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Abstract

The manipulation of the molecular spin state by atom doping is an attractive

strategy to confer desirable magnetic properties to molecules. Here, we present the
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formation of novel magnetic metallocenes by following this approach. In particular

two different on-surface procedures to build isolated and layer-integrated Co-ferrocene

(CoFc) molecules on a metallic substrate via atomic manipulation and atom deposi-

tion are shown. The structure as well as the electronic properties of the so-formed

molecule are investigated combining scanning tunneling microscopy and spectroscopy

with density functional theory calculations. It is found that, unlike single ferrocene, a

CoFc molecule possesses a magnetic moment as revealed by the Kondo effect. These

results correspond to the first controlled procedure towards the development of tailored

metallocene-based nanowires with a desired chemical composition, which are predicted

to be promising materials for molecular spintronics.

keywords: ferrocene, spin doping, Kondo effect, tip-assisted manipulation, scanning tun-

neling microscopy/spectroscopy, density functional theory

The ability to manipulate the magnetic properties and the spin-polarized current through

single molecules is at the basis of molecular spintronics.1–4 The spin and the electronic

structure of the molecule near the Fermi level critically influence the spin-polarization of

the current,5,6 opening up the tantalizing prospect of tuning the spin polarization through

a custom-made chemistry of the molecule and an accurate choice of the electrode material.

Within this context, the investigation of single molecules with built-in magnetic moments

that are coupled to ferromagnetic, or more generally, to metallic electrodes represents a

model playground for exploring novel spintronic concepts.7

Many experimental investigations have reported on the possibility of manipulating the

molecular spin by metallizing or altering the chemical environment of porphyrin-based8–11 or

phthalocyanine-based12–18 molecules adsorbed on metallic surfaces, or of cobalt complexes

coupled to metallic electrodes.19,20 Experimental studies of this kind on single metallocenes

(MCp2 where Cp = C5H5 and M = Fe, Co, Ni etc.) remain instead limited, despite numer-

ous studies have predicted that metallocene-based nanowires21–29 (M-Cp-M-Cp-...) could

produce highly spin-polarized charge carriers. The efficiency of this process is influenced by
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the metallic constituents of the nanowires,24,29 the wire length,26 and by the geometry of

the metal-wire contact.25 Progress in this area is hampered by the difficulty encountered in

synthesizing these molecules in the correct molecular-device environment. The demand for

elaborating a prototypical system with atomic-scale control is therefore strong.

We present here a general method for modifying the structure and magnetic moment of

a metallocene molecule by coupling it to a single atom. The method is exemplified by using

a ferrocene molecule (FeCp2, noted Fc hereafter) and a cobalt atom adsorbed onto a copper

surface. Ferrocene represents the most commonly considered metallocene as its anchoring to

surfaces has been studied for years30 in view of applications ranging from charge storage31

to transistors.32 By manipulating ferrocene and cobalt with the tip of a low-temperature

scanning tunneling microscope (STM) and forcing them to interact with each other, we show

that we can produce a small nanowire consisting of Co-Cp-Fe-Cp (noted CoFc hereafter; see

Fig. 1e). The upstanding geometry obtained for CoFc on the surface is ideal for elaborating

a single-molecule device, for example by a subsequent connection of the nanowire to a top

electrode. To generalize the process to a collection of molecules, we also show that CoFc can

be produced through a spontaneous on-surface reaction of cobalt atoms with a molecular

layer of ferrocene. Through a combined STM and density functional theory (DFT) study,

we then show that unlike Fc,25 CoFc exhibits a magnetic moment. These results are a

substantial advance upon existing studies devoted to metallocene nanowires as, to date,

the production and magnetic characterization of these systems are restrained to the gas-

phase.33,34 Our findings can be easily generalized to other metallocenes and to ferromagnetic

surfaces.

