAtv dx = p^v~2 [ AsuA'v dx.
Ja Ja

Using (1.20) and (2.18) we get

(2.19) Q(z) = \p^-2\\z\\2E.
On the other hand, from (H3) and (H4) we have

(2.20) H(u,v,x)< ax(\u\a + \v\ß) + bx(\u\p + \v\")

for some constants ax, bx, then

St(z)<ax (V"_1)Q / |»rdx + p(v~x)ß f \v\l*dx)
(2 211 Ja J

+ bx (p^-x)p f \u\p dx + p(v~X)q I \v\"dx\ .

Since a < p, ß < q , using Holder inequality and Theorem 1.1 we find from
(2.21) that

(2.22) St(z) < b2(p(»-Va\\z\\E + p^-l^\\z\\E + pW\\z\\i + ^-1)?||z|||).

Putting (2.19) and (2.22) together and considering p = \\z\\E we have
(2.23) O(z) > y^ - b2(p»a + p?" + pvß + pvq).

Since a <p , ß < q, for p small we obtain
(2.24)

*(r) > \pß+v - 2bx(p^ + pvß) = {^Ç- - 2bxp^ + (^Ç- - 2blP"^ .

From our choice of p and v in (2.17) we see that if p is small enough, there
exists ô > 0 such that <P(z) > ô if ||z||£ = p.   D

We next define the set Q. For some constants a > 0 and M > 0 to be
precised later on we define

Q = {x(a'i-xu+,av-xv+) + (o>1-xu,av-xv)\

0<t<ct,0< ||(»,u)||£<iW, {u,v)€E~}

where z+ = (u+, v+) G E+ with u+ some fixed eigenvector of -A. We note
that z+ is an eigenvector of L associated to a positive eigenvalue (i.e. to 1).
We assume ||z+||£ = 1. We denote by dQ the boundary of Q relative to the
subspace

{t(o"-xu+ , o"-xv+) + (o"-xu, o»-xv) IT G R, (M, V) G E~}.

Proposition 2.3. There are constants a > 0 and M > 0 such that for Q defined
as above we have 4>(z) < 0 Vz G dQ.
Proof. For t G R+ , (u, v) G E~ we set

z = t(o"-xu+ , av~xv+) + (o"-xu, av~xv).
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By the definitions of E+ and E~ we have

(2.25) v+ = A~tAsu+   and   v = -A~tAsu,

and then evaluating Q in z we obtain

Q(z) = f (tg>1-xAsu+ + a"-xAsu)(Ta'/-xAsu+ - av~xAsu) dx
(2.26) Ja

=  l-0^-2(T2-\\(U,V)\\2E).

On the other hand, we have from Remark 0.5 that

(2.27) [ H(z,x)dx>cx [ (aa("-x^\xu+ + u\a + aß^-^\Tv+ + v\ß)dx-\^\c2.
Ja Ja

Each u can be written as u = yu+ + u, where « is orthogonal to u+ in the
L2(Q) sense, and y is some real number. Using Holder's inequality we obtain

(T + y) / \u+\2dx= f(m+ + u)u+dx
(2.28) Ja Ja

<\\tu+ + u\\La(a)\\u+\\Lal{íl)

or

(2.29) T + 7 < c||t«+ + w||l°(Q).

Similarly, observing that A~'Asu+ = X^t+Su+, where X^ is the eigenvalue of
(-A, 77q(Q)) whose eigenfunction is u+ , we obtain

Kt+S(*-Y) I \u+\2dx= f(Tv+ + v)u+dx
(2.30) Ja Ja

< ||tt;+ + v||l#(£í)||w+||l^(íí)

or

(2.31) t - y < c\\xv+ + v\\Lß{a).

If y > 0 it follows from (2.26), (2.27) and (2.29) that
ffP+v-2

(2.32) O(z) < ——t2 - c6Taoa^-^ + \a\c2.

And if y < 0 it follows from (2.26), (2.27) and (2.31) that
fj/i+u—2

(2.33) O(z) < ——t2 - C(,xßaß(v-X) + \¿i\c2.

By the choice of p and i/, taking x = a large we see in (2.32) and (2.33) that
<D(z)<0.

Now we choose M. If t g [0, a], from (2.26) and (2.27) we have

(2.34) O(z) < X+" - K+I/"2IKM> «)lll + l"|ci
then taking ||(w, v)\\ = AÍ and M large enough we find O(z) < 0. We finish
the proof if we show that when t = 0 then also <P(z) < 0. By hypothesis (HI)
this is direct after the definition of <P and (2.26).   D
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3. The minim ax theorem
In this section we formulate a minimax theorem which is a version of The-

orem 5.9 of [12] and it was proved in [6]. We describe this result and then we
show how to use it in our situation. We consider a Hubert space E with inner
product ( , ) and norm || • ||. We assume that E has a splitting E = X © Y,
where the subspace X and Y are not necessarily orthogonal and both of them
can be infinite dimensional. Let O : E —► R be a functional having the following
structure

(3.1) <&(z) = \(Lz,z)+St(z)
with

(11) L : E —► E is a linear, bounded, selfadjoint operator,
(12) St' is compact.
There are two linear bounded, invertible operators BX,B2:E^>E satisfying
(13) If co G Rq then the linear operator

(3.2) B(œ) = PxBx-xexp(cuL)B2:X^X
is invertible.

