ON SUPPORTS OF SEMIGROUPS OF MEASURES

by H. L. CHOW

(Received 17th January 1973)

Let S denote a compact semitopological semigroup (i.e. the multiplication is separately continuous) and P(S) the set of probability measures on S. Then P(S) is a compact semitopological semigroup under convolution and the weak * topology (4). Let Γ be a subsemigroup of P(S) and $S(\Gamma) = \bigcup_{\mu \in \Gamma} \text{supp } \mu$ where supp μ is the support of $\mu \in P(S)$. In the case in which S is commutative it was shown by Glicksberg in (4) that $S(\Gamma)$ is an algebraic group in S if Γ is an algebraic group. For a general semigroup S, Pym (7) considered $\Gamma = \{\eta\}$, η being an idempotent, and established that $S(\Gamma)$ is a topologically simple subsemigroup of S, i.e. every ideal of $S(\Gamma)$ is dense in $S(\Gamma)$. In this note we prove that if Γ is a simple subsemigroup of P(S) (a semigroup is simple if it contains no proper ideal) which contains an idempotent then $S(\Gamma)$ is a topologically simple subsemigroup of S. We also give an example to show that our conclusion (hence also Pym's) is best possible in the sense that $S(\Gamma)$ is not simple in general.

Next, if S is jointly continuous and supp $\Gamma = \overline{S}(\Gamma)$ (the bar denotes closure), we can then obtain that supp Γ must be simple if Γ is assumed simple but not necessarily containing an idempotent. In other words, (Theorem 4) for a jointly continuous semigroup S, the support of a simple subsemigroup of P(S) is a compact simple subsemigroup of S. This fills a lacuna in the literature. In fact it was first stated by Lin as a corollary of the following (5, Theorem 3): "If Σ is a closed subsemigroup of P(S), then the minimal ideal $K(\text{supp }\Sigma)$ of supp Σ is the support of the minimal ideal $K(\Sigma)$ of Σ ." Unfortunately the proof of this statement given in (5) contains a gap since the set

$$\{\mu \in \Sigma : \text{ supp } \mu \cap K(\text{supp } \Sigma) \neq \emptyset\}$$

is not shown to be non-empty although essential use is made of the fact that it is an ideal of Σ . Here we give a direct proof of the "corollary" and deduce the "theorem". (We note that Theorem 3 of (5) was used to derive several more results in (5), quoted in (8), and employed in the proof of Theorem 2 of (2).)

The author gratefully acknowledges the helpful advice of his supervisor, Dr G. Brown, and the financial support from the Association of Commonwealth Universities.

Proposition 1. Suppose S is a compact semitopological semigroup. If Γ is a simple subsemigroup of P(S) and Γ contains an idempotent η , then $S(\Gamma)$ is a topologically simple subsemigroup of S.

Proof. Let *I* be an ideal of $S(\Gamma)$ and let $\Omega = \{\mu \in \Gamma : \text{ supp } \mu \cap I \neq \emptyset\}$. It is easily seen that Ω is non-empty and an ideal of Γ by virtue of (4, Lemma 4.1). This gives $\Omega = \Gamma$, whence $\text{supp } \eta \cap I \neq \emptyset$. Since $\text{supp } \eta$ is topologically simple, it follows that $\text{supp } \eta \subset \overline{I}$. Hence for any measure $\mu \in \Gamma = \Gamma \eta \Gamma$, we have $\text{supp } \mu = \overline{\text{supp } \alpha \text{ supp } \eta} \overline{\rho \subset I}$ for measures $\alpha, \beta \in \Gamma$. Consequently $S(\Gamma) \subset \overline{I}$, i.e. $S(\Gamma)$ is topologically simple.

Example 2. In the preceding proposition, $S(\Gamma)$ need not be simple. For instance, take the semigroup S given in (1, IV.7.1), i.e. $S = I \times I \times I$ with the usual topology, where I = [0, 1]. Consider the separately continuous function $f: I \times I \rightarrow I$ defined by $f(x, z) = 2xz/(x^2 + z^2)$ for x, z not both zero, and f(0, 0) = 0. Then S endowed with the multiplication

$$(x, y, z)(x', y', z') = (x, f(x, z'), z')$$

is a compact semitopological semigroup. Its minimal ideal

$$K(S) = \{(x, f(x, z), z): x, z \in I\}$$

is not closed since $(0, 1, 0) \in \overline{K}(S) \setminus K(S)$. Now for any $a \in K(S)$ and $\mu \in P(S)$ we obtain the relation $\delta(a)\mu\delta(a) = \delta(a)$ ($\delta(a)$ denotes the unit point mass at a), since

$$\delta(a)\mu\delta(a)(f) = \int f(ata)d\mu(t) = \int f(a)d\mu(t) = f(a) = \delta(a)(f)$$

for all $f \in C(S)$. It follows that the measure $\eta = \mu \delta(a)\mu$ is idempotent. If $\Gamma = \{\eta\}$ and μ is a measure with S as its support (e.g. the restriction to S of the Lebesgue measure on \mathbb{R}^3), then $S(\Gamma) = \text{supp } \eta = \overline{SaS} = \overline{K}(S)$ which is not simple.

