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The goal of binary classification is to estimate a discriminant function γ

from observations of covariate vectors and corresponding binary labels. We
consider an elaboration of this problem in which the covariates are not avail-
able directly but are transformed by a dimensionality-reducing quantizer Q.
We present conditions on loss functions such that empirical risk minimiza-
tion yields Bayes consistency when both the discriminant function and the
quantizer are estimated. These conditions are stated in terms of a general
correspondence between loss functions and a class of functionals known as
Ali-Silvey or f -divergence functionals. Whereas this correspondence was es-
tablished by Blackwell [Proc. 2nd Berkeley Symp. Probab. Statist. 1 (1951)
93–102. Univ. California Press, Berkeley] for the 0–1 loss, we extend the cor-
respondence to the broader class of surrogate loss functions that play a key
role in the general theory of Bayes consistency for binary classification. Our
result makes it possible to pick out the (strict) subset of surrogate loss func-
tions that yield Bayes consistency for joint estimation of the discriminant
function and the quantizer.

1. Introduction. Consider the classical problem of binary classification:
given a pair of random variables (X,Y ) ∈ (X,Y), where X is a Borel subset
of R

d and Y = {−1,+1}, and given of a set of samples {(X1, Y1), . . . , (Xn,Yn)},
the goal is to estimate a discriminant function that predicts the binary label Y given
the covariate vector X. The accuracy of any discriminant function is generally as-
sessed in terms of 0–1 loss as follows. Letting P denote the distribution of (X,Y ),
and letting γ :X → R denote a given discriminant function, we seek to minimize
the expectation of the 0–1 loss; that is, the error probability P(Y �= sign(γ (X))).2

Unfortunately, the 0–1 loss is a nonconvex function, and practical classification al-
gorithms, such as boosting and the support vector machine, are based on relaxing
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the 0–1 loss to a convex upper bound or approximation, yielding a surrogate loss
function to which empirical risk minimization procedures can be applied. A sig-
nificant achievement of the recent literature on binary classification has been the
delineation of necessary and sufficient conditions under which such relaxations
yield Bayes consistency [2, 9, 12, 13, 19, 22].

In many practical applications, this classical formulation of binary classification
is elaborated to include an additional stage of “feature selection” or “dimension re-
duction,” in which the covariate vector X is transformed into a vector Z according
to a data-dependent mapping Q. An interesting example of this more elaborate for-
mulation is a “distributed detection” problem, in which individual components of
the d-dimensional covariate vector are measured at spatially separated locations,
and there are communication constraints that limit the rate at which the measure-
ments can be forwarded to a central location where the classification decision is
made [21]. This communication-constrained setting imposes severe constraints on
the choice of Q: any mapping Q must be a separable function, specified by a col-
lection of d univariate, discrete-valued functions that are applied component-wise
to X. The goal of decentralized detection is to specify and analyze data-dependent
procedures for choosing such functions, which are typically referred to as “quan-
tizers.” More generally, we may abstract the essential ingredients of this problem
and consider a problem of experimental design, in which Q is taken to be a possi-
bly stochastic mapping X → Z, chosen from some constrained class Q of possible
quantizers. In this setting, the discriminant function is a mapping γ :Z → R, cho-
sen from the class � of all measurable functions on Z. Overall, the problem is to
simultaneously determine both the mapping Q and the discriminant function γ ,
using the data {(X1, Y1), . . . , (Xn,Yn)}, so as to jointly minimize the Bayes error
RBayes(γ,Q) := P(Y �= sign(γ (Z))).

As alluded to above, when Q is fixed, it is possible to give general conditions
under which relaxations of 0–1 loss yield Bayes consistency. As we will show in
the current paper, however, these conditions no longer suffice to yield consistency
in the more general setting, in which the choice of Q is also optimized. Rather,
in the setting of jointly estimating the discriminant function γ and optimizing the
quantizer Q, new conditions need to be imposed. It is the goal of the current paper
to present such conditions and, moreover, to provide a general theoretical under-
standing of their origin. Such an understanding turns out to repose not only on
analytic properties of surrogate loss functions (as in the Q-fixed case), but on a
relationship between the family of surrogate loss functions and another class of
functions known as f -divergences [1, 7]. In rough terms, an f -divergence be-
tween two distributions is defined by the expectation of a convex function of their
likelihood ratio. Examples include the Hellinger distance, the total variational dis-
tance, Kullback–Leibler divergence and Chernoff distance, as well as various other
divergences popular in the information theory literature [20]. In our setting, these
f -divergences are applied to the class-conditional distributions induced by apply-
ing a fixed quantizer Q.
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An early hint of the relationship between surrogate losses and f -divergences
can be found in a seminal paper of Blackwell [3]. In our language, Blackwell’s re-
sult can be stated in the following way: if a quantizer QA induces class-conditional
distributions whose f -divergence is greater than the f -divergence induced by a
quantizer QB , then there exists some set of prior probabilities for the class labels
such that QA results in a smaller probability of error than QB . This result suggests
that any analysis of quantization procedures based on 0–1 and surrogate loss func-
tions might usefully attempt to relate surrogate loss functions to f -divergences.
Our analysis shows that this is indeed a fruitful suggestion, and that Blackwell’s
idea takes its most powerful form when we move beyond 0–1 loss to consider
the full set of surrogate loss functions studied in the recent binary classification
literature.

Blackwell’s result [3] has had significant historical impact on the signal process-
ing literature (and thence on the distributed detection literature). Consider, in a
manner complementary to the standard binary classification setting in which the
quantizer Q is assumed known, the setting in which the discriminant function γ

is assumed known and only the quantizer Q is to be estimated. This is a stan-
dard problem in the signal processing literature (see, e.g., [10, 11, 17]), and so-
lution strategies typically involve the selection of a specific f -divergence to be
optimized. Typically, the choice of an f -divergence is made somewhat heuristi-
cally, based on the grounds of analytic convenience, computational convenience
or asymptotic arguments.

Our results in effect provide a broader and more rigorous framework for justi-
fying the use of various f -divergences in solving quantizer design problems. We
broaden the problem to consider the joint estimation of the discriminant function
and the quantizer. We adopt a decision-theoretic perspective in which we aim to
minimize the expectation of 0–1 loss, but we relax to surrogate loss functions that
are convex approximations of 0–1 loss, with the goal of obtaining computationally
tractable minimization procedures. By relating the family of surrogate loss func-
tions to the family of f -divergences, we are able to specify equivalence classes of
surrogate loss functions. The conditions that we present for Bayes consistency are
expressed in terms of these equivalence classes.

1.1. Our contributions. In order to state our contributions more precisely, let
us introduce some notation and definitions. Given the distribution P of the pair
(X,Y ), consider a discrete space Z, and let Q(z|x) denote a quantizer—a condi-
tional probability distribution on Z for almost all x. Let μ and π denote measures
over Z that are induced by Q as follows:

μ(z) := P(Y = 1,Z = z) = p

∫
x
Q(z|x)dP(x|Y = 1),(1a)

π(z) := P(Y = −1,Z = z) = q

∫
x
Q(z|x)dP(x|Y = −1),(1b)
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where p and q denote the prior probabilities p = P(Y = 1) and q = P(Y = −1).
We assume that Q is restricted to some constrained class Q, such that both μ and
π are strictly positive measures.

An f -divergence is defined as

If (μ,π) := ∑
z

π(z)f

(
μ(z)

π(z)

)
,(2)

where f : [0,+∞) → R ∪ {+∞} is a continuous convex function. Different
choices of convex f lead to different divergence functionals [1, 7].

The loss functions that we consider are known as margin-based loss func-
tions. Specifically, we study convex loss functions φ(y, γ (z)) that are of the form
φ(yγ (z)), where the product yγ (z) is known as the margin. Note in particular that
0–1 loss can be written in this form, since φ0−1(y, γ (z)) = I(yγ (z) ≤ 0). Given
such a margin-based loss function, we define the φ-risk Rφ(γ,Q) = Eφ(Yγ (Z)).
Statistical procedures will be defined in terms of minimizers of Rφ with respect to
the arguments γ and Q, with the expectation replaced by an empirical expectation
defined by samples {(X1, Y1), . . . , (Xn,Yn)}.

With these definitions, we now summarize our main results, which are stated
technically in Theorems 1–3. The first result (Theorem 1) establishes a general
correspondence between the family of f -divergences and the family of optimized
φ-risks. In particular, let Rφ(Q) denote the optimal φ-risk, meaning the φ-risk
obtained by optimizing over the discriminant γ as follows:

Rφ(Q) := inf
γ∈�

Rφ(Q,γ ).

