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One-dimensional nonrelativistic systems are studied when time-independent potential 
interactions are involved. Their supersymmetries are determined and their closed subsets 
generating kinematical invariance Lie superalgebras are pointed out. The study of 
even supersymmetries is particularly enlightened through the already known symmetries of 
the corresponding Schrijdinger equation. Three tables collect the even, odd, and total 
supersymmetries as well as the invariance (super)algebras. 

I. INTRODUCTION 

In the seventies, systematic studies of symmetries in 
nonrelativistic quantum mechanics (NRQM) had al- 
ready been realized when the Schriidinger equation in- 
volves time-independent potential interactions.ld Some 
of them have considered one-dimensional,2’4 
three-dimensional,’ or n-dimensional3 (space) systems. 

Recently’ we have added new information by visiting 
higher-order symmetries of such one-dimensional Schrii- 
dinger equations and by considering the third-order con- 
text as an effective case. (Remember that the usual well- 
known symmetries of the Schrijdinger equation 
correspond to first- and second-order operators.) 

Since the event of supersymmetry in theoretical par- 
ticle physic8 and its implications’ in supersymmetric 
(nonrelativistic) quantum mechanics (SSQM), we are 
dealing with supersymmetric wave equations, including 
time-independent superpotentials [hereafter denoted 
W(x) in one-dimensional problems]. Such supersymmet- 
ric equations are usually put in the following matrix 
form: 

i &x(x,t) = [ - $8: + f W2(x) + f w’(x)a3]x(x,t), 
(1.1) 

where a, = a/at, the prime refers to the space derivative 
&=678x, a3 is the Pauli 2 X 2 matrix diag( 1, - 1 ), and 
correlatively x(x,t) is a two-component wave function. 
For simplicity we consider systems with unit masses and 
choose ?i = 1 in this quantum context. 

In Hamiltonian form, Rq. ( 1.1) contains, as ex- 
pected, the bosonic part Hb and the fermionic part Hf 
given by 

Whercheur Institut Interuniversitaire des Sciences Nuclkaires, Brux- 
elks. 

Hb= - ia: + $w’(X>, Hf=;~(x)a3, 

H,=Hb + H’, (1.2) 

showing that superpotentials W(x) are simply related to 
usual potentials U(x) by 

U(x) =fW2(x). (1.3) 

Such supersymmetric equations ( 1.1) and characteristics 
( 1.2) have already suggested new methods and results8’9 
by considering even and odd symmetries in connection 
with the so-called Lie extended method developed in 
quantum physics. lo 

As a particular context that has been recently 
visited,* let us mention the case of the one-dimensional 
supersymmetric harmonic oscillator corresponding to 

W(x) =cox~U(x) =&02x2. (1.4) 

Here we want to study systematically the supersym- 
metries as well as their superstructures subtended by the 
SSQM-S&r&linger equation ( 1.1) for arbitruly superpo- 
tentials W(x). Such a program will appear in the follow- 
ing sections where we will get a complete classification of 
all solvable (admissible) interactions admitting nontrivial 
supersymmetries. 

The contents of this paper are distributed as follows. 
In Sec. II we come back on the Boyer results,3 but for 
one-dimensional systems. We present the corresponding 
study in a particularly convenient way for our purpose in 
the supersymmetric context developed in Sec. III. There 
we first determine the even supersymmetries (Sec. III A), 
then second the odd ones (Sec. III B), and finally we 
superpose both contexts (Sec. III C) and get only four 
priviledged classes of superpotentials. All the results are 
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quoted in three respective tables, where we mention the 
largest invariance Lie (super)algebras generated by the 
corresponding operators. Remember that these extended 
(super)symmetries do not necessarily close. Section IV 
finally contains some comments on isomorphic structures 
and some conclusions. 

II. GOING BACK ON SYMMETRIES IN NRQM 

In fact, Boyer3 has already solved the problem of 
determining all the symmetries of the Schriidinger equa- 
tion in n dimensions. Applied to the simplest one-dimen- 
sional context, this problem consists in the resolution of 
the following invariance condition: 

[A,Q] =UA, n&(x,t). (2.1) 

Here the Schrodinger equation defines the A operator on 
the form 

htj(x,t) = ( - id, - ;a: + U(X) )$(x,t) =o, (2.2) 

while we are searching for symmetry operators Q of (at 
most) second order with respect to space derivatives, i.e., 

Q=io(x,t)d, + ib(x,t)& + ic(x,t), (2.3) 

a, b, and c being arbitrary functions. Let us mention that 
higher-order symmetry operators have recently been con- 
sidered elsewhere in the same context.’ 