Here Px denotes the projection of E onto X induced by the splitting E =
X © y. Let p > 0 and define

(3.3) S = {Blz\\\z\\ = p,zeY}.
For z+ G Y, z+ ^ 0, a > p/\\Bx~xB2z+\\ and M > p, we define

(3.4) Q = {B2(tz+ + z)\0<t<o, \\z\\ <M, zgX}.
Where dQ denotes the boundary of Q relative to the subspace

{52(tz+ + z)|tgR, z eX}.
Then we have the following theorem on existence of critical points of 0.

Theorem 3.1. Let $:£-»Ä be a Cl functional satisfying the Palais Smale
condition, and (II), (12) and (13). Further assume there is a constant ô > 0 such
that

(IS)0(z)>f5VzGS,
(IQ)O(z)<0VzGf3Q.

Then O possesses a critical point with critical value C >6.

The reader is referred to [6] for a proof of this theorem. The critical point
given by Theorem 3.1 has a variational characterization we describe next. Let
us consider the class of functions

(3.5) r = {h G C(E x [0, 1], E) | h satisfies Yx, T2 and T3}
where

(ri) h is given by h(z, t) = exp((y(z, t)L)z + K(z, t) where co : E x
[0, 1] —> Rq is continuous and transforms bounded sets into bounded sets, and
K : E x [0, 1] —► E is compact.

(r2) h(z,t) = z
Wz&dQ, Wg[0, 1].
(r3) h{z,o) = z
VzeQ.
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Then the minimax value
(3.6) C = infsupO(Ä(z, 1))

herzeQ
is the critical value given in Theorem 3.1.

In order to use Theorem 3.1 to find critical points of our functional O we
see that it is only left to be proved hypothesis (13). In fact, the structure of
our functional is that given by (II) and (12) as we saw in §1, and the P.S.
condition together with the geometric conditions (IS) and (IQ) were proved in
Propositions 2.1, 2.2 and 2.3 respectively.

Let us prove (13). First we define the decomposition of E by taking X = E~
and Y = E+ . The operators Bx and B2 are defined as Bx, B2 : E —► E
(3.7) Bx(u,v) = (pp-Xu,pl'-Xv)

and
(3.8) B2(u,v) = (o^-xu,ov-xv),

certainly Bx and B2 are linear, bounded, invertible operators. Here the con-
stants p and a are those of Propositions 2.2 and 2.3 respectively. To show
that B(co) is invertible we first give a formula for exp(coL).
Lemma 3.1. If co eR then the operator exp(coL) : E -> E is given by
(3.9) exp(<uL)(w, v) = cosh(<y)(w, v) + sinh(<y)(^_í o A'v, A~' o Asu).
Proof. We recall from Proposition 1.1 that
(3.10) L(u,v) = (A~soAtv,A-'oAsu).

Then L2 — id£ . By writing explicitly the exponential operator as a series, using
(3.10) and reordering the terms we obtain (3.9).   D

Proposition 3.1. The operator B(co) : E~ -► E~ is invertible.
Proof. Given z e E~ we have z = (u, -A~'oAsu) with u G Es. By definition
of B2 in (3.8) we have
(3.11) B2z = (a"-Xu, -av-xA-loAsu),

then using Lemma 3.1 if we write exp(coL)B2z = (x, y) we have
(3.12) x = (cosh^tr"-1 - sinn^rr"-1)«,
(3.13) y = (-cosh(co)a»-x +sinh(co)of'-x)A-t oAsu.

By definition of Bx given in (3.7) and from (3.12) and (3.13), if we write
Bx exp(coL)B2z = (x, y) we have

cosh(co)oß~x - sinh(<y)(7I/_1~pT-(3.14) x = wa^«/'"-   nii_xyuJ)U-»,

., ...                  _     -cosh^cr" ' + sinh(<y)cr'i_1 À_t     ..(3.15) y =-!l—-—x-—-A 'oAsu.

Finally we project back into E~ . If we put B(co)z = (<f>, y/) then using the
projection formula given in Lemma 2.1 and (3.14) and (3.15), after some cal-
culations we obtain

(3-16) *={K^+%=*)cosh(w) " K^+y=*)sinh(w)} "•
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If we put m as the coefficient of u in (3.16) we also find that

(3.17) y/ = -mA~l oAsu.

In other words we have that B(co)z = mz. This constant m is positive if we
assume, without loss of generality that a > 1 and p < 1. In fact

n 18i    (a— + °-^\ - ia— 4. a—\ = (^-/OK-'-g"-1)
1     ;    Kp"-1    p»-1)    \p"-x    p*-x) p^-2

is positive so that m > 0 independently of the value of co eR. This in turn
implies that B(co) is invertible.   D

4. Proof of the theorems

Now we are in a position of giving a proof of the theorems announced in the
Introduction. The application of Theorem 3.1 will give existence of a critical
point of the functional O and then by applying regularity results we obtain a
solution of (ES).