In Theorem 1, we establish a precise correspondence between these optimal
φ-risks and the family of f -divergences. Theorem 1(a) addresses the forward di-
rection of this correspondence (from φ to f ); in particular, we show that any op-
timal φ-risk can be written as Rφ(Q) = −If (μ,π), where If is the divergence
induced by a suitably chosen convex function f . We also specify a set of prop-
erties that any such function f inherits from the surrogate loss φ. Theorem 1(b)
addresses the converse question: given an f -divergence, when can it be realized as
an optimal φ-risk? We provide a set of necessary and sufficient conditions on any
such f -divergence and, moreover, specify a constructive procedure for determin-
ing all surrogate loss functions φ that induce the specified f -divergence.

The relationship is illustrated in Figure 1; whereas each surrogate loss φ induces
only one f -divergence, note that in general there are many surrogate loss functions
that correspond to the same f -divergence. As particular examples of the general
correspondence established in this paper, we show that the hinge loss corresponds
to the variational distance, the exponential loss corresponds to the Hellinger dis-
tance, and the logistic loss corresponds to the capacitory discrimination distance.

This correspondence, in addition to its intrinsic interest as an extension of
Blackwell’s work, has a number of consequences. In Section 3, we show that it
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FIG. 1. Illustration of the correspondence between f -divergences and loss functions. For each loss
function φ, there exists exactly one corresponding f -divergence such that the optimized φ-risk is
equal to the negative f -divergence. The reverse mapping is, in general, many-to-one.

allows us to isolate a class of φ-losses for which empirical risk minimization is
consistent in the joint (quantizer and discriminant) estimation setting. Note in par-
ticular (e.g., from Blackwell’s work) that the f -divergence associated with the 0–1
loss is the total variational distance. In Theorem 2, we specify a broader class of
φ-losses that induce the total variational distance and prove that, under standard
technical conditions, an empirical risk minimization procedure based on any such
φ-risk is Bayes consistent. This broader class includes not only the nonconvex
0–1 loss, but also other convex and computationally tractable φ-losses, includ-
ing the hinge loss function that is well known in the context of support vector
machines [6]. The key novelty in this result is that it applies to procedures that
optimize simultaneously over the discriminant function γ and the quantizer Q.

One interpretation of Theorem 2 is as specifying a set of surrogate loss functions
φ that are universally equivalent to the 0–1 loss, in that empirical risk minimization
procedures based on such φ yield classifier-quantizer pairs (γ ∗,Q∗) that achieve
the Bayes risk. In Section 4, we explore this notion of universal equivalence be-
tween loss functions in more depth. In particular, we say that two loss functions φ1

and φ2 are universally equivalent if the optimal risks Rφ1(Q) and Rφ2(Q) induce
the same ordering on quantizers, meaning the ordering Rφ1(Qa) ≤ Rφ1(Qb) holds
if and only if Rφ2(Qa) ≤ Rφ2(Qb) for all quantizer pairs Qa and Qb. Thus, the set
of surrogate loss functions can be categorized into subclasses by this equivalence,
where of particular interest are all surrogate loss functions that are equivalent (in
the sense just defined) to the 0–1 loss. In Theorem 3, we provide an explicit and
easily tested set of conditions for a φ-risk to be equivalent to the 0–1 loss. One
consequence is that procedures based on a φ-risk outside of this family cannot
be Bayes consistent for joint optimization of the discriminant γ and quantizer Q.
Thus, coupled with our earlier result in Theorem 2, we obtain a set of necessary
and sufficient conditions on φ-losses to be Bayes consistent in this joint estimation
setting.
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2. Correspondence between φ-loss and f -divergence. Recall that in the
setting of binary classification with Q fixed, it is possible to give conditions on
the class of surrogate loss functions (i.e., upper bounds on or approximations
of the 0–1 loss) that yield Bayes consistency. In particular, Bartlett, Jordan and
McAuliffe [2] have provided the following definition of a classification-calibrated
loss.

DEFINITION 1. Define �a,b(α) = φ(α)a + φ(−α)b. A loss function φ is
classification-calibrated if for any a, b ≥ 0 and a �= b:

inf{α∈R|α(a−b)<0}�a,b(α) > inf{α∈R|α(a−b)≥0}�a,b(α).(3)

The definition is essentially a pointwise form of a Fisher consistency condition
that is appropriate for the binary classification setting. When Q is fixed, this defin-
ition ensures that, under fairly general conditions, the decision rule γ obtained by
an empirical risk minimization procedure behaves equivalently to the Bayes opti-
mal decision rule. Bartlett, Jordan and McAuliffe [2] also derived a simple lemma
that characterizes classification-calibration for convex functions.

LEMMA 1. Let φ be a convex function. Then φ is classification-calibrated if
and only if it is differentiable at 0 and φ′(0) < 0.

For our purposes, we will find it useful to consider a somewhat more restricted
definition of surrogate loss functions. In particular, we impose the following three
conditions on any surrogate loss function φ : R → R ∪ {+∞}:
A1: φ is classification-calibrated;
A2: φ is continuous;
A3: Let α∗ = inf{α ∈ R ∪ {+∞}|φ(α) = infφ}. If α∗ < +∞, then for any ε > 0,

φ(α∗ − ε) ≥ φ(α∗ + ε).(4)

The interpretation of assumption A3 is that one should penalize deviations away
from α∗ in the negative direction at least as strongly as deviations in the positive
direction; this requirement is intuitively reasonable given the margin-based inter-
pretation of α. Moreover, this assumption is satisfied by all of the loss functions
commonly considered in the literature; in particular, any decreasing function φ

(e.g., hinge loss, logistic loss, exponential loss) satisfies this condition, as does the
least squares loss (which is not decreasing). When φ is convex, assumption A1 is
equivalent to requiring that φ be differentiable at 0 and φ′(0) < 0. These facts also
imply that the quantity α∗ defined in assumption A3 is strictly positive. Finally, al-
though φ is not defined for −∞, we shall use the convention that φ(−∞) = +∞.
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In the following, we present the general relationship between optimal φ-risks
and f -divergences. The easier direction is to show that any φ-risk induces a cor-
responding f -divergence. The φ-risk can be written in the following way:

Rφ(γ,Q) = Eφ(Yγ (Z))(5a)

= ∑
z

φ(γ (z))μ(z) + φ(−γ (z))π(z).(5b)

For a fixed mapping Q, the optimal φ-risk has the form

Rφ(Q) = ∑
z∈Z

inf
α

(
φ(α)μ(z) + φ(−α)π(z)

)

= ∑
z

π(z) inf
α

(
φ(−α) + φ(α)

μ(z)

π(z)

)
.

For each z, define u(z) := μ(z)
π(z)

. With this notation, the function infα(φ(−α) +
φ(α)u) is concave as a function of u (since the minimum of a collection of linear
functions is concave). Thus, if we define

f (u) := − inf
α

(
φ(−α) + φ(α)u

)
,(6)

we obtain the relation

Rφ(Q) = −If (μ,π).(7)

We have thus established the easy direction of the correspondence: given a loss
function φ, there exists an f -divergence for which the relation (7) holds. Further-
more, the convex function f is given by the expression (6). Note that our argument
does not require convexity of φ.

We now consider the converse. Given a divergence If (μ,π) for some convex
function f , does there exist a loss function φ for which Rφ(Q) = −If (μ,π)? In
the theorem presented below, we answer this question in the affirmative. Moreover,
we present a constructive result: we specify necessary and sufficient conditions
under which there exist decreasing and convex surrogate loss functions for a given
f -divergence, and we specify the form of all such loss functions.

Recall the notion of convex duality [18]: For a lower semicontinuous convex
function f : R → R ∪ {∞}, the conjugate dual f ∗ : R → R ∪ {∞} is defined as
f ∗(u) = supv∈R(uv − f (v)). Consider an intermediate function:

	(β) = f ∗(−β).(8)

Define β1 := inf{β :	(β) < +∞} and β2 := inf{β :	(β) ≤ inf	}. We are ready
to state our first main result.

THEOREM 1. (a) For any margin-based surrogate loss function φ, there is
an f -divergence such that Rφ(Q) = −If (μ,π) for some lower semicontinuous
convex function f .
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In addition, if φ is a decreasing convex loss function that satisfies conditions
A1, A2 and A3, then the following properties hold:

(i) 	 is a decreasing and convex function;
(ii) 	(	(β)) = β for all β ∈ (β1, β2);

(iii) there exists a point u∗ ∈ (β1, β2) such that 	(u∗) = u∗.

(b) Conversely, if f is a lower semicontinuous convex function satisfying all
conditions (i)–(iii), there exists a decreasing convex surrogate loss φ that induces
the f -divergence in the sense of equations (6) and (7).

For proof of this theorem and additional properties, see Section 5.1.