The above problem leads to a set of partial differential 
equations giving rise to x-independent functions ao, bo, 
and co and to the following first-order partial differential 
equation on U(x): 

(fhox + bo) U’(x) + &U(x) 

= _ $3 - i&x - ii0 + (i/4)iio, (2.4) 

where the overdots evidently refer to time derivatives. 
The general solution of Fq. (2.4) appears as the sum of 
the general solution U,(x) of the homogeneous equation 
and of a particular solution U1 (x) of the inhomogeneous 
equation. Due to the at most quadratic dependence on x 
in the inhomogeneous part of Eq. (2.4), Boyer has pro- 
posed to search for the general solution3 

U(x) = Uo(x) + U,(x), 

with 

(2.5) 

a,B,,y=arbitrary constants, (2.6) 

and to distinguish three cases according to a = 0, 
a=W2>0,0ra= -0~~~0. 
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If the whole discussion takes place in Boyer’s work,3 
let us notice here the following results and properties in 
order to exploit them in the supersymmetric context. 

In the free case, i.e., U = 0 ( U. = 0 = VI), as already 
obtained by Niederer, ’ we get at most six symmetries 
whose commutation relations lead to the largest invari- 
ance algebra seen as a semidirect sum (Cl) of the so-called 
“conformal” algebra so (2,1) and the Heisenberg algebra 
h(2). 

In the interacting case but when U. = 0, we want to 
point out a new result, i.e., the potential 

U(x) = Ul (xl (2.7) 

leads to isomorphic structures so( 2,1 )Oh( 2) as in the 
free case (a = p = y = 0) whatever are the constants a, 
p, and y. As particular cases, the harmonic oscillator 
corresponds to U. = 0, a = w2, p = y = 0 [see Eqs. ( 1.3) 
and (2.7)] while the linear potential to U. = 0, a = 0, i.e., 

U(x) =Px + y. (2.8) 

Consequently, these cases also admit six symmetries and 
there exist changes of variables connecting all the equa- 
tions including the potential forms (2.7) for arbitrary a, 
p, and y, with the free Schriidinger equation. Let us just 
quote as an example some formulas corresponding to the 
change of variables between the case a = o2 > 0 and the 
free case (a = fl= y = 0). It can be shown that the re- 
lations 

t, = ( l/w) tan - ’ wt2, 

x1=(1 +w2&-“2(x+fl/J) -p/w2 

correspond to a well-defined change of variables between 
the above interacting case (indices 1) and the free case 
(indices 2) implying a modification in the corresponding 
Schrodinger wave functions according to 

Yl(xl,q)=(l +0@)“4 exp[ (z-s) tan-tat2 

if12 t2 it2x 
371 exp -2(1 1 I 
x (20 + w2x> Y,(xzttz). 1 (2.10) 

As a more particular case included in this comment, i.e., 
the harmonic oscillator case with a = w2, P = y = 0, we 
immediately recover the Niederer result:’ 
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Yl(X,Jl) = (1 + w2ty4exp - 1 i t2w2x2 

2(1 1 
x*2(x2,td. 

(2.11) 

When nontrivial potentials U&)#O are considered, 
only two cases have to be mentioned: either Ue is arbi- 
trary, then all the potentials 

u(x)=uo+~(uc2+Px+y (2.12) 

lead to at least two symmetries (the corresponding 
Hamiltonian and the identity operator); or Ue takes the 
nonzero form 

Uo(x) =S/(p + E12, p#O, (2.13) 

then all the potentials 

U(x) =S/(px + E l2 + ; a+? + Px + Yp 

[(w) = (4) if ~ZOI, (2.14) 

lead to four symmetries generating the direct sum 
so(2,l) (391. 

Such properties are of special interest for the follow- 
ing discussion of the supersymmetries of Eq. ( 1.1) in 
particular. 

