Research Article

Erdal Karapinar, Farshid Khojasteh, Zoran D. Mitrović*, and Vladimir Rakočević

On surrounding quasi-contractions on non-triangular metric spaces

https://doi.org/10.1515/math-2020-0083 received March 28, 2020; accepted September 10, 2020

Abstract: The aim of this paper is to establish some fixed point results for surrounding quasi-contractions in non-triangular metric spaces. Also, we prove the Banach principle of contraction in non-triangular metric spaces. As applications of our theorems, we deduce certain well-known results in *b*-metric spaces as corollaries.

Keywords: non-triangular metric spaces, quasi-contraction, b-metric spaces

MSC 2020: 47H10, 54H25

1 Introduction and preliminaries

In this paper [1], Banach opened up a new way in non-linear analysis, upon which various applications in a variety of sciences have appeared. After this interesting principle, several authors generalized this principle by introducing the various contractions on metric spaces (see [2–8]). In 2014, the notion of manageable function was introduced by Du and Khojasteh [9,10] to generalize and unify the several existing fixed point results in the literature. After that, Jleli and Samet [11] introduced a generalization of metric spaces that recovers a large class of topological spaces including standard metric spaces, *b*-metric spaces, dislocated metric spaces and modular spaces called *JS*-metric spaces. In this paper, we establish some fixed point theorems for surrounding quasi-contractions in non-triangular metric spaces. Also, we prove the Banach principle of contraction in non-triangular metric spaces. As applications of our theorems, we deduce certain well-known results in b-metric spaces as corollaries.

Here, we preliminarily provide some auxiliary facts which will be needed later.

The concept of *b*-metric space was introduced by Bakhtin [12] and Czerwik [13], which is an interesting generalization of usual metric space (see [14–31]). A *b*-metric space (see [12,13]) (*X*, *d*) is a space defined on a non-empty set *X* with a mapping $d : X \times X \rightarrow [0, +\infty)$ and constant $s \ge 1$ satisfying the following conditions:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all $x, y \in X$;

(3) $d(x, y) \le s[d(x, z) + d(z, y)]$ for all $x, y, z \in X$.

പ്ര

^{*} Corresponding author: Zoran D. Mitrović, Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000, Banja Luka, Bosnia and Herzegovina, e-mail: zoran.mitrovic@etf.unibl.org

Erdal Karapinar: Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam; Department of Mathematics, Çankaya University, 06790, Etimesgut, Ankara, Turkey; Department of Medical Research, China Medical University Hospital, China Medical University, 40402, Taichung, Taiwan, e-mail: erdalkarapinar@tdmu.edu.vn, erdalkarapinar@yahoo.com

Farshid Khojasteh: Young Researcher and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran, e-mail: fr_khojasteh@yahoo.com

Vladimir Rakočević: Faculty of Sciences and Mathematics, Department of Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia, e-mail: vrakoc@sbb.rs

³ Open Access. © 2020 Erdal Karapinar *et al.*, published by De Gruyter. 🐨 This work is licensed under the Creative Commons Attribution 4.0 International License.

1114 — Erdal Karapinar *et al.*

In this case, *d* is called a *b*-metric on *X*. Regarding the concept of *b*-convergent sequence, *b*-Cauchy sequence and *b*-completeness, the reader may refer to [19] and references therein.

Let *X* be a non-empty set and let $\varrho : X \times X \to [0, +\infty]$ be a given mapping. For every $x \in X$, define the sets:

$$\mathcal{M}(\varrho, X, x) = \{\{x_n\} \in X : \lim_{n \to \infty} \varrho(x_n, x) = 0\}.$$

Definition 1.1. [11] We say that ϱ is a JS-metric on *X* if it satisfies the following conditions: (a₁) for each pair (*x*, *y*) \in *X* × *X*, we have

 $\rho(x, y) = 0$ implies x = y,

(a₂) for each pair $(x, y) \in X \times X$, we have

$$\varrho(x,y)=\varrho(y,x),$$

(a₃) there exists $\kappa > 0$ such that for all $x, y \in X$, if $\{x_n\} \in \mathcal{M}(\varrho, X, x)$

$$\varrho(x, y) \leq \kappa \limsup_{n \to \infty} \varrho(x_n, y).$$

In this case, we say the pair (X, ϱ) is a JS-metric space by modulus κ .

