ON SURFACES OF FINITE TYPE IN EUCLIDEAN 3-SPACE

By Franki Dillen ${ }^{11}$, Johan Pas ${ }^{1)}$ and Leopold Verstraelen

Abstract

We prove an extension of T. Takahashi's result on minimal submanifolds in Euclidean spaces and in spheres, and as a corollary obtain support for B. Y. Chen's conjecture which claims that the round spheres are the only compact surfaces of finite type in Euclidean 3-space.

Let M^{n} be a (connected) n-dimensional submanifold in \boldsymbol{E}^{m}, the m-dimensional Euclidean space. Let x, H and Δ respectively be the position vector field, the mean curvature field and the Laplace operator of the induced metric on M^{n}. Then, as is well known (see e.g. [2]),

$$
\begin{equation*}
\Delta x=-n H, \tag{1.1}
\end{equation*}
$$

which shows, in particular, that M^{n} is a minimal submanifold in \boldsymbol{E}^{m} if and only if its coordinate functions are harmonic (i.e. they are eigenfunctions of Δ with eigenvalue 0). Moreover, in this context, T. Takahashi [6] proved that the submanifolds M^{n} for which

$$
\begin{equation*}
\Delta x=\lambda x, \tag{1.2}
\end{equation*}
$$

i.e. for which all coordinate functions are eigenfunctions of Δ with the same eigenvalue $\lambda \in \boldsymbol{R}$, are precisely either the minimal submanifolds of $\boldsymbol{E}^{m}(\lambda=0)$ or the minimal submanifolds M^{n} of hyperspheres S^{m-1} in \boldsymbol{E}^{m} (the case when $\lambda \neq 0$, actually $\lambda>0$). In terms of B. Y. Chen's theory of submanifolds in \boldsymbol{E}^{m} of finite type, condition (1.2) asserts that M^{n} is of 1-type in \boldsymbol{E}^{m}. In general, a submanifold M^{n} in \boldsymbol{E}^{m} is said to be of finite type if its spectral decomposition of x is finite, i.e. if

$$
\begin{equation*}
x=x_{0}+\sum_{t=p}^{q} x_{t} \tag{1.3}
\end{equation*}
$$

where p and q are natural numbers, such that $x_{0} \in \boldsymbol{R}^{m}$ is a fixed vector and

$$
\begin{equation*}
\Delta x_{t}=\lambda_{t} x_{t}, \tag{1.4}
\end{equation*}
$$

[^0]where λ_{t} denotes an eigenvalue of Δ [1] [2]; when there are exactly k nonconstant eigenvectors x_{t} appearing in (1.3), which all belong to different eigenvalues λ_{t}, then M^{n} is said to be of k-type in \boldsymbol{E}^{m}. Many important submanifolds in Euclidean spaces turn out to be of finite type in this sense. To find out whether or not a compact submanifold M^{n} in \boldsymbol{E}^{m} is of finite type, the following result is very useful.

Theorem A. (B. Y. Chen [2])
(i) M^{n} is of finite type in \boldsymbol{E}^{m} if and only if there exists a non-trivial polynomial Q (of one variable) such that $Q(\Delta) H=0$.
(ii) If M^{n} is of finite type, then there exists a unique monic polynomial P (of one variable), of least degree and such that $P(\Delta) H=0$.
(iii) If M^{n} is of finite type, then M^{n} is of k-type if and only if degree $P=k$.

The same results hold if H is replaced by $x-x_{0}, x_{0}$ being the center of mass of M^{n} in E^{m}.

In [3], B. Y. Chen studies the following problem.
Question. Other than minimal surfaces and ordinary spheres, which surfaces in \boldsymbol{E}^{3} are of finite type?

Restricting attention to surfaces in \boldsymbol{E}^{3}, the above result on $\Delta x=\lambda x, \lambda \in \boldsymbol{R}$, can be stated as follows (which also somewhat clarifies the previous Question).

Theorem B. (T. Takahashi [6])
A surface in \boldsymbol{E}^{3} is of 1-type if and only of it is a sphere or a minımal surface.

With respect to the Question, the following result is quite interesting.
Theorem C. (B. Y. Chen [3])
A tube in \boldsymbol{E}^{3} is of finite type of and only if it is a circular cylinder (which actually is of 2-type).