Ill. GOING TO SUPERSYMMETRIES IN SSQM 

Already consideredgP9 for only one-dimensional su- 
persymmetric harmonic oscillators characterized by in- 

teracting terms given in Eq. ( 1.4), the search for the 
largest number(s) of one-parameter Lie algebras can be 
extended to arbitrary (one-dimensional) systems. This 
asks for considering the problem (2.1) but with an oper- 
ator Ass defined by the supersymmetric equation ( 1.1) 
and with symmetry operators Q containing even (6) and 
odd (7) parts* according to 

Q=e-+Qi, (3.1) 

refering to the expected graduation in the supercontext. 
Consequently, let us decompose our program in three 
steps: first to study the even supersymmetries (Sec. 
III A) by exploiting the results contained in Sec. II on 
symmetries; second to develop the new odd context and 
to get the corresponding supersymmetries (Sec. III B); 
and, third, to superpose the two sets of results (Sec. 
III C) in order to obtain the complete classification of 
solvable interactions in SSQM. 

Let us just notice here that, in connection with Eq. 
( 1.1 ), we understand that even and odd considerations 
are directly connected with 2 x 2 Pauli matrices or more 
correctly with the Clifford algebra 
C12={aO=12,~1,02,c7s}, where we easily distinguish the 
even matrices (ae,as) and the odd ones (ol,02) in the 
usual fundamental representation.” Such a remark di- 
rectly enlightens Sets. III A and III B. 

A. Even supersymmetries in SSQM 

The invariance condition (2.1) is replaced here by 

[AS&J =i&&, &=&kt), (3.2) 

where 

A ( - ia,- ia: + a W2(x) + fwyx) 
^ 

0 \ 
45s = 

\ 0 -ia,-~~+~W2(x)-fWr(x) 
! 

(3.3) 

and 

a=( i(ao+ a3)a,+ i(b0 + b3)ax+i(c0+C3) 0 
0 i(ao-u3)a,+i(bo- b3)ax+i(Co-C3)9 1 

(3.4) 

I 

due to the explicit forms of the even matrices a0 and 
a3. Such a problem is equivalent to a set of two distinct 

=iAl( -ia,-ia:+ V,(x)) 

ones in NRQM, as discussed in Sec. II. Indeed we get the 
two invariance conditions 

and 

[ - ia,- $a:+ v2(x),i(A2a,+B2ax+C2) 1 

=iA2( -ia,-@ :+ V2(x)), 

(3Sa) 

(3Sb) 
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TABLE I. Even supersymmetries and associated superpotentials. 

ChSStS 

$ supersymmetries Number of 8 
and super- 

their Lie algebras symmetries Explicit forms of associated superpotentials Characteristics 

Free case 

1 Iso(2,1)0h(2)1 
@b(2,1Dh(2)1 12 W(x) = ax + b Linear case 

Harmonic 
oscillator’ 

2 lso(2.1 )OW)l 
@,[so(2,l)ogl(l)l 10 W(x) = f l/(x + c) Coulomb (c=O) 

3 W(x) = ax* l/x Calogero (a=~) 

4 lso(2,l)@egl(l)l 
@ [so(2,l)@gl(l)l 8 W(x) = ox + c/x a#07 +*I 

5 W(x) = (fx + gV(cx2 + dx + h) fia +=a 
f#*c 

6 bd2,1m(2)1 8 
ceTFL?zWbr 

@ [so(2)~gul)l W(x) = ax + b + 
d+cle”“2’==dx 

I 
+‘A +O 

6 C g 
W(x)=dx+f+ h(dx+f)*2c”+[g/(dT2c)](dx+f) 

d#*2c 

8 bow) ~egl(l)l 6 f cfo 
~[sw) @gl(l)l W(x) = ___ 

*2cz+d+ (*2cx+d)(g+ (f/2c) lnl*2cx+dl) f* 

9 6 C g(dx+f) T2c/de7&T2bx 

W(x)=ax+b+- 
dx+f+h+g~er”‘z’2b”(dx+f)T2c~ddx cfo, *I 

10 ba)@gl(l)l 
eIW2)egl(l)l 

4 W(x) #above forms . . . 

where the arbitrary functions Ai, Bi, Ci and Ai (i = 1,2) 
are evidently simply related to the above uo, u3,..., while 
we have defined 

V,(x) =gv2(x) + $v(x) (3.6a) 

and 

V,(x) =gv’(x, - gv(x>, (3.6b) 

these functions being nothing else than the potentials as- 
sociated with superpartners.” 