Proof of Theorems 0.1 and 0.2. We apply minimax Theorem 3.1 to the func-
tional O. Hypothesis (II) and (12) are satisfied by the considerations made in
§1. Definitions (3.7) and (3.8) and Proposition 3.1 give (13). The Palais Smale
condition is proved in Proposition 2.1 and the geometric conditions leading to
(IS) and (IQ) are proved in Propositions 2.2 and 2.3 respectively.

Thus, there exists z e E such that <P'(z) = 0 i.e. z is an (s, i)-\veak
solution of (ES). Next, Theorem 2.2 gives that z = (u,v) is such that u G
lV2'p/(p-V(¿i)nW0x>p/{p-x)(¿i) and v g W2'q^q-l\¿l) n Wx'ql(q~x)(¿í). That
is, (u, v) is a strong solution of (ES).

When the Hamiltonian is independent of x we have that (0,0) is a solution
of (ES). Since O(z) > ô > 0 and O((0, 0)) = 0 we find that z is not trivial.   D

In order to prove Theorem 0.3 we need to redefine the Hamiltonian. Let us
define 77 : R2 x Q -> R so that

(4.1) 77(w, v, x) = <

' H(u,v,x) if«>0, v>0,
77(0, v,x) ifu<0, v>0,
H(u,0,x) ifu>0, v <0,

. 0 if m<0, v <0.

Since we are assuming (H6) the new Hamiltonian 77 is of class C1,£ as 77.
It also satisfies (HI), (H3) and (H4). However (H2) is satisfied in a restricted
form. Next we modify the arguments given before to include this new situation.

Proof of Theorem 0.3. First we define the functional O : E —► R as

(4.2) Ö(z) = ß(z)- i H(z,x)dx.
Ja

It is clear that <I> is of class C1 in E. Assume there exists z = (u,v) a critical
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point of í>. Then by the argument given before we have a classical solution of

- Au =--—(u, v, x)   mil,dv
d ff

(4.3) -Av = -^—(u,v,x)   inQ,

w = 0,    v = 0   ondQ.

Since dH/du > 0 and dH/dv > 0 by the maximum principle we find that
u > 0 and u > 0 in Q. We only need to prove that hypotheses of Theorem 3.1
still hold. Hypothesis (H2) was used only in proving the Palais Smale condition
and the geometric condition (IQ).

Let us see first how we prove the Palais condition for $.  Let {z„} be a
sequence in E so that

(4.4) \®(zn)\ < c and Ö'(z„) -► 0,    as n -> oo.

As we did in Proposition 2.1 we have only to prove that (4.4) implies that {z„}
is bounded. Proceeding as in Proposition 2.1 we find

(4.5) cx(l + \\z„\\E)>     H(u„,v„,x)dx,

where we used the hypothesis (H2) restricted to u > 0 and v > 0. Then, after
Remark 0.5 we find c2 so that

(4.6) / |»+|° + K\ßdx < c2(\ + \\un\\E* + KIU0-
Ja

Where we denote by w+ and v+ the positive part of un and v„ respectively.
Next, following the proof of Proposition 2.1 we obtain

(4.7) \\vn\\Et < c4(ii»:iii:(1n) + \K\\%-Q\q/P + 1).

By an analogous reasoning

(4.8) \\un\\Es < c5(\\v+\\£lQ) + WKW^9 + !)•
Substituting (4.7) and (4.8) into (4.6) we obtain

IKIlL°(n) + lluJlL/>(n)
(4.9)

< cfi(llî/+llp_1   +\\v+\\{p~X)q/p + \\u+\\{q~x)p/q + \\v+\\q~x   +1)^ t6UI"/! \\L"(a) + "un "Lß(a)    + » " Hl«(íí)     + IIü» »U(a) +  >'

By our assumption (i) and (iii) on the exponents a, ß, p and q we find that
I|wÍIIl«(0) and ||u+||Li(n) are bounded. Next we can apply (4.7) and (4.8) again
to obtain that {z„} is bounded in E. This ends the proof of P.S. condition.

Now we consider (IQ). Keeping the definitions of ß given in §2 we take the
function z+ = (u+ , v+) G E+ so that u+ = 0i and v+ — A~lAs(j)X = Xxt+S4>i,
where 0i is the first eigenfunction of -A. In particular <j>x > 0 in Q. We
need to prove the existence of the constants o and M used in the definition
of Q.

Since we have

(4.10) (t0, + u)+ = ((t + y)4>x + w)+ > (t + y)0, + »,
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we proceed as in the estimate (2.28) and get

(4.11) r + y<c\\(TU+ + u)+\\La{a).

Similarly we obtain

(4.12) r-y<c\\(rv+ + v)+\\Lß{a).
From here on we proceed as in Proposition 2.3.   G

Note added in proof. After this paper was finished we learned from Hulshof and
van der Vorst that they have obtained similar results in their paper Differential
systems with strongly indefinite variational structure, J. Funct. Anal. 114 (1993),
32-58.
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