Example 3. With the hypotheses of Proposition 1, supp Γ may not be topologically simple. For instance, take the one-point compactification $S = \mathbb{R} \cup \{\infty\}$ of \mathbb{R} which is the additive group of real numbers with the operation extended by $x + \infty = \infty + x = \infty$ for $x \in S$. It follows that S is a compact semitopological semigroup (1, IV.1.1.1.1(a)). Let $\Gamma = \{\delta(x) : x \in \mathbb{R}\}$. Then $S(\Gamma) = \mathbb{R}$ and so supp $\Gamma = S$ which is clearly not topologically simple.

In the remainder of this paper, let S be a compact jointly continuous semigroup. We have the next simple lemma which extends Lemma 1.3.11 of (6).

Lemma 4. Suppose A is a subsemigroup of S. Then A is topologically simple if and only if \overline{A} is simple.

Proof. Let \overline{A} be simple and take an ideal I of A. It is obvious that \overline{I} is an ideal of \overline{A} and so $\overline{I} = \overline{A} \supset A$, i.e. A is topologically simple. To show the converse, we model on the proof of (1, II.3.6). In fact for any $a \in A$ we see that $\overline{A}a\overline{A} \cap A \neq \emptyset$ is an ideal of A and so $\overline{A}a\overline{A} \supset A$. Whence $\overline{A}a\overline{A} = \overline{A}$. Now we check that $\overline{A}x\overline{A} = \overline{A}$ for $x \in \overline{A}$. Clearly there exists a net (x_{α}) in A such that $x_{\alpha} \rightarrow x$ and $\overline{A}x_{\alpha}\overline{A} = \overline{A}$. Let $b \in \overline{A}$ and we obtain two nets (c_{α}) and (d_{α}) in \overline{A} such that $b = c_{\alpha}x_{\alpha}d_{\alpha}$. By passing to subnets if necessary, we have $c_{\alpha} \rightarrow c$ and $d_{\alpha} \rightarrow d$, giving $b = cxd \in \overline{A}x\overline{A}$. It follows that $\overline{A} \subset \overline{A}x\overline{A}$. Thus \overline{A} is simple.

Theorem 5. (1) If Γ is a simple subsemigroup of P(S), then supp Γ is a compact simple subsemigroup of S.

(2) If Σ is a closed subsemigroup of P(S), then supp $K(\Sigma) = K(\text{supp }\Sigma)$.

Proof. (1) Because supp $\overline{\Gamma} = \text{supp }\Gamma$ (cf. (3), p. 55), we consider the compact semigroup $\overline{\Gamma}$ which contains an idempotent η (6, Theorem 1.1.10). Moreover, $\overline{\Gamma}$ is simple by Lemma 4. Then it follows from Proposition 1 that $S(\overline{\Gamma})$ is topologically simple and so supp $\overline{\Gamma}$ is simple by Lemma 4 again. That supp Γ is simple follows.

(2) Clearly supp $K(\Sigma)$ is an ideal of the semigroup supp Σ and hence contains $K(\text{supp }\Sigma)$. The result is now immediate.

Remark. In the theorem above, it is clear that $S(\Gamma)$ is a topologically simple semigroup, but we have been unable to determine whether this semigroup is always simple.

REFERENCES

(1) J. F. BERGLUND and K. H. HOFMANN, Compact semitopological semigroups and weakly almost periodic functions (Lecture Notes in Mathematics 42, Springer-Verlag, Berlin-Heidelberg-New York, 1967).

(2) S. T. L. CHOY, On a limit theorem of measures, Math. Scand. 29 (1971), 256-258.

(3) I. GLICKSBERG, Convolution semigroups of measures, Pacific J. Math. 9 (1959), 51-67.

(4) I. GLICKSBERG, Weak compactness and separate continuity, *Pacific J. Math.* 11 (1961), 205-214.

(5) Y.-F. LIN, Not necessarily abelian convolution semigroups of probability measures, *Math. Z.* 91 (1966), 300-307.

(6) A. B. PAALMAN-DE MIRANDA, *Topological semigroups* (Mathematisch Centrum, Amsterdam, 1964).

(7) J. S. PYM, Idempotent probability measures on compact semitopological semigroups, *Proc. Amer. Math. Soc.* 21 (1969), 499-501.

(8) J. H. WILLIAMSON, Harmonic analysis on semigroups, J. London Math. Soc. 42 (1967), 1-41.

UNIVERSITY OF LIVERPOOL

AND

CHUNG CHI COLLEGE, CHINESE UNIVERSITY OF HONG KONG

E.M.S.-19/1---C