By combining and superposing the potentials (2.6), 
(2.7), (2.12), and (2.14) in known NRQM, we immedi- 
ately deduce the cases leading to (at most) 12 even su- 
persymmetries or to 10, 8, 6, and (at least) 4 of them. 
The (six) associated invariance Lie algebras are also eas- 
ily determined (see Table I) : the largest one is seen as the 
direct sum [so(2,1)0h(2)] d [so(2,1)0h(2)] and the 
smallestoneas[so(2)~gl(l)]~[so(2)~gl(l)].Suchdi- 
rect sums evidently come from the superposition of both 
projections by P* = i( a0 f a3) of the ordinary symmetries 
obtained in NRQM. Moreover, by exploiting the explicit 
forms obtained for I’, and V2 in NRQM, it is possible 
through Eqs. (3.6) to get the corresponding superpoten- 

tials W(x) entering in Bq. ( 1.1). Let us, for example, 
treat the case leading to the maximal number of even 
supersymmetries, i.e., let us consider 

V,(x) =4a$ + PlX + y1 (3.7) 

and 

V,(x) =&2x2 + P2x + 7-3. 

Through Eqs. (3.6) we readily get the linear superpoten- 
tial 

W(x) =ux + 6, u,b=const, (3.8) 

which also corresponds to the free case (a = b = 0) as 
well as to the one-dimensional harmonic oscillator (a 
= o, b = 0). Here are associated 12 even supersymme- 

tries, an old result quoted in the even notations,’ 

[(ff~,Cd,P~b~l and [W&d,P,hl. (3.9) 

The general discussion leads to specific families of 
superpotentials given in Table I simultaneously with their 
associated invariance Lie algebras and their dimensions. 
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Let us point out the Coulomb-like and Calogero-like 
forms admitting ten even supersymmetries. 

[Ass&?11 =%Ass, AI=&( (3.10) 

B. Odd supersymmetries in SSQM 

With the operator A = (3.3) we have now to exploit 
the invariance conditionss- . . where 

pi=((iu~-u2)al+(ibp-b2)a,+ic,-c2 
(iul + u2)d, + (ibl + b2)& + icl + ~2 

0 (3.11) 

due to the explicit forms of the odd matrices u1 and a2. 
Such a problem leads to a set of two third-order equa- 
tions, which take the following forms, where the func- 
tions ai, Bi, and 3/i are the x-independent parts of Ui, bi, 
and ci (i = 1, 2), respectively: 

1 -+-qj~x--;l”,++O 

and 

1 
--t2X2-iia22x-,a2+~2=o. 

These inhomogeneous nonlinear equations simulta- 
neously admit the particular solution (3.8), so that we 
can in this supersymmetric context search for the general 
solution 

W(x) = We(x) + W,(x), 

where we accept 

(3.13) 

W,(x) =ax + b, u,b=const, (3.14) 

and where we have to discuss the two cases W. = 0 or 
Wo#O. Such a discussion is analogous to the one devel- 
oped in NRQM through Eqs. (2.5), (2.7), and (2.12). 

Let us (first) consider W,(x) = 0, so that 

w(x) = W,(x) =ux + 6. (3.15) 

Here again we can distinguish a = 0 and u#O. Both cases 
lead to 12 (odd) supersymmetries. In particular, if a = w, 
b = 0, this context coincides with the supersymmetric 
harmonic oscillator already visited and characterized by 
this maximal number of odd supersymmetries.’ 

Then let us (second) take Wo#O and insert the value 
(3.13) in Eqs. (3.12). For arbitrary Wo, it is once again 
interesting to distinguish between the two cases a = 0 and 
a=@. Such a discussion leads to at least two odd super- 
symmetries, which appear on the forms 

Qf”=k~,&- a2W(x) and Q:‘=~cT~c~~ + cl W(x). 
(3.16) 

We also point out that they generate the simplest N = 2 
superalgebra sqm (2) initially introduced by Witten.’ We 
effectively have 

{Q f”,~ :“>={Q r),Q f2)) 

= - 2a; + 2 W2(x> + L?a3w’(x) 
(3.17) 

= 4Hss = 42, 

{Q f”,~ f)}=O, [Q :i),Hss] =O, i= 1,2. 