Definition 1.2. [11] Let (X, ϱ) be a JS-metric space.

- (b₁) We say that $\{x_n\} \varrho$ -converges to *x* if $\{x_n\} \in \mathcal{M}(\varrho, X, x)$,
- (b₂) if { x_n } ϱ -converges to x and ϱ -converges to y, then x = y,
- (b₃) { x_n } is a ϱ -Cauchy sequence if lim $\varrho(x_n, x_m) = 0$,

 $(b_4)(X, \varrho)$ is said to be ϱ -complete if every ϱ -Cauchy sequence in X is convergent to some element in X.

Very recently, Khojasteh and Khandani [32] introduced the concept of non-triangular metric space and obtained some fixed point results which are the generalization of some new recent results in the literature.

Definition 1.3. Let X be a non-empty set and let $\rho : X \times X \to \mathbb{R}^+$ be a mapping. We say that ρ is a non-triangular metric on X if it satisfies the following conditions:

(c₁) $\rho(x, x) = 0$ for all $x \in X$;

(c₂) If $\{x_n\} \in \mathcal{M}(\rho, X, x) \cap \mathcal{M}(\rho, X, y)$, then x = y for all $x, y \in X$.

Note that if $x, y \in X$ and $\rho(x, y) = 0$, then taking $x_n = x$ for each $n \in \mathbb{N}$ and applying conditions (c_1) and (c_2) it follows that x = y.

Definition 1.4. Let (X, ρ) be a non-triangular metric space.

(d₁) We say that $\{x_n\} \rho$ -converges to x if $\lim \rho(x_n, x) = 0$,

(d₂) { x_n } is a ρ -Cauchy sequence if $\limsup \{\rho(x_n, x_m) : m \ge n\} = 0$,

 $n \rightarrow \infty$

 $(d_3)(X, \rho)$ is said to ρ -complete if every ρ -Cauchy sequence in X is ρ -convergent to some element in X.

Definition 1.5. Let (X, ρ) be a non-triangular metric space and $T : X \to X$ be a mapping. A mapping *T* is \mathcal{M} -continuous in $x \in X$ if

$$\{x_n\} \in \mathcal{M}(\rho, X, x)$$
 implies $\{Tx_n\} \in \mathcal{M}(\rho, X, Tx)$.

Remark 1.6. Note that, if *T* is a contraction, *i.e.*, there exists $k \in [0, 1)$ such that

$$\rho(Tx, Ty) \leq k\rho(x, y)$$

for all $x, y \in X$, then *T* is *M*-continuous at each point *x* in *X*.

DE GRUYTER

The following example shows that non-triangular metric space is a real generalization of generalized metric space in sense a concept of Jleli and Samet [11].

Example 1.7. Let $X = [0, +\infty)$, define

$$\rho(x, y) = \begin{cases} \frac{(x+y)^2}{(x+y)^2+1}, & 0 \neq x \neq y \neq 0, \\ \frac{x}{2}, & y = 0, \\ \frac{y}{2}, & x = 0, \\ 0, & x = y. \end{cases}$$

Condition (c_1) is trivially satisfied. We need to verify condition (c_2). For this, let $x, y \in X$ and $\{x_n\}$ be a sequence in X such that $\rho(x_n, x) \to 0$ and $\rho(x_n, y) \to 0$ as $n \to \infty$. It implies that

$$\lim_{n \to \infty} \frac{(x_n + x)^2}{(x_n + x)^2 + 1} = \lim_{n \to \infty} \frac{(x_n + y)^2}{(x_n + y)^2 + 1} = 0$$

and these hold if and only if $\lim_{n\to\infty} x_n = -x = -y$ in \mathbb{R} and so x = y. Hence, condition (c_2) is true. Therefore, (X, ρ) is a non-triangular metric space. On the other hand, condition (a_3) does not hold. For all $n \in \mathbb{N}$ and for each $y \in X$,

$$\rho(x_n, y) = \begin{cases} \frac{(x_n + y)^2}{(x_n + y)^2 + 1}, & \text{if } x_n \neq 0, \\ \frac{y}{2}, & \text{if } x_n = 0. \end{cases}$$