REMARKS. (a) The existential statement in Theorem 1 can be strengthened
to a constructive procedure, through which we specify how to obtain any φ loss
function that induces a given f -divergence. Indeed, in the proof of Theorem 1(b)
presented in Section 5.1, we prove that any decreasing surrogate loss function φ

satisfying conditions A1–A3 that induces an f -divergence must be of the form

φ(α) =
⎧⎨
⎩

u∗, if α = 0,
	

(
g(α + u∗)

)
, if α > 0,

g(−α + u∗), if α < 0,
(9)

where g : [u∗,+∞) → R is some increasing continuous and convex function such
that g(u∗) = u∗, and g is right-differentiable at u∗ with g′(u∗) > 0.

(b) Another consequence of Theorem 1 is that any f -divergence can be ob-
tained from a rather large set of surrogate loss functions; indeed, different such
losses are obtained by varying the function g in our constructive specification (9).
In Section 2.1, we provide concrete examples of this constructive procedure and
the resulting correspondences. For instance, we show that the variational distance
corresponds to the 0–1 loss and the hinge loss, while the Hellinger distance corre-
sponds to the exponential loss. Both divergences are also obtained from many less
familiar loss functions.

(c) Although the correspondence has been formulated in the population set-
ting, it is the basis of a constructive method for specifying a class of surrogate loss
functions that yield a Bayes consistent estimation procedure. Indeed, in Section 3,
we exploit this result to isolate a subclass of surrogate convex loss functions that
yield Bayes-consistent procedures for joint (γ,Q) minimization procedures. In-
terestingly, this class is a strict subset of the class of classification-calibrated loss
functions, all of which yield Bayes-consistent estimation procedure in the standard
classification setting (e.g., [2]). For instance, the class that we isolate contains the
hinge loss, but not the exponential loss or the logistic loss functions. Finally, in
Section 4, we show that, in a suitable sense, the specified subclass of surrogate
loss functions is the only one that yields consistency for the joint (γ,Q) estima-
tion problem.
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2.1. Examples. In this section, we describe various correspondences between
φ-losses and f -divergences that illustrate the claims of Theorem 1.

2.1.1. 0–1 loss, hinge loss and variational distance. First, consider the 0–1
loss φ(α) = I[α ≤ 0]. From equation (5b), the optimal discriminant function γ

takes the form γ (z) = sign(μ(z) − π(z)), so that the optimal Bayes risk is given
by

RBayes(Q) = ∑
z∈Z

min{μ(z),π(z)}

= 1
2 − 1

2

∑
z∈Z

|μ(z) − π(z)| = 1
2

(
1 − V (μ,π)

)
,

where V (μ,π) denotes the variational distance V (μ,π) := ∑
z∈Z |μ(z) − π(z)|

between the two measures μ and π .
Now, consider the hinge loss function φ(α) = max{0,1 − α} = (1 − α)+. In

this case, a similar calculation yields γ (z) = sign(μ(z) − π(z)) as the optimal
discriminant. The optimal risk for hinge loss thus takes the form:

Rhinge(Q) = ∑
z∈Z

2 min{μ(z),π(z)} = 1 − ∑
z∈Z

|μ(z) − π(z)| = 1 − V (μ,π).

Thus, both the 0–1 loss and the hinge loss give rise to f -divergences of the form
f (u) = −c min{u,1} + au + b for some constants c > 0 and a, b. Conversely,
consider an f -divergence that is based on the function f (u) = −2 min(u,1) for
u ≥ 0. Augmenting the definition by setting f (u) = +∞ for u < 0, we use equa-
tion (9) to calculate 	:

	(β) = f ∗(−β) = sup
u∈R

(−βu − f (u)
) =

⎧⎨
⎩

0, if β > 2,
2 − β, if 0 ≤ β ≤ 2,
+∞, if β < 0.

By inspection, we see that u∗ = 1, where u∗ was defined in part (iii) of Theo-
rem 1(a). If we set g(u) = u, then we recover the hinge loss φ(α) = (1 − α)+. On
the other hand, choosing g(u) = eu−1 leads to the loss

φ(α) =
{

(2 − eα)+, for α ≤ 0,
e−α, for α > 0.

(10)

Note that the loss function obtained with this particular choice of g is not convex,
but our theory nonetheless guarantees that this non-convex loss still induces f in
the sense of equation (7). To ensure that φ is convex, we must choose g to be
an increasing convex function in [1,+∞) such that g(u) = u for u ∈ [1,2]. See
Figure 2 for illustrations of some convex φ losses.
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FIG. 2. Panels (a) and (b) show examples of φ losses that induce the Hellinger distance and vari-
ational distance, respectively, based on different choices of the function g. Panel (c) shows a loss
function that induces the symmetric KL divergence; for the purposes of comparison, the 0–1 loss is
also plotted.

2.1.2. Exponential loss and Hellinger distance. Now, consider the exponen-
tial loss φ(α) = exp(−α). In this case, a little calculation shows that the optimal
discriminant is γ (z) = 1

2 log μ(z)
π(z)

. The optimal risk for exponential loss is given by

Rexp(Q) = ∑
z∈Z

2
√

μ(z)π(z) = 1 − ∑
z∈Z

(√
μ(z) − √

π(z)
)2 = 1 − 2h2(μ,π),

where h(μ,π) := 1
2

∑
z∈Z(

√
μ(z) − √

π(z))2 denotes the Hellinger distance be-
tween measures μ and π . Conversely, the Hellinger distance is equivalent to the
negative of the Bhattacharyya distance, which is an f -divergence with f (u) =
−2

√
u for u ≥ 0. Let us augment the definition of f by setting f (u) = +∞ for

u < 0; doing so does not alter the Hellinger (or Bhattacharyya) distances. As be-
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fore,

	(β) = f ∗(−β) = sup
u∈R

(−βu − f (u)
) =

{
1/β, when β > 0,
+∞, otherwise.

Thus, we see that u∗ = 1. If we let g(u) = u, then a possible surrogate loss function
that realizes the Hellinger distance takes the form:

φ(α) =
⎧⎪⎨
⎪⎩

1, if α = 0,
1

α + 1
, if α > 0,

−α + 1, if α < 0.

On the other hand, if we set g(u) = exp(u − 1), then we obtain the exponential
loss φ(α) = exp(−α). See Figure 2 for illustrations of these loss functions.

2.1.3. Least squares loss and triangular discrimination distance. Letting
φ(α) = (1 − α)2 be the least squares loss, the optimal discriminant is given by
γ (z) = μ(z)−π(z)

μ(z)+π(z)
. Thus, the optimal risk for least squares loss takes the form

Rsqr(Q) = ∑
z∈Z

4μ(z)π(z)

μ(z) + π(z)
= 1 − ∑

z∈Z

(μ(z) − π(z))2

μ(z) + π(z)
= 1 − �(μ,π),

where �(μ,π) denotes the triangular discrimination distance [20]. Conversely,
the triangular discriminatory distance is equivalent to the negative of the harmonic
distance; it is an f -divergence with f (u) = − 4u

u+1 for u ≥ 0. Let us augment f

with f (u) = +∞ for u < 0. We have

	(β) = sup
u∈R

(−βu − f (u)
) =

{ (
2 − √

β
)2

, for β ≥ 0,
+∞, otherwise.

Clearly, u∗ = 1. In this case, setting g(u) = u2 gives the least square loss φ(α) =
(1 − α)2.

2.1.4. Logistic loss and capacitory discrimination distance. Let φ(α) =
log(1 + exp(−α)) be the logistic loss. Then, γ (z) = log μ(z)

π(z)
. As a result, the

optimal risk for logistic loss is given by

Rlog(Q) = ∑
z∈Z

μ(z) log
μ(z) + π(z)

μ(z)
+ π(z) log

μ(z) + π(z)

π(z)

= log 2 − KL

(
μ

∥∥∥μ + π

2

)
−KL

(
π

∥∥∥μ + π

2

)
= log 2 − C(μ,π),

where KL(U,V ) denotes the Kullback–Leibler divergence between two measures
U and V , and C(U,V ) denotes the capacitory discrimination distance [20]. Con-
versely, the capacitory discrimination distance is equivalent to an f -divergence
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with f (u) = −u log u+1
u

− log(u+ 1), for u ≥ 0. As before, augmenting this func-
tion with f (u) = +∞ for u < 0, we have

	(β) = sup
u∈R

(−βu − f (u)
) =

{
β − log(eβ − 1), for β ≥ 0,
+∞, otherwise.

This representation shows that u∗ = log 2. If we choose g(u) = log(1 + eu

2 ), then
we recover the logistic loss φ(α) = log[1 + exp(−α)].