As a corollary we mention the following,
Corollary D. (B. Y. Chen [3])
Every closed tube in \boldsymbol{E}^{3} is of infinite type,
Which offers a partial solution to the following
Conjecture of B. Y. Chen.
Ordinary spheres are the only compact finite type surfaces in \boldsymbol{E}^{3}.
Of course, since there are no compact minimal surfaces \boldsymbol{E}^{3}, Theorem B settles the matter for 1 -type surfaces.

In [5], O. Garay studies the hypersurfaces M^{n} in \boldsymbol{E}^{n+1} for which

$$
\begin{equation*}
\Delta x=A x \tag{1.5}
\end{equation*}
$$

where A is a diagonal matrix

$$
A=\left(\begin{array}{lllll}
\lambda_{1} & & & \tag{1.6}\\
& \lambda_{2} & & & \\
& & \cdot & \\
& & & \lambda_{n+1}
\end{array}\right), \quad \lambda_{i} \in \boldsymbol{R}, i \in\{1,2, \cdots, n+1\},
$$

(see also [4] for the case of surfaces of revolution M^{2} in \boldsymbol{E}^{3}). This means that he imposes the condition that the coordinate functions of M^{n} are eigenfunctions of their Laplacian Δ with possibly distinct eigenvalues λ_{2}; hence, O. Garay's condition ((1.5), (1.6)) can be seen as a generalization of T. Takahashi's condition (1.2), in which case all λ_{2} are equal. O . Garay proved that if a hypersurface M^{n} of \boldsymbol{E}^{n+1} satisfies his condition, it is either minimal in \boldsymbol{E}^{n+1} or it is a sphere or it is a spherical cylinder. In this respect, we want to observe however that his condition is not coordinate-invariant; e.g. in \boldsymbol{E}^{3} a circular cylinder satisfies this condition if and only if its axis of symmetry is one of the coordinate axes.

In this paper, we will study the surfaces in \boldsymbol{E}^{3} which satisfy

$$
\begin{equation*}
\Delta x=A x+B \tag{*}
\end{equation*}
$$

where $A \in \boldsymbol{R}^{3 \times 3}$ and $B \in \boldsymbol{R}^{3}$. This setting generalizes T. Takahashi's condition, following O. Garay's idea, in a way which is independent of the choice of coordinates. Our main result is the following.

Theorem. A surface M^{2} in \boldsymbol{E}^{3} satisfies (*) if and only if it is an open part of a minimal surface, a sphere or a circular cylinder.

In particular, this yields the following
Corollary. A compact surface in \boldsymbol{E}^{3} satisfies (*) if and only if it is a sphere.

We want to mention that this Corollary supports the above Conjecture of B. Y. Chen. Indeed, the compact surfaces M^{2} in \boldsymbol{E}^{3} satisfying (*) are particular surfaces of finite type ($\leqq 3$); actually, the following arguments, which will make this clear, also hold more generally for any compact submanifold M^{n} in \boldsymbol{E}^{m} which satisfies a condition of the form (*). Namely, integrating (*) over M^{2}, and using the divergence theorem, implies that

$$
\begin{equation*}
A x_{0}+B=0 . \tag{1.7}
\end{equation*}
$$

Using this, then $\left({ }^{*}\right)$ further implies that

$$
\begin{equation*}
\Delta\left(x-x_{0}\right)=A\left(x-x_{0}\right), \tag{1.8}
\end{equation*}
$$

and, hence, that

$$
\begin{equation*}
P(\Delta)\left(x-x_{0}\right)=P(A)\left(x-x_{0}\right), \tag{1.9}
\end{equation*}
$$

where P is any polynomial in one variable. In particular, choosing for P the characteristic polynomial of A, by the Cayley-Hamilton theorem $P(A)=0$, and thus (1.9) shows that

$$
\begin{equation*}
P(\Delta)\left(x-x_{0}\right)=0 . \tag{1.10}
\end{equation*}
$$

Finally, Theorem A then asserts that M^{2} is a surface of type $\leqq 3$ in \boldsymbol{E}^{3}.
We first show that the surfaces mentioned in the theorem indeed satisfy condition (*).

Examples.