In order to complete our classification of admissible 
interactions characterized by odd supersymmetries, we 
now want to determine the impact due to each symmetry 
on the superpotentials We(x) left arbitrary in Rq. (3.13 ). 
This can be studied by quoting the general forms of our 
arbitrary functions ai, pi, and yi (depending only on t) 
appearing in Eq. (3.12). When a = 0, these functions are 
obtained in terms of the 12 arbitrary constants Ace), 
B(o), C(o), D(o), E(o), F(o), G(o), H(o), K(o), L(o), M(o), 

the subscript refers to this a = 0 case) as fol- 
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al(t) =&qo,~ + B,,,t + C(O), 

a2(d =i.o(o)~ + q,+ + F(O), 

81 (t> = - tbD(o,~ + G,o,t + H(o), 

B2(d =tbA(o)? + fq,,t + L(O), (3.18) 

Yl (t) =$ Ao,t B(o)b2t + iK(O)bf + M(O), 

Eco,b2t - iGco,bt + NC,,, 

while, when a#O, they are given by 

al(t) =A exp(iar) + i3 exp( - iut) 

+ iC exp ( 3iat) - iD exp ( - 3iut), 

I 

a2(t) =Bexp(iut) + Fexp( - iat) + Cexp(3iut) 

+ D exp( - 3iut), 

PI(~) = (i/2)b[A exp(iut) - B exp( - iut)] 

+ i[K exp(2iut) - L exp( - Ziut)] 

-ib[Cexp(3iut) -Dexp( -3iut)] +M, 

P2(t)=(i/2)b[~exp(iut) - Fexp( - iat)] 

+KexpCW +Lexp( -2iut) + (3i/2)b 

X [ c exp( 3iut) - D exp( - 3iut) ] + G, 
(3.19 

rl(t)=exp(iut) iP+tuE+tb2E+tuA+$b2A 
. 1 

-exp( -i&) @ -~&+~b2~+~uB-$b’B 
. 1 

+ 2ib[Kexp(2iut) + L exp( - 2iut)] - Cexp(3iuf) jtn+;b2) -Dexp( -3iut) (iu-:b2), 

Y#)=PexP(iut) + Qexp( - iut) + 2b[Kexp(2iut) -L exp( - 2iut)] + (3i/4)Cexp(3iat) 

X (3b2 + a> + (3i/4)D exp( - 3iut) (3b2 - a), 

showing once again 12 arbitrary constants. 
As an example, let us introduce (3.13) and (3.14) in 

Eqs. (3.12) when a = 0, i.e., when W(x) = W,(x) 
+ 6. By exploiting the relations (3.18) when only the 

constant Acoj is nonzero, we finally obtain three time- 
independent conditions on We(x), which are 

V. - 6Wo( W, + 2b) Wo=O, 

2bxWo+ Wo(Wo+4b)=0, 

x(xw)o + 2Wo) =o. 

They are easily handled for getting the unique solution 
W,(x) = 0. This A (c)-context leads to the symmetry 
operator 

40) 
Qi =(~l ~?a,+~txa,+$x+~b2~-~tZ~2 

I 

-$t9v&-~*xw . ) (3.20) 

By collecting all the similar information for the whole set 
of odd (super)symmetries associated with the case u = 0, 
we finally determine besides the maximal ( 12) and min- 
imal (2) numbers of odd supersymmetries already ob- 
tained that only three intermediate cases can occur: either 
W(x) = f l/x admits ten (odd) symmetries; or W(x) 
= *c/x admits four (odd) symmetries if c# f 1; or 
W(x) = b + Wo(x> admits four (odd) symmetries if 
we take account of an extradependence in terms of Leg- 
endre functions. 