2.1.5. Another symmetrized Kullback–Leibler divergence. Recall that both the
KL divergences [i.e., KL(μ‖π) and KL(π‖μ)] are asymmetric; therefore, Corol-
lary 3 (see Section 5.1) implies that they are not realizable by any margin-based
surrogate loss. However, a closely related functional is the symmetric Kullback–
Leibler divergence [5]:

KLs(μ,π) := KL(μ‖π) + KL(π‖μ).(11)

It can be verified that this symmetrized KL divergence is an f -divergence, gen-
erated by the function f (u) = − logu + u logu for u ≥ 0, and +∞ otherwise.
Theorem 1 implies that it can be generated by surrogate loss functions of form (9),
but the form of this loss function is not at all obvious. Therefore, in order to re-
cover an explicit form for some φ, we follow the constructive procedure outlined
in the remarks following Theorem 1, first defining

	(β) = sup
u≥0

{−βu + logu − u logu}.

In order to compute the value of this supremum, we take the derivative with
respect to u and set it to zero; doing so yields the zero-gradient condition
−β + 1/u − logu − 1 = 0. To capture this condition, we define a function
r : [0,+∞) → [−∞,+∞] via r(u) = 1/u − logu. It is easy to see that r is a
strictly decreasing function whose range covers the whole real line; moreover,
the zero-gradient condition is equivalent to r(u) = β + 1. We can thus write
	(β) = u + logu − 1 where u = r−1(β + 1), or, equivalently,

	(β) = r(1/u) − 1 = r

(
1

r−1(β + 1)

)
− 1.

It is straightforward to verify that the function 	 thus specified is strictly decreas-
ing and convex with 	(0) = 0, and that 	(	(β)) = β for any β ∈ R. Therefore,
Theorem 1 allow us to specify the form of any convex surrogate loss function that
generates the symmetric KL divergence; in particular, any such functions must be
of the form (9):

φ(α) =
{

g(−α), for α ≤ 0,
	(g(α)), otherwise,
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where g : [0,+∞) → [0,+∞) is some increasing convex function satisfying
g(0) = 0. As a particular example (and one that leads to a closed form expres-
sion for φ), let us choose g(u) = eu + u − 1. Doing so leads to the surrogate loss
function

φ(α) = e−α − α − 1,

as illustrated in Figure 2(c).

3. Bayes consistency via surrogate losses. As shown in Section 2.1.1, if we
substitute the (nonconvex) 0–1 loss function into the linking equation (6), then
we obtain the variational distance V (μ,π) as the f -divergence associated with
the function f (u) = min{u,1}. A bit more broadly, let us consider the subclass of
f -divergences defined by functions of the form

f (u) = −c min{u,1} + au + b,(12)

where a, b and c are scalars with c > 0. (For further examples of such losses, in
addition to the 0–1 loss, see Section 2.1.) The main result of this section is that
there exists a subset of surrogate losses φ associated with an f -divergence of the
form (12) that, when used in the context of a risk minimization procedure for
jointly optimizing (γ,Q) pairs, yields a Bayes consistent method.

We begin by specifying some standard technical conditions under which our
Bayes consistency result holds. Consider sequences of increasing compact func-
tion classes C1 ⊆ C2 ⊆ · · · ⊆ � and D1 ⊆ D2 ⊆ · · · ⊆ Q. Recall that � denotes the
class of all measurable functions from Z → R, whereas Q is a constrained class
of quantizer functions Q, with the restriction that μ and π are strictly positive
measures. Our analysis supposes that there exists an oracle that outputs an optimal
solution to the minimization problem

min
(γ,Q)∈(Cn,Dn)

R̂φ(γ,Q) = min
(γ,Q)∈(Cn,Dn)

1

n

n∑
i=1

∑
z∈Z

φ(Yiγ (z))Q(z|Xi),(13)

and let (γ ∗
n ,Q∗

n) denote one such solution. Let R∗
Bayes denote the minimum Bayes

risk achieved over the space of decision rules (γ,Q) ∈ (�,Q):

R∗
Bayes := inf

(γ,Q)∈(�,Q)
RBayes(γ,Q).(14)

We refer to the nonnegative quantity RBayes(γ
∗
n ,Q∗

n) − R∗
Bayes as the excess Bayes

risk of our estimation procedure. We say that such an estimation procedure is uni-
versally consistent if the excess Bayes risk converges to zero, that is, if under the
(unknown) Borel probability measure P on X × Y, we have

lim
n→∞RBayes(γ

∗
n ,Q∗

n) = R∗
Bayes in probability.(15)

In order to analyze the statistical behavior of this algorithm and to establish
universal consistency for appropriate sequences (Cn,Dn) of function classes, we
follow a standard strategy of decomposing the Bayes error in terms of two types
of errors:
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• the approximation error associated with function classes Cn ⊆ �, and Dn ⊆ Q:

E0(Cn,Dn) = inf
(γ,Q)∈(Cn,Dn)

{Rφ(γ,Q)} − R∗
φ,(16)

where R∗
φ := inf(γ,Q)∈(�,Q) Rφ(γ,Q);

• the estimation error introduced by the finite sample size n:

E1(Cn,Dn) = E sup
(γ,Q)∈(Cn,Dn)

|R̂φ(γ,Q) − Rφ(γ,Q)|,(17)

where the expectation is taken with respect to the (unknown) measure P
n(X,Y ).

For asserting universal consistency, we impose the standard conditions:

Approximation condition: lim
n→∞E0(Cn,Dn) = 0.(18)

Estimation condition: lim
n→∞E1(Cn,Dn) = 0 in probability.(19)

Conditions on loss function φ: Our consistency result applies to the class of
surrogate losses that satisfy the following:

B1: φ is continuous, convex, and classification-calibrated;
B2: For each n = 1,2, . . . , we assume that

Mn := max
y∈{−1,+1} sup

(γ,Q)∈(Cn,Dn)

sup
z∈Z

|φ(yγ (z))| < +∞.(20)

With this set-up, the following theorem ties together the Bayes error with the
approximation error and estimation error and provides sufficient conditions for
universal consistency for a suitable subclass of surrogate loss functions.

THEOREM 2. Consider an estimation procedure of the form (13), using a sur-
rogate loss φ. Recall the prior probabilities p = P(Y = 1) and q = P(Y = −1).
For any surrogate loss φ satisfying conditions B1 and B2 and inducing an
f -divergence of the form (12) for any c > 0, and for a, b such that (a−b)(p−q) ≥
0, we have:

(a) For any Borel probability measure P, there holds, with probability at least
1 − δ:

RBayes(γ
∗
n ,Q∗

n) − R∗
Bayes

≤ 2

c

{
2E1(Cn,Dn) + E0(Cn,Dn) + 2Mn

√
2

ln(2/δ)

n

}
.

(b) Universal Consistency: For function classes satisfying the approxima-
tion (18) and estimation conditions (19), the estimation procedure (13) is univer-
sally consistent:

lim
n→∞RBayes(γ

∗
n ,Q∗

n) = R∗
Bayes in probability.(21)
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REMARKS. (i) Note that both the approximation and the estimation errors are
with respect to the φ-loss, but the theorem statement refers to the excess Bayes
risk. Since the analysis of approximation and estimation conditions such as those
in equation (18) and (19) is a standard topic in statistical learning, we will not
discuss it further here. We note that our previous work analyzed the estimation
error for certain kernel classes [15].

(ii) It is worth pointing out that in order for our result to be applicable to an
arbitrary constrained class of Q for which μ and π are strictly positive measures,
we need the additional constraint that (a − b)(p − q) ≥ 0, where a, b are scalars
in the f -divergence (12) and p,q are the unknown prior probabilities. Intuitively,
this requirement is needed to ensure that the approximation error due to varying
Q within Q dominates the approximation error due to varying γ (because the
optimal γ is determined only after Q) for arbitrary Q. Since p and q are generally
unknown, the only f -divergences that are practically useful are the ones for which
a = b. One such φ is the hinge loss, which underlies the support vector machine.

Finally, we note that the proof of Theorem 2 relies on an auxiliary result that is
of independent interest. In particular, we prove that for any function classes C and
D , for certain choice of surrogate loss φ, the excess φ-risk is related to the excess
Bayes risk as follows.

LEMMA 2. Let φ be a surrogate loss function satisfying all conditions spec-
ified in Theorem 2. Then, for any classifier-quantizer pair (γ,Q) ∈ (C,D), we
have

c

2
[RBayes(γ,Q) − R∗

Bayes] ≤ Rφ(γ,Q) − R∗
φ.(22)

This result (22) demonstrates that in order to achieve joint Bayes consistency—
that is, in order to drive the excess Bayes risk to zero, while optimizing over the
pair (γ,Q)—it suffices to drive the excess φ-risk to zero.

4. Comparison between loss functions. We have studied a broad class of
loss functions corresponding to f -divergences of the form (12) in Theorem 1.
A subset of this class in turn yields Bayes consistency for the estimation pro-
cedure (13) as shown in Theorem 2. A natural question is, are there any other
surrogate loss functions that also yield Bayes consistency?