The measurements were performed with a STM working in ultra-high vacuum (UHV) at

4.4K using a pristine Cu(111) surface (see experimental details in the Supporting Informa-

tion). Ferrocene molecules were sublimated in UHV onto the surface held at a temperature

below 100K. A sub-monolayer coverage of Fc molecules gives rise to a molecular decoration

of the surface steps, as shown by the 0.2 monolayer coverage in Fig. 1a. According to the
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Figure 1: Building process of an isolated CoFc: (a) a Fc molecule at a step edge is picked
up with the tip (image acquired with a tunneling bias: −1 V, current: 20 pA; image size:
7×7 nm2), (b) the presence of Fc at the tip apex is asserted by imaging Co atoms (−50 mV,
20 pA, 2.7 × 2.7 nm2), which then exhibit a molecular pattern, (c) Fc is deposited on top
of a Co atom by a tip-atom contact (−1 V, 20 pA, 7 × 7 nm2). (d) Same image as panel
(c) but with a Laplacian filter applied in order to enhance the intramolecular contrast. (e)
Chemical structure of CoFc; white, yellow, and red balls represent H, C, and Fe atoms of
the Fc molecule respectively, and green balls represent the Cu atoms of the Cu(111) surface.
(f) Line profiles of isolated Co and CoFc on Cu(111).

Cp ring-like shape observed in the STM images, ferrocenes are adsorbed individually and

vertically at the step edges, i. e., with the molecular axis perpendicular to the surface. Sub-

sequent deposition of Co atoms at 4.4 K leads to a surface in which Co atoms are placed on

the terraces and Fc molecules at the step edges (Fig. 1a).

The STM tip is then used as a tool to engineer isolated single CoFc molecules, following

the procedure displayed in Figs. 1a-d. The first step towards the formation of a novel CoFc

molecule consists in positioning the tip on top of a single Fc molecule and approaching it
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while keeping the bias constant (−150 mV) until an abrupt drop is observed in the current

(not shown). This jump in the current indicates that the molecule has been detached from the

surface and is now attached to the tip,35 as revealed by the after-images shown in Figs. 1b-

c. In Fig. 1b, a closer view of the Co atom imaged with the Fc-terminated tip is shown.

The Co atom, which is round when imaged with a metallic tip as in Fig. 1a, exhibits now a

molecular pattern which corresponds to a reverse image of the apex.36–38 The ring-shape tip

apex corresponds to a Cp ring of a tilted Fc molecule.39 Placing this molecular tip on top

of the Co atom and proceeding the same way, i. e., decreasing the tip-sample distance until

a certain threshold value, we are able to release the molecule from the tip. Figure 1c shows

how the targeted Fc molecule has disappeared from the step edge and that a new stable

molecule, made up of Co-Cp-Fe-Cp (see sketch in Fig. 1e), has been created in the place

where the isolated Co atom was. The new CoFc molecule presents a ring-shaped feature as

shown in Fig. 1d. The corresponding apparent height profiles of an isolated Co atom and

a CoFc molecule, (0.7±0.1) Å and (3.4±0.2) Å respectively, are displayed in Fig. 1f. This

molecular building process is fully reproducible.

In order to experimentally confirm that a new molecule is formed, we move the whole

CoFc molecule by trapping it using a tip-induced local potential. The STM image of Fig. 2a

reveals that when changing the tunneling current from 50 pA to 2 nA (at a constant bias of

−30 mV) the CoFc follows the tip movement and the image is then acquired by dragging

the CoFc across the Cu(111) surface. Atomic resolution of Cu(111) is obtained when CoFc

is dragged, as was evidenced for a Co atom trapped under the STM tip and rastered over the

surface.40 As expected, a Cu-Cu distance of 2.5 Å is found. Once the current is set back to

50 pA the molecule is released. This supports the idea that CoFc behaves as a unique entity,

i. e., the interaction between Co and Fc is strong enough to create a new molecular species.

Isolated CoFc is coupled stronger to the Cu surface compared to Fc, since no isolated Fc

can be found on Cu terraces.

Indeed, DFT calculations show that the role of the surface is to passivate the otherwise

5



a

Pick

Drag

Drop

b

Figure 2: (a) CoFc dragging on Cu(111) (image size: 6.5×5.2 nm2). The dragging parameters
are 2 nA and −30 mV. (b) dI/dV spectra including Frota-Fano fits (solid red-line) of isolated
Co, Fc, CoFc and layer-integrated CoFc. The curves are shifted by 0 nS, 0.3 nS, 0.5 nS and
-6.8 nS respectively. The feedback loop was opened at -0.03 V and 0.05 nA for all spectra,
except for the the layer-integrated CoFc were the feedback was opened at -0.05 V and 0.5 nA.
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reactive CoFc species. Ab initio calculations have been performed within the DFT as imple-

mented in the VASP code.41,42 We have used the generalized gradient approximation for the

exchange and correlation functional,43 and the DFT+D2 method proposed by Grimme44 to

treat the missing van der Waals interactions (more details can be found in the Supporting

Information).