(1) Minimal surface

In this case we have that the mean curvature is zero, so by (1.1) a minimal surface satisfies (*) with $A=0$.
(2) Sphere

The sphere $S_{0}^{2}(r)$ with center 0 and radius r satisfies (*) with

$$
A=\left(\begin{array}{ccc}
\frac{2}{r^{2}} & 0 & 0 \\
0 & \frac{2}{r^{2}} & 0 \\
0 & 0 & \frac{2}{r^{2}}
\end{array}\right)
$$

Indeed, the sphere has mean curvature $-1 / r$ and $(1 / r) x$ is a unit normal on $S_{0}^{2}(r)$. So by (1.1)

$$
\Delta x=\frac{2}{r^{2}} x
$$

(3) Circular cylinder

We consider the cylinder on the circle of radius r with center 0 lying in the $\left\{e_{1}, e_{2}\right\}$-plane. This surface has mean curvature $-1 / 2 r$. A unit normal is given by $(1 / r) \pi(x)$, where π is the projection on the $\left\{e_{1}, e_{2}\right\}$-plane. Hence by (1.1)

$$
\Delta x=\frac{1}{r^{2}} \pi(x)
$$

So this cylinder satisfies $\left({ }^{*}\right)$ with

$$
A=\left(\begin{array}{ccc}
\frac{1}{r^{2}} & 0 & 0 \\
0 & \frac{1}{r^{2}} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Proof of the Theorem. We consider two cases.

First case: M^{2} is a cylinder.

In this case, the position vector x of M^{2} can be given by

$$
x=\gamma(s)+t \xi
$$

where s, t are parameters, ξ is a constant vector and $\gamma(s)$ is a curve, with arclength parametrization, in a plane orthogonal to ξ.

From the definition of the Laplacian, one checks that

$$
\Delta x=\gamma^{\prime \prime}
$$

where $\gamma^{\prime \prime}$ is the acceleration vector of γ.
Without loss of generality we may suppose that $\xi=(0,0,1)$ and that $\gamma(s)=$ $\left(\gamma_{1}(s), \gamma_{2}(s), 0\right)$. If we write

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \text { and } B=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right),
$$

then equation (*) becomes

$$
\begin{align*}
\gamma_{1}^{\prime \prime} & =a_{11} \gamma_{1}+a_{12} \gamma_{2}+a_{13} t+b_{1}, \\
\gamma_{2}^{\prime \prime} & =a_{21} \gamma_{1}+a_{22} \gamma_{2}+a_{23} t+b_{2}, \tag{2.1}\\
0 & =a_{31} \gamma_{1}+a_{32} \gamma_{2}+a_{33} t+b_{2} .
\end{align*}
$$

Since $\gamma_{1}^{\prime \prime}, \gamma_{2}^{\prime \prime}$ do not depend on t, we find that $a_{13}=a_{23}=a_{33}=0$.
If $a_{31} \neq 0$ or $a_{32} \neq 0$, the curve γ is a line, so M^{2} will be part of a plane and hence minimal. So we suppose further that $a_{31}=a_{32}=0$ and that γ isn't a line. This implies that $b_{3}=0$. System (2.1) reduces to

$$
\begin{aligned}
& \gamma_{1}^{\prime \prime}=a_{11} \gamma_{1}+a_{12} \gamma_{2}+b_{1}, \\
& \gamma_{2}^{\prime \prime}=a_{21} \gamma_{1}+a_{22} \gamma_{2}+b_{2},
\end{aligned}
$$

or, in vector notation

$$
\begin{equation*}
\gamma^{\prime \prime}=\tilde{A} \gamma+\tilde{B}, \tag{2.2}
\end{equation*}
$$

where

$$
\tilde{A}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \quad \text { and } \quad \tilde{B}=\binom{b_{1}}{b_{2}} .
$$

We now use the Frenet frame $\{T, N\}$ of the curve γ. The curve has arc-length
parametrization, so $T=\gamma^{\prime}$, the velocity vector of γ.
Equation (2.2) becomes

$$
T^{\prime}=\tilde{A} \gamma+\tilde{B}
$$

Using the Frenet formula $T^{\prime}=\kappa N$ where κ is the curvature function of γ, we get

$$
\kappa N=\tilde{A} \gamma+\tilde{B} .
$$

Derivation of this equation gives

$$
\kappa^{\prime} N+\kappa N^{\prime}=\tilde{A} T
$$

From the second Frenet formula $N^{\prime}=-\kappa T$ we obtain

$$
\begin{equation*}
\kappa^{\prime} N-\kappa^{2} T=\tilde{A} T \tag{2.3}
\end{equation*}
$$