A necessary condition for achieving Bayes consistency using estimation proce-
dure (13) is that the constrained minimization over surrogate φ-risks should yield a
(Q,γ ) pair that minimizes the expected 0–1 loss subject to the same constraints. In
this section, we show that only surrogate loss functions that induce f -divergence
of the form (12) can actually satisfy this property. We establish this result by de-
veloping a general way of comparing different loss functions. In particular, by ex-
ploiting the correspondence between surrogate losses and f -divergences, we are
able to compare surrogate losses in terms of their corresponding f -divergences.
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4.1. Connection between 0–1 loss and f -divergences. The connection be-
tween f -divergences and 0–1 loss that we develop has its origins in seminal work
on comparison of experiments by Blackwell and others [3–5]. In particular, we
give the following definition.

DEFINITION 2. The quantizer Q1 dominates Q2 if RBayes(Q1) ≤ RBayes(Q2)

for any choice of prior probability q = P(Y = −1) ∈ (0,1).

Recall that a choice of quantizer design Q induces two conditional distribu-
tions, say P(Z|Y = 1) ∼ P1 and P(Z|Y = −1) ∼ P−1. From here onward, we use
P

Q
−1 and P

Q
1 to denote the fact that both P−1 and P1 are determined by the spe-

cific choice of Q. By “parameterizing” the decision-theoretic criterion in terms
of loss function φ and establishing a precise correspondence between φ and the
f -divergence, we obtain an arguably simpler proof of the classical theorem [3, 4]
that relates 0–1 loss to f -divergences.

PROPOSITION 1 [3, 4]. For any two quantizer designs Q1 and Q2, the follow-
ing statements are equivalent:

(a) Q1 dominates Q2 [i.e., RBayes(Q1) ≤ RBayes(Q2) for any prior probability
q ∈ (0,1)];

(b) If (P
Q1
1 ,P

Q1−1 ) ≥ If (P
Q2
1 ,P

Q2−1 ), for all functions f of the form f (u) =
−min(u, c) for some c > 0;

(c) If (P
Q1
1 ,P

Q1−1 ) ≥ If (P
Q2
1 ,P

Q2−1 ), for all convex functions f .

PROOF. We first establish the equivalence (a) ⇔ (b). By the correspon-
dence between 0–1 loss and an f -divergence with f (u) = −min(u,1), we have
RBayes(Q) = −If (μ,π) = −Ifq (P1,P−1), where fq(u) := qf (

1−q
q

u) = −(1 −
q)min(u,

q
1−q

). Hence, (a) ⇔ (b).
Next, we prove the equivalence (b) ⇔ (c). The implication (c) ⇒ (b) is im-

mediate. Considering the reverse implication (b) ⇒ (c), we note that any convex
function f (u) can be uniformly approximated over a bounded interval as a sum
of a linear function and −∑

k αk min(u, ck), where αk > 0, ck > 0 for all k. For
a linear function f , If (P−1,P1) does not depend on P−1,P1. Using these facts,
(c) follows easily from (b). �

COROLLARY 1. The quantizer Q1 dominates Q2 if and only if Rφ(Q1) ≤
Rφ(Q2) for any loss function φ.

PROOF. By Theorem 1(a), we have Rφ(Q) = −If (μ,π) = −Ifq (P1,P−1),
from which the corollary follows, using Proposition 1. �
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Corollary 1 implies that if Rφ(Q1) ≤ Rφ(Q2) for some loss function φ, then
RBayes(Q1) ≤ RBayes(Q2) for some set of prior probabilities on the hypothesis
space. This implication justifies the use of a given surrogate loss function φ in
place of the 0–1 loss for some prior probability; however, for a given prior proba-
bility, it gives no guidance on how to choose φ. Moreover, the prior probabilities on
the label Y are typically unknown in many applications. In such a setting, Black-
well’s notion of Q1 dominating Q2 has limited usefulness. With this motivation in
mind, the following section is devoted to development of a more stringent method
for assessing equivalence between loss functions.

4.2. Universal equivalence. Suppose that the loss functions φ1 and φ2 realize
the f -divergences associated with the convex functions f1 and f2, respectively.
We then have the following definition.

DEFINITION 3. The surrogate loss functions φ1 and φ2 are universally equiv-

alent, denoted by φ1
u≈ φ2, if for any P(X,Y ) and quantization rules Q1,Q2, there

holds:

Rφ1(Q1) ≤ Rφ1(Q2) ⇔ Rφ2(Q1) ≤ Rφ2(Q2).

In terms of the corresponding f -divergences, this relation is denoted by f1
u≈ f2.

Observe that this definition is very stringent, in that it requires that the order-
ing between optimal φ1 and φ2 risks holds for all probability distributions P on
X × Y. However, this stronger notion of equivalence is needed for nonparametric
approaches to classification, in which the underlying distribution P is only weakly
constrained.

The following result provides necessary and sufficient conditions for two
f -divergences to be universally equivalent.

THEOREM 3. Let f1 and f2 be continuous, nonlinear and convex functions

on [0,+∞) → R. Then, f1
u≈ f2 if and only if f1(u) = cf2(u) + au + b for some

constants c > 0 and a, b.

An important special case is when one of the f -divergences is the variational
distance. In this case, we have the following.

COROLLARY 2. (a) All f -divergences based on continuous convex
f : [0,+∞) → ∞ that are universally equivalent to the variational distance have
the form

f (u) = −c min(u,1) + au + b for some c > 0.(23)

(b) The 0–1 loss is universally equivalent only to those loss functions whose corre-
sponding f -divergence is based on a function of the form (23).
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The above result establishes that only those surrogate loss functions correspond-
ing to the variational distance yield universal consistency in a strong sense, mean-
ing for any underlying P and a constrained class of quantization rules.

5. Proofs. In this section, we provide detailed proofs of our main results, as
well as some auxiliary results.

5.1. Proofs of Theorem 1 and auxiliary properties. Our proof proceeds via
connecting some intermediate functions. First, let us define, for each β , the inverse
mapping

φ−1(β) := inf{α :φ(α) ≤ β},(24)

where inf ∅ := +∞. The following result summarizes some useful properties of
φ−1.

LEMMA 3. Suppose that φ is a convex loss satisfying assumptions A1, A2
and A3.

(a) For all β ∈ R such that φ−1(β) < +∞, the inequality φ(φ−1(β)) ≤ β

holds. Furthermore, equality occurs when φ is continuous at φ−1(β).
(b) The function φ−1 : R → R is strictly decreasing and convex.

Using the function φ−1, we define a new function 	̃ : R → R by

	̃(β) :=
{

φ(−φ−1(β)), if φ−1(β) ∈ R,
+∞, otherwise.

(25)

Note that the domain of 	̃ is Dom(	̃) = {β ∈ R :φ−1(β) ∈ R}. Now, define

β̃1 := inf{β : 	̃(β) < +∞} and β̃2 := inf{β : 	̃(β) = inf 	̃}.(26)

It is simple to check that infφ = inf 	̃ = φ(α∗), and β̃1 = φ(α∗), β̃2 = φ(−α∗).
Furthermore, by construction, we have 	̃(β̃2) = φ(α∗) = β̃1, as well as 	̃(β̃1) =
φ(−α∗) = β̃2. The following properties of 	̃ are particularly useful for our main
results.

LEMMA 4. Suppose that φ is a convex loss satisfying assumptions A1, A2
and A3. We have:

(a) 	̃ is strictly decreasing in the interval (β̃1, β̃2). If φ is decreasing, then 	̃

is also decreasing in (−∞,+∞). In addition, 	̃(β) = +∞ for β < β̃1.
(b) 	̃ is convex in (−∞, β̃2]. If φ is a decreasing function, then 	̃ is convex

in (−∞,+∞).
(c) 	̃ is lower semi-continuous, and continuous in its domain.
(d) For any α ≥ 0, φ(α) = 	̃(φ(−α)). In particular, there exists u∗ ∈ (β̃1, β̃2)

such that 	̃(u∗) = u∗.
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(e) The function 	̃ satisfies 	̃(	̃(β)) ≤ β for all β ∈ Dom(	̃). Moreover, if φ

is a continuous function on its domain {α ∈ R|φ(α) < +∞}, then 	̃(	̃(β)) = β

for all β ∈ (β̃1, β̃2).

Let us proceed to part (a) of the theorem. The statement for general φ has al-
ready proved in the derivation preceding the theorem statement. Now, supposing
that a decreasing convex surrogate loss φ satisfies assumptions A1, A2 and A3,
then

f (u) = − inf
α∈R

(
φ(−α) + φ(α)u

)
= − inf{

α,β
∣∣φ−1(β)∈R,φ(α)=β

}
(
φ(−α) + βu

)
.