These calculations show that due to the location of dangling bonds at the Co edge, the

molecule prefers to bind by the Co atom to the surface, although the binding by the Cp

ring of the Fc unit is also stable. The Co–Fc bond can be severed by transferring 1.86 eV

to the molecule when it is adsorbed by the Co atom, and 1.10 eV when adsorbed by the

Fc end. Therefore, the surface stabilizes the CoFc, which results to be a molecular unit

with a radical character, via passivation of the Co atom. In fact, the molecule is found

to be more stable when an extra Cp is added to form CpCoFc.45 Table 1 summarizes the

computed chemisorption properties of a Co atom on an fcc site of the Cu(111) surface, and

their evolution when a Fc molecule is placed on top the Co atom. The Co atom yields more

electrons when the Fc molecule is placed on top describing a stronger binding of the Co

atom. However, the adsorption geometry of the Co atom is basically unaltered.

The dI/dV spectra near the Fermi energy for isolated Co, Fc and CoFc, recorded with a

lock-in amplifier (1 mV rms, 782 Hz), are shown in Fig. 2b. While no spectroscopic feature

is observed for Fc around zero bias, a peak is detected at the Fermi level for CoFc. Its

narrow line shape suggests that it corresponds to a Kondo resonance, as evidenced for other

organometallic molecules.15,17 The Kondo resonances exhibited by Co and CoFc on Cu(111)

are fitted using a Frota-Fano function (see Supporting Information),46,47 as shown in Fig. 2b.

The line width of CoFc yields a Kondo temperature of TK=(33±7)K, which is higher than

that of an isolated Co atom where TK=(19±5)K. To confirm the resonance assignment to a

Kondo effect, we also compared the spectra of Co and of CoFc on the Cu(100) surface as the

Kondo resonance is known to depend on the hybridization of cobalt with the surface.48 As

expected,49,50 on Cu(100) the Kondo temperature increases yielding, respectively, (35±5)K
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for Co and (114±7)K for CoFc (see Fig. S1 in the supporting info). The line shape evolution

from a resonance to a dip seen in Fig. 2b is quantified by the difference in the Fano fitting

parameter found for CoFc (q=7±3) compared to Co (q=0.10±0.05). This underlines that the

orbitals and tunneling paths involved in the Kondo physics are different in the two systems.51

The increased value of q for CoFc is in particular consistent with the higher corrugation of

CoFc compared to a Co atom on Cu(111) which places the tip further away from the surface

thereby weakening the direct tunneling into the electron continuum of copper.52

The presence of a Kondo effect indicates that CoFc has a magnetic moment. DFT

calculations considering the Cu(111) surface show in particular that the magnetic moment

of the Co atom is reduced when bound to Fc due to the increase of occupation of the d-shell.

In the molecule, the occupied peaks for the majority density of states (DOS) of Co shift to

higher energies compared to an isolated Co, hybridizing with states coming from Fc (Fig. 3).

The Fc molecule becomes polarized in spin and the majority spin DOS splits to hybridize

with the Co levels. Similar changes occur for the minority spin. The transformation of

the DOS due to the Co–Fc interaction, reveals the hybridization of the electronic structure

forming a molecular unit and the partial depletion of Co levels leading to a reduction of the

magnetic moment. In the CoFc molecule, the computed magnetic moment of the Co atom

is in fact 1.33 µB (see Table 1), which is much higher than the magnetic moment of Fe in the

same molecule (0.12 µB) or the Cp rings (0.02 µB). The magnetic moment of Co on Cu(111)

is in contrast 2.09 µB, which shows that after the formation of CoFc, the Co atom undergoes

a transition from S ≈ 1 to S ≈ 1/2 revealing the above changes in electronic structure. This

corresponds to a charge transfer of 0.43e− from the CoFc molecule to the surface, compared

to the 0.16e− for the isolated Co atom. Therefore, the Kondo effect of CoFc and of isolated

Co are different, in agreement with the measured spectral signatures of the Kondo physics.

There is a ferromagnetic (FM) coupling between the Fe and Co atoms of CoFc, which is

also apparent in the spin density of the molecule, shown in Fig. 3b; the Co–Fe hybridization

leads to peaks of the Co atom that coincide in energy with peaks of the Fe atom (Fig. 3a).