We derive again to obtain

$$
\kappa^{\prime \prime} N+\kappa^{\prime} N^{\prime}-2 \kappa \kappa^{\prime} T-\kappa^{2} T^{\prime}=\tilde{A} T^{\prime}
$$

or

$$
\begin{equation*}
\left(\kappa^{\prime \prime}-\kappa^{3}\right) N-3 \kappa \kappa^{\prime} T=\kappa \tilde{A} N . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) we can compute the entries of the matrix \tilde{A} with respect to the frame $\{T, N\}$

$$
\begin{aligned}
& \tilde{A} T . T=-\kappa^{2}, \\
& \tilde{A} T . N=\kappa^{\prime}, \\
& \tilde{A} N . T=-3 \kappa^{\prime}, \\
& \text { AN. } N=\frac{1}{\kappa}\left(\kappa^{\prime \prime}-\kappa^{3}\right) .
\end{aligned}
$$

The determinant $(\tilde{A} T . T)(\tilde{A} N . N)-(\tilde{A} T . N)(\tilde{A} N . T)$ and the trace $(\tilde{A} T . T)+(\tilde{A} N . N)$ of the matrix \tilde{A} are constant, so there exist constants c and d such that

$$
\begin{gather*}
-\kappa \kappa^{\prime \prime}+\kappa^{4}+3\left(\kappa^{\prime}\right)^{2}=c \tag{2.5}\\
\frac{\kappa^{\prime \prime}}{\kappa}-2 \kappa^{2}=d . \tag{2.6}
\end{gather*}
$$

Eliminating $\kappa^{\prime \prime}$ from these two equations we find that

$$
\left(\kappa^{\prime}\right)^{2}=\frac{1}{3}\left(c+d \kappa^{2}+\kappa^{4}\right) .
$$

Deriving this last equation gives

$$
\kappa^{\prime} \kappa^{\prime \prime}=\frac{1}{3}\left(d \kappa \kappa^{\prime}+2 \kappa^{3} \kappa^{\prime}\right)
$$

If we suppose that $\kappa^{\prime} \equiv 0$, then we have

$$
\kappa^{\prime \prime}=\frac{1}{3}\left(d \kappa+2 \kappa^{3}\right) .
$$

Substitution in (2.6) gives

$$
\kappa\left(d+2 \kappa^{2}\right)=0
$$

which contradicts the assumption that κ^{\prime} wasn't identically zero. Hence the only solution to the system (2.2) is that κ is a constant and that γ is a circle. So the only cylinder which satisfies (*) is a circular cylinder.

Second case: M^{2} is not a cylinder.

(1) Rank of A is 3 .

In this case we may suppose that $B=0$. Indeed, let $C \in \boldsymbol{R}^{3 \times 1}$ be a solution of $A . C+B=0$. Define new coordinates x^{\prime} by $x=x^{\prime}+C$. Then equation (*) becomes

$$
\Delta x^{\prime}=A x^{\prime} .
$$

Suppose now that M^{2} is given locally as the graph of a function f, this is

$$
x=\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right) .
$$

From (1.1) we see that $\Delta x=A x$ is normal to the surface, so

$$
A x .\left(1,0, \frac{\partial f}{\partial x_{1}}\right)=0
$$

$$
\begin{equation*}
A x .\left(0,1, \frac{\partial f}{\partial x_{2}}\right)=0 \tag{3.1}
\end{equation*}
$$

since ($1,0, \partial f / \partial x_{1}$) and ($0,1, \partial f / \partial x_{2}$) are tangent vectors.
Let

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) ;
$$

then system (3.1) becomes

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}=-\frac{a_{11} x_{1}+a_{12} x_{2}+a_{13} f}{a_{31} x_{1}+a_{32} x_{2}+a_{33} f}, \\
& \frac{\partial f}{\partial x_{2}}=-\frac{a_{21} x_{1}+a_{22} x_{2}+a_{23} f}{a_{31} x_{1}+a_{32} x_{2}+a_{33} f} .
\end{aligned}
$$