For β such that φ−1(β) ∈ R, there might be more than one α such that φ(α) = β .
However, our assumption (4) ensures that α = φ−1(β) results in minimum φ(−α).
Hence,

f (u) = − inf
β:φ−1(β)∈R

(
φ(−φ−1(β)) + βu

) = − inf
β∈R

(
βu + 	̃(β)

)
= sup

β∈R

(−βu − 	̃(β)
) = 	̃∗(−u).

By Lemma 4(b), the fact that φ is decreasing implies that 	̃ is convex. By convex
duality and the lower semicontinuity of 	̃ (from Lemma 4(c)), we can also write

	̃(β) = 	̃∗∗(β) = f ∗(−β).(27)

Thus, 	̃ is identical to the function 	 defined in equation (8). The proof of part (a)
is complete, thanks to Lemma 4. Furthermore, it can be shown that φ must have
the form (9). Indeed, from Lemma 4(d), we have 	(φ(0)) = φ(0) ∈ (β1, β2). As a
consequence, u∗ := φ(0) satisfies the relation 	(u∗) = u∗. Since φ is decreasing
and convex on the interval (−∞,0], for any α ≥ 0, we can write

φ(−α) = g(α + u∗),

where g is some increasing continuous and convex function. From Lemma 4(d),
we have φ(α) = 	(φ(−α)) = 	(g(α + u∗) for α ≥ 0. To ensure the continuity
at 0, there holds u∗ = φ(0) = g(u∗). To ensure that φ is classification-calibrated,
we require that φ be differentiable at 0 and φ′(0) < 0. These conditions in turn
imply that g must be right-differentiable at u∗, with g′(u∗) > 0.

Let us turn to part (b) of the theorem. Since f is lower semicontinuous by
assumption, convex duality allows us to write

f (u) = f ∗∗(u) = 	∗(−u)

= sup
β∈R

(−βu − 	(β)
) = − inf

β∈R

(
βu + 	(β)

)
.
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Note that 	 is lower semicontinuous and convex by definition. To prove that
any surrogate loss φ of form (9) (along with conditions A1–A3) must induce
f -divergences in the sense of equation (6) [and thus equation (7)], it remains to
show that φ is linked to 	 via the relation

	̃ ≡ 	.(28)

Since 	 is assumed to be a decreasing function, the function φ defined in (9) is
also a decreasing function. Using the fixed point u∗ ∈ (β1, β2) of function 	 , we
divide our analysis into three cases:

• For β ≥ u∗, there exists α ≥ 0 such that g(α + u∗) = β . Choose the largest
such α. From our definition of φ, φ(−α) = β . Thus, φ−1(β) = −α. It follows
that 	̃(β) = φ(−φ−1(β)) = φ(α) = 	(g(α + u∗)) = 	(β).

• For β < β1, then 	(β) = +∞. It can also be verified that 	̃(β) = +∞.
• Lastly, for β1 ≤ β < u∗ < β2, there exists α > 0 such that g(α + u∗) ∈ (u∗, β2)

and β = 	(g(α + u∗)), which implies that β = φ(α) from our definition.
Choose the smallest α that satisfies these conditions. Then, φ−1(β) = α, and
it follows that 	̃(β) = φ(−φ−1(β)) = φ(−α) = g(α + u∗) = 	(	(g(α +
u∗))) = 	(β), where we have used the fact that g(α + u∗) ∈ (β1, β2).

The proof of Theorem 1 is complete.

5.1.1. Some additional properties. In the remainder of this section we present
several useful properties of surrogate losses and f -divergences. Although Theo-
rem 1 provides one set of conditions for an f -divergence to be realized by some
surrogate loss φ, as well as a constructive procedure for finding all such loss func-
tions, the following result provides a related set of conditions that can be easier to
verify. We say that an f -divergence is symmetric if If (μ,π) = If (π,μ) for any
measures μ and π . With this definition, we have the following.

COROLLARY 3. Suppose that f : [0,+∞) → R is a continuous and convex
function. The following are equivalent:

(a) The function f is realizable by some surrogate loss function φ (via Theo-
rem 1).

(b) The f -divergence If is symmetric.
(c) For any u > 0, f (u) = uf (1/u).

PROOF. (a) ⇒ (b): From Theorem 1(a), we have the representation Rφ(Q) =
−If (μ,π). Alternatively, we can write

Rφ(Q) = ∑
z

μ(z)min
α

(
φ(α) + φ(−α)

π(z)

μ(z)

)

= −∑
z

μ(z)f

(
π(z)

μ(z)

)
,



896 X. NGUYEN, M. J. WAINWRIGHT AND M. I. JORDAN

which is equal to −If (π,μ), thereby showing that the f -divergence is symmetric.
(b) ⇒ (c): By assumption, the following relation holds for any measures μ

and π : ∑
z

π(z)f (μ(z)/π(z)) = ∑
z

μ(z)f (π(z)/μ(z)).(29)

Take any instance of z = l ∈ Z, and consider measures μ′ and π ′, which are
defined on the space Z − {l} such that μ′(z) = μ(z) and π ′(z) = π(z) for all
z ∈ Z − {l}. Since condition (29) also holds for μ′ and π ′, it follows that

π(z)f (μ(z)/π(z)) = μ(z)f (π(z)/μ(z))

for all z ∈ Z and any μ and π . Hence, f (u) = uf (1/u) for any u > 0.
(c) ⇒ (a): It suffices to show that all sufficient conditions specified by Theo-

rem 1 are satisfied.
Since any f -divergence is defined by applying f to a likelihood ratio [see defi-

nition (2)], we can assume f (u) = +∞ for u < 0 without loss of generality. Since
f (u) = uf (1/u) for any u > 0, it can be verified using subdifferential calculus [8]
that for any u > 0, there holds

∂f (u) = f (1/u) + ∂f (1/u)
−1

u
.(30)

Given some u > 0, consider any v1 ∈ ∂f (u). Combined with equation (30) and the
equality f (u) = uf (1/u), we have

f (u) − v1u ∈ ∂f (1/u).(31)

By definition of conjugate duality, f ∗(v1) = v1u − f (u).
Letting 	(β) = f ∗(−β) as in Theorem 1, we have

	(	(−v1)) = 	(f ∗(v1)) = 	
(
v1u − f (u)

)
= f ∗(

f (u) − v1u
) = sup

β∈R

(
βf (u) − βv1u − f (β)

)
.

Note that from equation (31), the supremum is achieved at β = 1/u, so that we
have 	(	(−v1)) = −v1 for any v1 ∈ ∂f (u) for u > 0. In other words, 	(	(β)) =
β for any β ∈ {−∂f (u),u > 0}. Convex duality and the definition 	(β) = f ∗(−β)

imply that β ∈ −∂f (u) for some u > 0 if and only if −u ∈ ∂	(β) for some u > 0.
This condition on β is equivalent to the subdifferential ∂	(β) containing some
negative value, which is satisfied by any β ∈ (β1, β2), so that 	(	(β)) = β for
β ∈ (β1, β2). In addition, since f (u) = +∞ for u < 0, 	 is a decreasing function.
Now, as an application of Theorem 1, we conclude that If is realizable by some
(decreasing) surrogate loss function. �

The following result establishes a link between (un)boundedness and the prop-
erties of the associated f .
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COROLLARY 4. Assume that φ is a decreasing (continuous convex) loss func-
tion corresponding to an f -divergence, where f is a continuous convex function
that is bounded from below by an affine function. Then, φ is unbounded from below
if and only if f is 1-coercive, that is, f (x)/‖x‖ → +∞ as ‖x‖ → ∞.

PROOF. φ is unbounded from below if and only if 	(β) = φ(−φ−1(β)) ∈ R

for all β ∈ R, which is equivalent to the dual function f (β) = 	∗(−β) being
1-coercive cf. [8]. �

Consequentially, for any decreasing and lower-bounded φ loss (which includes
the hinge, logistic and exponential losses), the associated f -divergence is not
1-coercive. Other interesting f -divergences such as the symmetric KL divergence
considered in [5] are 1-coercive, meaning that any associated surrogate loss φ can-
not be bounded below.

5.2. Proof of Theorem 2. First let us prove Lemma 2:

PROOF. Since φ has form (9), it is easy to check that φ(0) = (c − a − b)/2.
Now, note that

RBayes(γ,Q) − R∗
Bayes = RBayes(γ,Q) − RBayes(Q) + RBayes(Q) − R∗

Bayes

= ∑
z∈Z

π(z)I
(
γ (z) > 0

) + μ(z)I
(
γ (z) < 0

)

− min{μ(z),π(z)} + RBayes(Q) − R∗
Bayes

= ∑
z:(μ(z)−π(z))γ (z)<0

|μ(z) − π(z)| + RBayes(Q) − R∗
Bayes.