8



Cp rings in Fc isolated on Cu(111)

Co isolated on Cu(111)

Cp rings in CoFc on Cu(111)

Fe in CoFc on Cu(111)

Co in CoFc onCu(111)

Figure 3: (a) Calculated DOS projected on different atoms of the CoFc molecule (up ar-
row: majority DOS; down arrow: minority DOS). The dashed lines correspond to the DOS
projected onto Co (green), Fe (magenta), and Cp rings (red) when they are part of the new
CoFc molecule.The solid lines show the DOS for Co in the absence of Fc (i.e. isolated Co)
and for Cp rings in the absence of Co (i.e. isolated Fc). (b) Spin density for a CoFc molecule
at the Fermi level (majority spin: red; minority spin: blue).

Gas phase calculations of CoFc show that the FM solution is 98 meV more stable than the

antiferromagnetic (broken symmetry) one. The magnetic moment of CoFc is mainly carried

by spin-polarized molecular orbitals (MOs) which are linear combinations of dxz and dyz

orbitals of Co and of Fe, with a contribution from the pz-orbitals of the Cp rings. These

MOs, in which the major weight is on the Co atom, are responsible of the observed Kondo

effect. Contributions of Cp rings to this effect are minor due to their negligible magnetic

moment.

A different procedure to form the same CoFc molecule is found when increasing the

amount of deposited molecules on the surface and sublimating Co atoms afterwards. A

Co coverage above 0.35ML starts degrading the ferrocene layer, thus, we will limit to a low

coverage regime. Figure 4a shows how a molecular coverage up to 0.6 ML gives rise to densely-
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Figure 4: (a) Self-assembly of Fc on Cu(111) (−0.05 V, 0.5 nA,35× 35 nm2). The compact
and zigzag arrangements are denoted C and Z, respectively. The bright spots reveal the
presence of Co on the molecular layer. Inset: Close up view of the CoFc integrated in the
compact configuration. A Fc model structure is superimposed on the image to highlight the
adsorption geometry of the ferrocene layer. Note that the Co deposition in panel (a) was
done at 77 K, as a consequence the Co atoms on copper have diffused to the step edges. (b)
Line profile along the red dashed line shown in (a). (c) dI/dV spectra of Cu(111), Fc and
CoFc. The curves are shifted by 0 nS, 0.3 nS and 0.5 nS respectively (feedback loop opened
at −1 V and 0.5 nA). (d) CoFc image and (e) corresponding constant-current dI/dV map
(−0.1 V, 0.5 nA, 20× 20 nm2).

packed two dimensional Fc islands. It has been recently shown that Fc molecules physisorb

on Cu(111) following two different possible ways of assembly: compact and zigzag.39 Both

arrangements, which can be observed in Fig. 4a, consist of a combination of vertical and

horizontal molecules, as partially sketched for the compact configuration in the inset. This

STM image also shows the surface appearance after exposing it to a small amount of Co

atoms (0.05 ML). Among both ferrocene configurations there is no significant difference

regarding the adsorption probability and behavior of the Co atoms. Hence, in the following

we will only focus on the compact arrangement.

Adsorbed CoFc molecules appear as bright protrusions in the molecular layer with an

apparent height of (0.7±0.1) Å with respect to vertical Fc molecules and (3.7±0.2) Å com-

pared to Cu(111), as deduced from the line profile along the dashed line displayed in Fig. 4b.
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After a careful inspection of the surface, it can be unambiguously concluded that Co atoms

are exclusively adsorbed at the sites of vertically oriented ferrocenes. A closer view into the

molecular layer in the inset of Fig. 4a shows that a novel molecule is formed upon Co adsorp-

tion, which appears as a ring with a higher intensity in one of the sides. To determine the

adsorption of Co in relation with the vertical ferrocene, DFT calculations were performed.

From total-energy calculations we conclude that Co atoms prefer to be on an fcc position

with respect to the Cu substrate and below Fc, i.e. in direct contact with the Cu(111)

surface as shown in Figs.5b-c. This conformation is 3 eV more stable than the one with Co

on top.

The simulated STM topographic image in Fig.5a, obtained by applying the Tersoff and

Hamann theory53,54 using the method described by Bocquet et al.,55 shows how a compact

molecular layer would look like if we had several CoFc molecules integrated in the ferrocene

layer. The ring-like brightest protrusions correspond to CoFc and the dimmer ones to Fc.