Since the function f satisfies

$$
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}=\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}},
$$

the two above equations imply that

$$
\begin{aligned}
\left(a_{21}-\right. & \left.a_{12}\right)\left(a_{31} x_{1}+a_{32} x_{2}+a_{33} f\right) \\
& +\left(a_{32}-a_{23}\right)\left(a_{11} x_{1}+a_{12} x_{2}+a_{13} f\right) \\
& +\left(a_{13}-a_{31}\right)\left(a_{21} x_{1}+a_{22} x_{2}+a_{23} f\right)=0 .
\end{aligned}
$$

We may suppose that x_{1}, x_{2} and f are linearly independent, and so we get

$$
\begin{aligned}
& \left(a_{21}-a_{12}\right) a_{31}+\left(a_{32}-a_{23}\right) a_{11}+\left(a_{13}-a_{31}\right) a_{21}=0, \\
& \left(a_{21}-a_{12}\right) a_{32}+\left(a_{32}-a_{23}\right) a_{12}+\left(a_{13}-a_{31}\right) a_{22}=0, \\
& \left(a_{21}-a_{12}\right) a_{33}+\left(a_{32}-a_{23}\right) a_{13}+\left(a_{13}-a_{31}\right) a_{23}=0 .
\end{aligned}
$$

If we denote the cofactor of the entry $a_{\imath \jmath}$ in the matrix A by $A_{\imath \jmath}$, this system reduces to

$$
\begin{aligned}
& A_{23}=A_{32}, \\
& A_{13}=A_{31}, \\
& A_{12}=A_{21},
\end{aligned}
$$

i. e. the matrix $A^{\text {cof }}$ of cofactors of A is symmetric. Since

$$
A^{-1}=\frac{1}{\operatorname{det} A} \cdot A^{\mathrm{cof}}
$$

we find that A^{-1} is symmetric. Hence A is also a symmetric matrix.
After a coordinate transformation we may suppose that A is a diagonal matrix

$$
A=\left(\begin{array}{lll}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

with $\lambda_{1} \cdot \lambda_{2} \cdot \lambda_{3} \neq 0$.
Suppose now that $\left(x_{1}(u, v), x_{2}(u, v), x_{3}(u, v)\right)$ is a parametrization of the surface. Then, since $A x=\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \lambda_{3} x_{3}\right)$ is normal to the surface, we have that

$$
\begin{aligned}
& \left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \lambda_{3} x_{3}\right) \cdot\left(\frac{\partial x_{1}}{\partial u}, \frac{\partial x_{2}}{\partial u}, \frac{\partial x_{3}}{\partial u}\right)=0, \\
& \left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \lambda_{3} x_{3}\right) \cdot\left(\frac{\partial x_{1}}{\partial v}, \frac{\partial x_{2}}{\partial v}, \frac{\partial x_{3}}{\partial v}\right)=0,
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{\partial}{\partial u}\left(\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\lambda_{3} x_{3}^{2}\right)=0, \\
& \frac{\partial}{\partial v}\left(\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\lambda_{3} x_{3}^{2}\right)=0 .
\end{aligned}
$$

So

$$
\begin{equation*}
\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\lambda_{3} x_{3}^{2}=c, \tag{3.2}
\end{equation*}
$$

where c is a constant, and we see that M^{2} is part of a quadratic surface. For this quadratic surface one computes the mean curvature

$$
\|H\|= \pm \frac{\left(\lambda_{2}+\lambda_{3}\right) \lambda_{1}^{2} x_{1}^{2}+\left(\lambda_{1}+\lambda_{3}\right) \lambda_{2}^{2} x_{2}^{2}+\left(\lambda_{1}+\lambda_{2}\right) \lambda_{3}^{2} x_{3}^{2}}{2\left(\lambda_{1}^{2} x_{1}^{2}+\lambda_{2}^{2} x_{2}^{2}+\lambda_{3}^{2} x_{3}^{2}\right)^{3 / 2}} .
$$