In addition,

Rφ(γ,Q) − R∗
φ = Rφ(γ,Q) − Rφ(Q) + Rφ(Q) − R∗

φ.

By Theorem 1(a),

Rφ(Q) − R∗
φ = −If (μ,π) − inf

Q∈Q
(−If (μ,π))

= c
∑
z∈Z

min{μ(z),π(z)} − inf
Q∈Q

c
∑
z∈Z

min{μ(z),π(z)}

= c
(
RBayes(Q) − R∗

Bayes
)
.

Therefore, the lemma will be immediate once we can show that
c

2

∑
z:(μ(z)−π(z))γ (z)<0

|μ(z) − π(z)| ≤ Rφ(γ,Q) − Rφ(Q)

= ∑
z∈Z

π(z)φ(−γ (z)) + μ(z)φ(γ (z))(32)

− c min{μ(z),π(z)} + ap + bq.
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It is easy to check that for any z ∈ Z such that (μ(z) − π(z))γ (z) < 0, there holds

π(z)φ(−γ (z)) + μ(z)φ(γ (z)) ≥ π(z)φ(0) + μ(z)φ(0).(33)

Indeed, without loss of generality, suppose μ(z) > π(z). Since φ is classification-
calibrated, the convex function (with respect to α) π(z)φ(−α) + μ(z)φ(α)

achieves its minimum at some α ≥ 0. Hence, for any α ≤ 0, π(z)φ(−α) +
μ(z)φ(α) ≥ π(z)φ(0) + μ(z)φ(0). Hence, the statement (33) is proven. The RHS
of equation (32) is lower bounded by∑

z:(μ(z)−π(z))γ (z)<0

(
π(z) + μ(z)

)
φ(0) − c min{μ(z),π(z)} + ap + bq

= ∑
z:(μ(z)−π(z))γ (z)<0

(
π(z) + μ(z)

)c − a − b

2
− c min{μ(z),π(z)}

+ ap + bq

≥ c

2

∑
z:(μ(z)−π(z))γ (z)<0

|μ(z) − π(z)| − (a + b)(p + q)/2 + ap + bq

= c

2

∑
z:(μ(z)−π(z))γ (z)<0

|μ(z) − π(z)| + 1

2
(a − b)(p − q)

≥ c

2

∑
z:(μ(z)−π(z))γ (z)<0

|μ(z) − π(z)|.

This completes the proof of the lemma. �

We are now equipped to prove Theorem 2. For part (a), first observe that the
value of supγ∈Cn,Q∈Dn

|R̂φ(γ,Q) − Rφ(γ,Q)| varies by at most 2Mn/n if one
changes the values of (Xi, Yi) for some index i ∈ {1, . . . , n}. Hence, applying
McDiarmid’s inequality yields concentration around the expected value [14], or
(alternatively stated) we have that, with probability at least 1 − δ,∣∣∣∣ sup

γ∈Cn,Q∈Dn

|R̂φ(γ,Q) − Rφ(γ,Q)| − E1(Cn,Dn)

∣∣∣∣ ≤ Mn

√
2 ln(1/δ)/n.(34)

Suppose that Rφ(γ,Q) attains its minimum over the compact subset (Cn,Dn)

at (γ †
n ,Q†

n). Then, using Lemma 2, we have

c

2

(
RBayes(γ

∗
n ,Q∗

n) − R∗
Bayes

) ≤ Rφ(γ ∗
n ,Q∗

n) − R∗
φ

= Rφ(γ ∗
n ,Q∗

n) − Rφ(γ †
n ,Q†

n) + Rφ(γ †
n ,Q†

n) − R∗
φ

= Rφ(γ ∗
n ,Q∗

n) − Rφ(γ †
n ,Q†

n) + E0(Cn,Dn).
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Hence, using the inequality (34), we have, with probability at least 1 − δ,

c

2

(
RBayes(γ

∗
n ,Q∗

n) − R∗
Bayes

)
≤ R̂φ(γ ∗

n ,Q∗
n) − R̂φ(γ †

n ,Q†
n) + 2E1(Cn,Dn)

+ 2Mn

√
2 ln(2/δ)/n + E0(Cn,Dn)

≤ 2E1(Cn,Dn) + E0(Cn,Dn) + 2Mn

√
2 ln(2/δ)/n,

from which Theorem 2(a) follows.
For part (b), this statement follows by applying (a) with δ = 1/n.

5.3. Proof of Theorem 3. One direction of the theorem (“if”) is easy. We focus
on the other direction. The proof relies on the following technical result.

LEMMA 5. Given a continuous convex function f : R+ → R, for any u, v ∈
R

+, define

Tf (u, v) :=
{
f ∗(α) − f ∗(β)

α − β

∣∣∣α ∈ ∂f (u),β ∈ ∂f (v),α �= β

}
.

If f1
u≈ f2, then for any u, v > 0, one of the following must be true:

(1) Tf (u, v) are nonempty for both f1 and f2, and Tf1(u, v) = Tf2(u, v).
(2) Both f1 and f2 are linear in the interval (u, v).

Now, let us proceed to prove Theorem 3. The convex function f : [0,∞) → R

is continuous on (0,∞) and hence is almost everywhere differentiable on (0,∞)

(see [16]). Note that if function f is differentiable at u and v and f ′(u) �= f ′(v),
then Tf (u, v) is reduced to a number

uf ′(u) − vf ′(v) − f (u) + f (v)

f ′(u) − f ′(v)
= f ∗(α) − f ∗(β)

α − β
,

where α = f ′(u), β = f ′(v), and f ∗ denotes the conjugate dual of f .
Let v be an arbitrary point where both f1 and f2 are differentiable. Let

d1 = f ′
1(v), d2 = f ′

2(v). Without loss of generality, we may assume that f1(v) =
f2(v) = 0; if not, we simply consider the functions f1(u) − f1(v) and f2(u) −
f2(v).

Now, for any u where both f1 and f2 are differentiable, applying Lemma 5 for
v and u, then either f1 and f2 are both linear in [v,u] (or [u, v] if u < v), in which
case f1(u) = cf2(u) for some constant c, or the following is true:

uf ′
1(u) − f1(u) − vd1

f ′
1(u) − d1

= uf ′
2(u) − f2(u) − vd2

f ′
2(u) − d2

.
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In either case, we have(
uf ′

1(u) − f1(u) − vd1
)(

f ′
2(u) − d2

) = (
uf ′

2(u) − f2(u) − vd2
)(

f ′
1(u) − d1

)
.

Let g1, g2 be defined by f1(u) = g1(u) + d1u, f2(u) = g2(u) + d2u. Then,
(ug′

1(u) − g1(u) − vd1)g
′
2(u) = (ug′

2(u) − g2(u) − vd2)g
′
1(u), implying that

(g1(u) + vd1)g
′
2(u) = (g2(u) + vd2)g

′
1(u) for any u where f1 and f2 are both

differentiable. Since u and v can be chosen almost everywhere, v is chosen so that
there does not exist any open interval for u such that g2(u) + vd2 = 0. It follows
that g1(u) + vd1 = c(g2(u) + vd2) for some constant c and this constant c has to
be the same for any u due to the continuity of f1 and f2. Hence, we have f1(u) =
g1(u) + d1u = cg2(u) + d1u + cvd2 − vd1 = cf2(u) + (d1 − cd2)u + cvd2 − vd1.
It is now simple to check that c > 0 is necessary and sufficient for If1 and If2 to
have the same monotonicity.

A. Proof of Lemma 3. (a) Since φ−1(β) < +∞, we have φ(φ−1(β)) =
φ(inf{α :φ(α) ≤ β}) ≤ β , where the final inequality follows from the lower semi-
continuity of φ. If φ is continuous at φ−1(β), then we have φ−1(β) = min{α :
φ(α) = β}, in which case we have φ(φ−1(β)) = β .

(b) Due to convexity and the inequality φ′(0) < 0, it follows that φ is a strictly
decreasing function in (−∞, α∗]. Furthermore, for all β ∈ R such that φ−1(β) <

+∞, we must have φ−1(β) ≤ α∗. Therefore, definition 24 and the (decreasing)
monotonicity of φ imply that for any a, b ∈ R, if b ≥ a ≥ infφ, then φ−1(a) ≥
φ−1(b), which establishes that φ−1 is a decreasing function. In addition, we have
a ≥ φ−1(b) if and only if φ(a) ≤ b.

Now, due to the convexity of φ, applying Jensen’s inequality for any 0 < λ < 1,
we have φ(λφ−1(β1) + (1 − λ)φ−1(β2)) ≤ λφ(φ−1(β1)) + (1 − λ)φ(φ−1(β2)) ≤
λβ1 + (1 − λ)β2. Therefore,

λφ−1(β1) + (1 − λ)φ−1(β2) ≥ φ−1(
λβ1 + (1 − λ)β2

)
,

implying the convexity of φ−1.