Horizontal molecules are observed as rod-like features between the vertical ones. The striking

agreement between simulated and experimental STM images of the CoFc allows assigning

the bright ring-like shape in the images to the top Cp ring of the CoFc molecule. This

ring is moreover tilted approximately by 11◦ with respect to the surface normal (Fig.5c) due

to the packing of the molecules.39 Note that if the Co atom were on top the Fc molecule,

according to simulated images (not shown here) no ring-like shape would be observed in the

STM images.

To see whether there is any difference between the isolated and the layer-integrated CoFc,

the electronic properties of the later one have also been investigated. The dI/dV spectra

of Cu(111), Fc and CoFc are displayed in Fig. 4c. The onset of the Shockley surface state

(noted SS in Fig. 4c) of Cu(111) can be easily identified at −0.44 eV; for the physisorbed

ferrocene layer, this state is transformed into an interface state (noted IS) with an onset

around −0.26 eV.56 In the image and associated dI/dV map of Figs.4d-e the scattering

of the interface state of the by CoFc is shown, revealing a different coupling of CoFc and
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Figure 5: (a) Simulated STM image integrating the local density of states 1 eV above the
Fermi energy. The unit cell of the calculation contains a single Co atom per 12 vertically
standing Fc molecules. (b-c) Top- and side-view scheme of the compact arrangement with
a single Co atom giving rise to a single CoFc molecule in the unit cell. For clarity only
molecules in the middle row of the top view are shown in the side view.

Fc with the substrate. In fact, in the dI/dV spectrum of CoFc a broad resonance is ob-

served around −0.35 V, which corresponds to a localization of the interface state (noted

ISL).52,57–59 More noticeable is the narrow peak detected near zero bias, which as in the

previous case can be referred to the Kondo effect presented by CoFc. The resonance is again

fitted using a Frota-Fano function as shown in Fig. 2b, from which we obtain TK=(38±6)K

and q=(6±3). Compared to the results obtained for the isolated CoFc we can conclude that

both molecules, isolated and layer-integrated, present an experimentally indistinguishable

electronic and magnetic behavior.

The computed adsorption properties, Table 1, also show a small variation when going

from the isolated molecule to the monolayer. The Co atom stabilizes more the system for

the monolayer by a small 5% change in the binding energy, as a consequence, the Co atom

approaches the Fc molecule and separates 0.05 Å from the Cu (111) surface. However, both

charge transfer and magnetic moments are similar for the isolated and the monolayer case,

showing the calculated DOS a negligible downshift of the Co peaks when going into the
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monolayer case. Hence, DFT results imply that as in the experiment, both isolated and

layer-integrated cases present the same electronic and magnetic behavior. This indicates

that the coupling of the molecule with the substrate is similar in both cases and that the

neighboring ferrocenes around CoFc in the layer do not interact strongly, as to modify its

properties. This is in agreement with the reported weak ferrocene-ferrocene interaction in

the ferrocene monolayer.39

Table 1: Adsorption properties of a Co atom, a Co atom bound to a Fc molecule and a
Co atom underneath one of the eight Fc molecules for a compact arrangement. The first
property is the vertical distance of the Co atom to the topmost layer d in Å; the second
and third ones are the magnetic moment µ in Bohr magnetons (µB) of Co and Fe atoms,
respectively; the fourth property is the change in the number of electrons of the Co atom;
and the last one corresponds to the binding energy of Co to the different systems.

d [Co–Cu] (Å) µ [Co] (µB) µ [Fe] (µB) ∆N [Co] (e−) EB (eV)
Co 1.73 2.09 - -0.16 -3.32

CoFc (isolated) 1.70 1.33 0.12 -0.34 -4.04
CoFc (layer) 1.75 1.44 0.11 -0.34 -4.21

Summarizing, we have demonstrated that it is possible to build new customized ferrocene-

based molecules in a controlled way via STM manipulation and that the same molecule is

formed spontaneously by atomic doping of the ferrocene layer, highlighting the stability of

this molecule. In particular, we have shown that CoFc exhibits a magnetic behavior, as

revealed by the observed Kondo resonance. This means that for the first time we have

proved that it is possible to change the composition and length of Fc molecules through a

in situ chemical reaction. This result can be generalized to other atoms and metallocene

molecules, as we have already checked, opening a path to create and study a whole new

family of metallocene nanowires coupled to metal electrodes. According to already existing

predictions, some of these molecules are half metallic, making them very desirable elements

for spintronics.
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