From $\left(^{*}\right)$ and (1.1), we have that the absolute value of the mean curvature equals $(1 / 2)\|A x\|$, which implies that

$$
\begin{equation*}
\left(\lambda_{1}^{2} x_{1}^{2}+\lambda_{2}^{2} x_{2}^{2}+\lambda_{3}^{2} x_{3}^{2}\right)^{2} \pm\left(\left(\lambda_{2}+\lambda_{3}\right) \lambda_{1}^{2} x_{1}^{2}+\left(\lambda_{1}+\lambda_{3}\right) \lambda_{2}^{2} x_{2}^{2}+\left(\lambda_{1}+\lambda_{2}\right) \lambda_{3}^{2} x_{3}^{2}\right)=0 . \tag{3.3}
\end{equation*}
$$

From (3.2) we have that

$$
x_{3}^{2}=\frac{1}{\lambda_{3}}\left(c-\lambda_{1} x_{1}^{2}-\lambda_{2} x_{2}^{2}\right) .
$$

If we substitute this in (3.3), we obtain a polynomial in x_{1} and x_{2} which has to be identically zero, so in particular the coefficients of x_{1}^{4} and x_{2}^{4}, which are $\lambda_{1}^{2}\left(\lambda_{1}-\lambda_{3}\right)^{2}$ respectively $\lambda_{2}^{2}\left(\lambda_{2}-\lambda_{3}\right)^{2}$ have to be zero. So we find that $\lambda_{1}=\lambda_{2}=\lambda_{3}$. Hence M^{2} is a sphere. The constant term of the polynomial, which is $c \lambda_{3}\left(c \lambda_{3}-\lambda_{1}-\lambda_{2}\right)$, also has to be zero. From this we find that $c=2$. So if we write r for the radius of the sphere we have

$$
\lambda_{1}=\lambda_{2}=\lambda_{3}=\frac{2}{r^{2}} .
$$

(2) Rank of A is 2 .

By choosing a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ with $e_{1}, e_{2} \in \operatorname{Im} A$ and $e_{3} \in(\operatorname{Im} A)^{\perp}$, we may suppose that A and B have the form

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{l}
0 \\
0 \\
b_{3}
\end{array}\right) .
$$

If $B=0$, then $\Delta x=-2 H$ belongs to $\operatorname{Im} A$ which is a plane through the origin. This means that the normal on this plane is a constant tangent direction to M^{2}, but this isn't possible since M^{2} isn't a cylinder. So we may suppose that $b_{3} \neq 0$.

Consider the set

$$
U=\left\{p \in M^{2} \mid\left(e_{3}\right)_{p} \notin T_{p} M^{2}\right\} .
$$

Since

$$
U=\left\{\left.p \in M^{2}| | \begin{array}{ll}
\left.\frac{\partial x_{1}}{\partial u}\right|_{p} & \left.\frac{\partial x_{2}}{\partial u}\right|_{p} \\
\left.\frac{\partial x_{1}}{\partial v}\right|_{p} & \left.\frac{\partial x_{2}}{\partial v}\right|_{p}
\end{array} \right\rvert\, \neq 0\right\},
$$

this is an open set, and by the assumption that M^{2} is not a cylinder, U cannot be empty. By the inverse function theorem, on U the surface is locally given as the graph of a function f in the following way

$$
x=\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right) .
$$

From (1.1) we see that $\Delta x=A x+B$ is normal to the surface, so

$$
\begin{aligned}
& (A x+B) \cdot\left(1,0, \frac{\partial f}{\partial x_{1}}\right)=0 \\
& (A x+B) \cdot\left(0,1, \frac{\partial f}{\partial x_{2}}\right)=0
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}=\frac{1}{b_{3}}\left(a_{11} x_{1}+a_{12} x_{2}+a_{13} f\right), \\
& \frac{\partial f}{\partial x_{2}}=\frac{1}{b_{3}}\left(a_{21} x_{1}+a_{22} x_{2}+a_{23} f\right) .
\end{aligned}
$$

Since f satisfies

$$
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}=\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}},
$$

we have

$$
\left(a_{12}-a_{21}\right) b_{3}+\left(a_{13} a_{21}-a_{11} a_{23}\right) x_{1}+\left(a_{13} a_{22}-a_{12} a_{23}\right) x_{2}=0,
$$

or

$$
\begin{gather*}
\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|=0, \tag{3.4}\\
\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|=0, \tag{3.5}\\
a_{12}=a_{21} . \tag{3.6}
\end{gather*}
$$