B. Proof of Lemma 4.

PROOF. (a) We first prove the statement for the case of a decreasing func-
tion φ. First, if a ≥ b and φ−1(a) /∈ R, then φ−1(b) /∈ R; hence, 	(a) = 	(b) =
+∞. If only φ−1(b) /∈ R, then clearly 	(b) ≥ 	(a) [since 	(b) = +∞]. If a ≥ b,
and both φ−1(α),φ−1(β) ∈ R, then, from the previous lemma, φ−1(a) ≤ φ−1(b),
so that φ(−φ−1(a)) ≤ φ(−φ−1(b)), implying that 	 is a decreasing function.

We next consider the case of a general function φ. For β ∈ (β1, β2), we have
φ−1(β) ∈ (−α∗, α∗), and hence −φ−1(β) ∈ (−α∗, α∗). Since φ is strictly decreas-
ing in (−∞, α∗], then φ(−φ−1(β)) is strictly decreasing in (β1, β2). Finally, when
β < inf	 = φ(α∗), φ−1(β) /∈ R, so 	(β) = +∞ by definition.
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(b) First of all, assume that φ is decreasing. By applying Jensen’s inequality,
for any 0 < λ < 1, we have

λ	(γ1) + (1 − λ)	(γ2)

= λφ(−φ−1(γ1)) + (1 − λ)φ(−φ−1(γ2))

≥ φ
(−λφ−1(γ1) − (1 − λ)φ−1(γ2)

)
since φ is convex

≥ φ
(−φ−1(

λγ1 + (1 − λ)γ2
))

= 	
(
λγ1 + (1 − λ)γ2

)
,

where the last inequality is due to the convexity of φ−1 and decreasing φ. Hence,
	 is a convex function.

In general, the above arguments go through for any γ1, γ2 ∈ [β1, β2]. Since
	(β) = +∞ for β < β1, this implies that 	 is convex in (−∞, β2].

(c) For any a ∈ R, from the definition of φ−1 and due to the continuity of φ,

{β∣∣	(β) = φ(−φ−1(β)) ≤ a} = {β∣∣ − φ−1(β) ≥ φ−1(a)}
= {β∣∣φ−1(β) ≤ −φ−1(a)}
= {β∣∣β ≥ φ(−φ−1(a))}

is a closed set. Similarly, {β ∈ R
∣∣	(β) ≥ a} is a closed set. Hence, 	 is continuous

in its domain.
(d) Since φ is assumed to be classification-calibrated, Lemma 1 implies that

φ is differentiable at 0 and φ′(0) < 0. Since φ is convex, this implies that φ is
strictly decreasing for α ≤ 0. As a result, for any α ≥ 0, let β = φ(−α), then
we obtain α = −φ−1(β). Since 	(β) = φ(−φ−1(β)), we have 	(β) = φ(α).
Hence, 	(φ(−α)) = φ(α). Letting u∗ = φ(0), then we have 	(u∗) = u∗ and
u∗ ∈ (β1, β2).

(e) Let α = 	(β) = φ(−φ−1(β). Then, from equation (24), φ−1(α) ≤
−φ−1(β). Therefore,

	(	(β)) = 	(α) = φ(−φ−1(α)) ≤ φ(φ−1(β)) ≤ β.

We have proved that 	 is strictly decreasing for β ∈ (β1, β2). As such,
φ−1(α) = −φ−1(β). We also have φ(φ−1(β)) = β . It follows that 	(	(β)) = β

for all β ∈ (β1, β2).

REMARK. With reference to statement (b), if φ is not a decreasing func-
tion, then the function 	 need not be convex on the entire real line. For in-
stance, the following loss function generates a function 	 that is not convex:
φ(α) = (1 − α)2 when α ≤ 1, 0 when α ∈ [0,2], and α − 2 otherwise. Then,
we have 	(9) = φ(2) = 0,	(16) = φ(3) = 1,	(25/2) = φ(−1 + 5/

√
2) =

−3 + 5/
√

2 > (	(9) + 	(16))/2. �
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C. Proof of Lemma 5.

PROOF. Consider a joint distribution P(X,Y ) defined by P(Y = −1) = q =
1 − P(Y = 1) and

P(X|Y = −1) ∼ Uniform[0, b] and P(X|Y = 1) ∼ Uniform[a, c],
where 0 < a < b < c. Let Z = {1,2}. We assume Z is produced by a determin-
istic quantizer design Q specified by a threshold t ∈ (a, b); in particular, we set
Q(z = 1|x) = 1 when x ≥ t , and Q(z = 2|x) = 1 when x < t . Under this quan-
tizer design, we have

μ(1) = (1 − q)
t − a

c − a
; μ(2) = (1 − q)

c − t

c − a
;

π(1) = q
t

b
; π(2) = q

b − t

b
.

Therefore, the f -divergence between μ and π takes the form

If (μ,π) = qt

b
f

(
(t − a)b(1 − q)

(c − a)tq

)
+ q(b − t)

b
f

(
(c − t)b(1 − q)

(c − a)(b − t)q

)
.

If f1
u≈ f2, then If1(μ,π) and If1(μ,π) have the same monotonicity property for

any q ∈ (0,1), as well, as for any choice of the parameters q and a < b < c. Let
γ = b(1−q)

(c−a)q
, which can be chosen arbitrarily positive, and then define the function

F(f, t) = tf

(
(t − a)γ

t

)
+ (b − t)f

(
(c − t)γ

b − t

)
.

Note that the functions F(f1, t) and F(f2, t) have the same monotonicity property,
for any positive parameters γ and a < b < c.

We now claim that F(f, t) is a convex function of t . Indeed, using convex du-
ality [18], F(f, t) can be expressed as follows:

F(f, t) = t sup
r∈R

{
(t − a)γ

t
r − f ∗(r)

}
+ (b − t) sup

s∈R

{
(c − t)γ

b − t
s − f ∗(s)

}

= sup
r,s

{(t − a)rγ − tf ∗(r) + (c − t)sγ − tf ∗(s)},

which is a supremum over a linear function of t , thereby showing that F(f, t) is
convex of t .

It follows that both F(f1, t) and F(f2, t) are subdifferentiable everywhere in
their domains; since they have the same monotonicity property, we must have

0 ∈ ∂F (f1, t) ⇔ 0 ∈ ∂F (f2, t).(35)
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It can be verified using subdifferential calculus [8] that

∂F (f, t) = aγ

t
∂f

(
(t − a)γ

t

)
+ f

(
(t − a)γ

t

)

− f

(
(c − t)γ

b − t

)
+ (c − b)γ

b − t
∂f

(
(c − t)γ

b − t

)
.

Letting u = (t−a)γ
t

, v = (c−t)γ
b−t

, we have

0 ∈ ∂F (f, t)(36a)

⇔ 0 ∈ (γ − u)∂f (u) + f (u) − f (v) + (v − γ )∂f (v)(36b)

⇔ ∃α ∈ ∂f (u),β ∈ ∂f (v) s.t.
(36c)

0 = (γ − u)α + f (u) − f (v) + (v − γ )β

⇔ ∃α ∈ ∂f (u),β ∈ ∂f (v) s.t.
(36d)

γ (α − β) = uα − f (u) + f (v) − vβ

⇔ ∃α ∈ ∂f (u),β ∈ ∂f (v) s.t. γ (α − β) = f ∗(α) − f ∗(β).(36e)

By varying our choice of q ∈ (0,1), the number γ can take any positive value.
Similarly, by choosing different positive values of a, b, c (such that a < b < c), we
can ensure that u and v can take on any positive real values such that u < γ < v.
Since equation (35) holds for any t , it follows that for any triples u < γ < v, (36e)
holds for f1 if and only if it also holds for f2.

Considering a fixed pair u < v, first suppose that the function f1 is linear on the
interval [u, v] with a slope s. In this case, condition (36e) holds for f1 and any γ

by choosing α = β = s, which implies that condition (36e) also holds for f2 for
any γ . Thus, we deduce that f2 is also a linear function on the interval [u, v].

Suppose, on the other hand, that f1 and f2 are both nonlinear in [u, v]. Due to
the monotonicity of subdifferentials, we have ∂f1(u) ∩ ∂f1(v) = ∅ and ∂f2(u) ∩
∂f2(v) = ∅. Consequently, it follows that both Tf1(u, v) and Tf2(u, v) are non-
empty. If γ ∈ Tf1(u, v), then condition (36e) holds for f1 for some γ . Thus, it
must also hold for f2 using the same γ , which implies that γ ∈ Tf2(u, v). The
same argument can also be applied with the roles of f1 and f2 reversed, so we
conclude that Tf1(u, v) = Tf2(u, v). �
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