When u#O, the developments are more elaborate but 
the complete results can once again be obtained through 
the resolution of relatively complicated nonlinear differ- 
ential equations. Just as an example with 
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W(x) = WC(X) + ax + b, u#O, (3.21) 

let us use Eqs. (3.12), (3.13), (3.14) and insert Eq. 
(3.19) when only the arbitrary constant C is nonzero. 
This case is then characterized by the functions 

Consequently, we can summarize in Table II the spe- 
cific families of superpotentials admitting odd supersym- 
metries. 

al(t)=iCexp(3iut), Cfz(t)=Cexp(3i&), 

Already mentioned in the even context, we notice 
once again that the free case, the linear case, and the 
harmonic oscillator case are also involved within the 
same class 1’ and that their 12 odd supersymmetries can 
be quoted [in correspondence with (3.9)] in the forms 

P*(t)= --bCexp(3iut), 

h(t) = (3i/2)bCexp(3iut), (3.22) 

Al= -~uCexp(3iut) -zb2Cexp(3iut), 

1 (H~,cd,p* )a11 and [ (HB,C+J~* hl 
(3.26) 

according to old notations’ and remembering that ol and 
a2 are the two odd matrices of C12. 

~2(t) =(9U4)b2Cexp(3iut) + (3i/4)uCexp(3iut). 

Thus we get the following third-order (nonlinear) differ- 
ential equation on W,(x) : 

w”o=6W@‘o - 12(ux + b)2W’0 + 12(ux + b) WOW’, 

C. Supersymmetries and invariance superalgebras 
in SSQM 

- 36u(ux + b) W,, 

or, in terms of W(x) = (3.21), 

(3.23) 

We can now superpose the results on even and odd 
supersymmetries collected in Tables I and II, respec- 
tively. If such a superposition is relatively direct for su- 
perpotentials belonging to the classes 1, 2, 3, 4 and l’, 2’, 
3’, 4’ due to their similar forms, it is evident that the 
superposition of all other information becomes relatively 
tedious and that it is not interesting to insist on the cor- 
responding properties. 

W ”=6W2w, - 18(ux + b)‘W ’- 6uW2 

- 36a(ux + 6) W  + 54u(ux + b)2. (3.24) 

Such an equation has already been quoted and solved in 
the literature:13 it corresponds to the derivative of a Pain- 
1evC IV-type equation and leads to the solution’3 

W (XbEZ (0,&x) +; x+$ . ( 1 (3.25) 

Now, by collecting all the corresponding information 
for the whole set of odd (super)symmetries associated 
with the case u#O, we see that only five intermediate 
cases can occur: Either W(x) = * l/(ux + b) + ax + b 
admits ten (odd) symmetries; or W(x) = c/(ux + b) 
+ ax + b admits four (odd) symmetries if c#f 1; or 
W(x) = W,(x) + ax + b admits four (odd) symme- 
tries if W. is a solution of Eq. (3.23); or 

Besides the information on the maximal number 24 
( = 12 + 12) of supersymmetries associated with the 
classes 1 and l’, as well as on the minimal number 6 
( = 4 + 2) associated with the classes 10 and lo’, we can 
distinguish what are the superstructures generated by 
some subsets of operators. We have determined that only 
three (closed) invariance Lie superalgebras can be 
pointed out. We have summarized these structures and 
their associated properties in Table III. We evidently re- 
cover the expected results’ for the supersymmetric har- 
monic oscillator but also find new ones for the Coulomb 
and the Calogero problems. 

We notice that only a few cases are priviledged in this 
supersymmetric context when we require invariance su- 
perstructures. 

IV. COMMENTS AND CONCLUSIONS 

c exp( fux2) 
W(x)=dFc S exp( *ux2)dx + ux 

admits three (odd) symmetries; or 

c exp ( fb2x2 F 2bx) 
W(x) = 

As already noticed (and expected), the free case 
leads to the largest number (24) of supersymmetries and 
to the largest ( 13-dimensional) kinematical invariance 
superalgebra. These results are also valid for the linear 
case and the harmonic oscillator context, which, both, are 
isomorphic to the free case as it is true in NRQM. In fact, 
let us point out that for those three cases we are dealing 
with the superpotential given by (see Table III): 

d=tc S exp(fb2x2F2bx)dx 
=+b2x+b 

admits three (odd) symmetries. 