Since $\{x_n\}$ is a convergent sequence to zero. If there exists $C \ge 1$ such that

$$\frac{y}{2} = \rho(0, y) \le C \limsup_{n \to \infty} \rho(x_n, y) = C \limsup_{n \to \infty} \frac{(x_n + y)^2}{(x_n + y)^2 + 1} = C \frac{y^2}{y^2 + 1}$$

we have $C \ge \frac{y^2+1}{2y} \ge \frac{y}{2}$. Therefore, there is no bound for *C*, by which,

$$\rho(y, 0) \leq C \limsup_{n \to \infty} \rho(y, x_n).$$

2 Main results

In this section, we prove that quasi-contraction in non-triangular metric space has a fixed point. Let (X, ϱ) be a metric space and let $T : X \to X$ be a mapping. For every $x_0 \in X$, let

$$\delta_n(T, x_0) = \sup\{\varrho(T^i(x_0), T^j(x_0)) : i, j \ge n\}.$$

Definition 2.1. Let (X, ϱ) be a non-triangular metric space. The mapping $T : X \to X$ is said to be a surrounding quasi-contraction with respect to Θ if there exists $\alpha \in [0, 1)$ such that for all $x, y \in X$,

$$\varrho(Tx, Ty) \le \alpha M_{T,\Theta}(x, y), \tag{1}$$

where $\Theta : \mathbb{R}^4 \to \mathbb{R}$ is a mapping such that $\Theta(t, s, z, w) \leq \max\{z, w\}$ and

 $M_{T,\Theta}(x,y) = \max\{\varrho(x,y), \varrho(x,Tx), \varrho(y,Ty), \Theta(\varrho(x,Tx), \varrho(y,Ty), \varrho(x,Ty), \varrho(y,Tx))\}.$

Theorem 2.2. Let (X, ϱ) be a ϱ -complete non-triangular metric space and $T : X \to X$ be a surrounding quasicontraction with respect to Θ such that $\delta_1(T, x_0) < \infty$ for some $x_0 \in X$. Then $\{T^n x_0\} \varrho$ converges to $\omega \in X$. Moreover, if T is \mathcal{M} -continuous in ω , then ω is a fixed point of T. **Proof.** Suppose that $\{x_n\}$ is a sequence defined by $x_{n+1} = Tx_n$, n = 0, 1, ... Note that $0 \le \delta_{n+1}(T, x_0) \le \delta_n(T, x_0)$. Therefore, $\{\delta_n(T, x_0)\}$ is a monotone bounded sequence from below and so is convergent. Thus, there exists $\delta \ge 0$ such that $\lim_{n \to \infty} \delta_n(T, x_0) = \delta$. We shall show that $\delta = 0$. If $\delta > 0$, then by the definition of $\delta_n(T, x_0)$, for every $k \in \mathbb{N}$ there exists n_k , m_k such that $m_k > n_k \ge k$ and

$$\delta_k(T, x_0) - \frac{1}{k} < \varrho(T^{m_k}(x_0), T^{n_k}(x_0)) \le \delta_k(T, x_0).$$
⁽²⁾

Hence,

$$\lim_{k\to\infty}\varrho(T^{m_k}(x_0), T^{n_k}(x_0)) = \delta.$$
(3)

Also, we have

$$\begin{split} \rho(T^{m_k}(x_0), T^{n_k}(x_0)) &\leq \alpha \max\{\varrho(T^{m_k-1}(x_0), T^{n_k-1}(x_0)), \varrho(T^{m_k}(x_0), T^{m_k-1}(x_0)), \varrho(T^{n_k}(x_0), T^{n_k-1}(x_0)), \\ &\Theta(\varrho(T^{m_k}(x_0), T^{m_k-1}(x_0)), \varrho(T^{n_k}(x_0), T^{n_k-1}(x_0)), \\ &\varrho(T^{m_k}(x_0), T^{n_k-1}(x_0)), \varrho(T^{m_k-1}(x_0), T^{n_k}(x_0)))\} \\ &\leq \alpha \max\{\delta_{k-1}(T, x_0), \delta_k(T, x_0)\} \\ &= \alpha \delta_{k-1}(T, x_0). \end{split}$$