Since A has rank 2, expressions (3.4) and (3.5) imply that

$$
a_{13}=a_{23}=0 .
$$

Equation (3.6) shows that the matrix $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ is symmetric. By a coordinate transformation we may suppose that A has the form

$$
\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

with $\lambda_{1} \cdot \lambda_{2} \neq 0$.
Suppose now that $\left(x_{1}(u, v), x_{2}(u, v), x_{3}(u, v)\right)$ is a parametrization of the surface. Then, since $A x+B=\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, b_{3}\right)$ is normal to the surface, we have that

$$
\begin{aligned}
& \left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, b_{3}\right) \cdot\left(\frac{\partial x_{1}}{\partial u}, \frac{\partial x_{2}}{\partial u}, \frac{\partial x_{3}}{\partial u}\right)=0 \\
& \left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, b_{3}\right) \cdot\left(\frac{\partial x_{1}}{\partial v}, \frac{\partial x_{2}}{\partial v}, \frac{\partial x_{3}}{\partial v}\right)=0
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{\partial}{\partial u}\left(\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+2 b_{3} x_{3}\right)=0, \\
& \frac{\partial}{\partial v}\left(\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+2 b_{3} x_{3}\right)=0 .
\end{aligned}
$$

So

$$
\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+2 b_{3} x_{3}=c,
$$

where c is a constant, and we see that M^{2} should be part of a quadratic surface. However, for this quadratic surface one computes the mean curvature

$$
\|H\|= \pm \frac{\lambda_{1}^{2} \lambda_{2} x_{1}^{2}+\lambda_{1} \lambda_{2}^{2} x_{2}^{2}+\left(\lambda_{1}+\lambda_{2}\right) b_{3}^{2}}{2\left(\lambda_{1}^{2} x_{1}^{2}+\lambda_{2}^{2} x_{2}^{2}+b_{3}^{2}\right)^{3 / 2}}
$$

The absolute value of the mean curvature equals $(1 / 2)\|A x+B\|$ by (1.1). This implies that the polynomial

$$
\left(\lambda_{1}^{2} x_{1}^{2}+\lambda_{2}^{2} x_{2}^{2}+b_{3}^{2}\right)^{2} \pm\left(\lambda_{1}^{2} \lambda_{2} x_{1}^{2}+\lambda_{1} \lambda_{2}^{2} x_{2}^{2}+\left(\lambda_{1}+\lambda_{2}\right) b_{3}^{2}\right)
$$

should be identically zero, which contradicts $\lambda_{1} \cdot \lambda_{2} \neq 0$.
(3) Rank of A is 1 .

Since $\Delta x=-2 H$, equation $\left(^{*}\right)$ implies that $-2 H$ lies on $\operatorname{Im} A+B$ which is a line. So a vector orthogonal to a plane which contains the $\operatorname{line} \operatorname{Im} A+B$ and the origin, is everywhere tangent to the surface M^{2}. This contradicts our assumption that M^{2} isn't a cylinder.
(4) Rank of A is 0 .

In this case $\left(^{*}\right)$ becomes

$$
\Delta x=B .
$$

If $B=0$, then we have by (1.1) that $H=0$, so the surface is minimal. If $B \neq 0$, equation (1.1) implies that B is a constant vector normal to M^{2}, so M^{2} is a plane. However for a plane we have that $H=0$, which contradicts $B \neq 0$.

References

[1] B. Y. Chen, On the total curvature of immersed manifolds, VI: Submanifolds of finite type and their applications, Bull. Inst. Math. Acad. Sinica 11 (1983), 309328.
[2] B. Y. Chen, "Total mean curvature and submanifolds of finite type," World Scientific, Singapore, 1984.
[3] B. Y. Chen, Surfaces of finite type in Euclidean 3-space, Bull. Soc. Math. Belg. Sér. B 39 (1987), 243-254.
[4] O. Garay, On a certain class of finite type surfaces of revolution, Kodai Math. J. 11 (1988), 25-31.
[5] O. Garay, An extension of Takahashi's theorem, preprint.
[6] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.

1980 Mathematics subject classifications: 53A05
Wiskundig Instituut,
Katholieke Universiteit Leuven,
Celestijnenlaan 200-B, 3030 Heverlee,
Belgium

[^0]: ${ }^{1)}$ Research Assistant of the National Fund of Scientific Research (Belgium)
 Received March 3, 1989