W(x) =ux + b, (4.1) 

so that the corresponding supersymmetric Hamiltonian 
(1.2) is 
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TABLE II. Odd supersymmetries and associated superpotentials. 

classes 

1’ 

2’ 

3’ 

Number of 
U supersymmetries 

12 

10 

Explicit forms of associated superpotentials 

W(x) = ax + b 

W(x) = c/x 

W(x) = ax + b + c/(x + b/a) 

Characteristics 

Free case 
Linear case 

Harmonic oscillator’ 

c= *1 

a*, c= *1 

4 W(x) =ax + b + c/(x + b/a) a#Q cf*1 
4 

5’ W(x) = c/x cts*1 

4 

W(x) = b + W,(x) 

i fPVO - 6WiFV’ - 126W0w’,, - 66*W’,=O 

W(x) = ax + b + We(x) 
if W ”O - 6WiW” - 12(ax + 6)Wow’, 

+ 12(ax + b)‘JV’,, + 36a(ax + b)W,=O 

a=0 

a#0 

8’ 

3 
W(x) = ax + 

cexp( *ax2) 
&cl exp( =+=ax2)dx 

aZo, cfo 

9’ 

W(x) = +x + b + 
c exp(fb’x2rZbx) 

d=tcJ exp(@T2bx)dx 
b#O, e 

10’ 2 W(x) = W,(x) + ax + 6, W,#above forms . . . 

Ass= - id, + Hss, (4.4) 

that 

UAssU-‘=[ -ia,-;a;+f(u2x2+2abx+b2)]12. 
(4.5) 

Hs=jp2 + f(u2x2 + 2ubx + b2) + ;uaa3. (4.2) 

Then, by using the unitary transformation 

U=exp[ (i/2)uta3], (4.3) 

we immediately get for the operator Ass= (3.3), i.e., 

TABLE III. Total number of supersymmetries and associated Lie superalgebras. 

Superpotentials 
Number of supersymmetries Invariance Lie superalgebras 

g u N = g + U Dimension (d) Superstructure Characteristics 

1 W(x) =ax+b 12 12 24 d= 13 osp(2/2)0sh(2/2) 
Free case 

Linear case 
Harmonic oscillator’ 

2 
I 
c=*l, 

W(x)=ch cffl, cfo 
10 10 
8 4 

20 
12 d=7 ~osp(2/l)oso(2)]~gl(l) Coulomb 

1 c=*l, 
3 W(x)=ax+c/x +*1, czo ‘8” 10 

4 
20 
12 d=7 [osp(2/l)oso(2)]~gl(1) Calogero 

4 W(x)#above forms 8, 6, or 4 4, 3, or 2 12<N<6 d=5 [sqm(2Do(2)l~gl(l) . . . 
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This expression corresponds to the NRQM context char- 
acterized by the potential (2.6), but amplified by the 
identity matrix I2 belonging to the Clifford algebra CIZ. 
We thus recover the six symmetries obtained by 
Niederer’ multiplied here (four times) by the elements of 
Cl? leading to 12g + 128, i.e., to 24 supersymmetries’ 
characterized in Eqs. (3.9) and (3.26). Among them 
only 13 close and lead to the largest kinematical invari- 
ance superalgebra osp( 2/2) q sh (2/2) ,I4 Associated with 
these comments are changes of variables easily deter- 
mined from the formulas (2.9)-(2.11) and directly con- 
nected with other results1”5 when, for example, a = w 
and b = 0. 

Let us also insist on the specific interest of the sim- 
plest Witten superalgebra sqm (2) considered in Eqs. 
(3.17) and recovered as a part of the minimal closed 
superstructure found in Table III. We immediately notice 
that 

osp(2/2) ~oosp(2/1) 1sqm(2), 

a physical chain of particular interest. 

(4.6) 

Besides the general conclusions that can be drawn 
from the tables and more particularly from Table III, let 
us recall that different types of superpotentials have al- 
ready been studied in SSQM (see more particularly the 
reviews of D’Hoker et a1.16 and of Lahiri et a1.17). All 
these superpotentials fall into one of the classes l-4 con- 
tained in Table III, as well as those we have considered as 
partner potentials in parasupersymmetric quantum 
mechanics.‘* 
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