If we let $k \to \infty$ get it $\delta \le \alpha \delta$. Thus, $\alpha \ge 1$ and this is a contradiction. Therefore, we deduce that $\delta = 0$ and so $\{x_n\}$ is a ϱ -Cauchy sequence. Since (X, ϱ) is ϱ -complete, there exists some $\omega \in X$ such that $\{x_n\}$ is ϱ -convergent to ω . Since $\{x_n\} \in \mathcal{M}(\varrho, X, \omega)$ and T is a \mathcal{M} -continuous we have that $\{Tx_n\} \in \mathcal{M}(\varrho, X, T\omega)$, so we conclude that

$$\{x_n\} \in \mathcal{M}(\varrho, X, \omega) \cap \mathcal{M}(\varrho, X, T\omega).$$

From condition (c_2), we obtain that $\omega = T\omega$, so ω is a fixed point of *T*. Condition (1) implies that ω is a unique fixed point.

From Theorem 2.2 and Remark 1.6 follow directly the Banach principle of contraction in non-triangular metric spaces.

Corollary 2.3. Let (X, ϱ) be a ϱ -complete non-triangular metric space and $T : X \to X$ be a mapping. If there exists $k \in [0, 1)$ such that T satisfies

$$\varrho(Tx, Ty) \leq k \varrho(x, y),$$

for all $x, y \in X$ and $\delta_1(T, x_0) < \infty$ for some $x_0 \in X$, then T has a fixed point w in X.

Corollary 2.4. Let (X, ϱ) be a ϱ -complete non-triangular metric space and $T : X \to X$ be a \mathcal{M} -continuous mapping. If there exists $k \in [0, 1)$ such that T satisfies

$$\varrho(Tx, Ty) \le k \max\left\{\varrho(x, y), \varrho(x, Tx), \varrho(y, Ty), \frac{\max\{\varrho(x, Ty), \varrho(y, Tx)\}}{\varrho(x, Tx) + \varrho(y, Ty) + 1}\right\}$$

for all $x, y \in X$ and $\delta_1(T, x_0) < \infty$ for some $x_0 \in X$, then T has a fixed point w in X.

Proof. It suffices to consider $\Theta(t, s, z, w) = \frac{\max\{z, w\}}{t+s+1}$ and apply Theorem 2.2.

Corollary 2.5. Let (X, ϱ) be a ϱ -complete non-triangular metric space and $T : X \to X$ be a \mathcal{M} -continuous mapping. If there exists $k \in [0, 1)$ such that T satisfies

$$\varrho(Tx, Ty) \le k \max\left\{\varrho(x, y), \varrho(x, Tx), \varrho(y, Ty), \frac{\varrho(x, Ty) + \varrho(y, Tx)}{2}\right\}$$

for all $x, y \in X$ and $\delta_1(T, x_0) < \infty$ for some $x_0 \in X$, then T has a fixed point w in X.

Proof. It suffices to consider $\Theta(t, s, z, w) = \frac{z+w}{2}$ and apply Theorem 2.2.

Corollary 2.6. Let (X, ϱ) be a ϱ -complete non-triangular metric space and $T : X \to X$ be a \mathcal{M} -continuous mapping. If there exists $k \in [0, 1)$ such that T satisfies

$$\varrho(Tx, Ty) \le k \max\{\varrho(x, y), \varrho(x, Tx), \varrho(y, Ty), \varrho(x, Ty), \varrho(y, Tx)\}$$

for all $x, y \in X$ and $\delta_1(T, x_0) < \infty$ for some $x_0 \in X$, then T has a fixed point w in X.

Proof. It suffices to consider $\Theta(t, s, z, w) = \max\{z, w\}$ and then apply Theorem 2.2.

Example 2.7. Let $X = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \cup \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix}$ be endowed with the Euclidean metric. Obviously, (X, ρ) is a complete non-triangular metric space, where $\rho(x, y) = |x - y|$ for each $x, y \in X$. Let $T : X \to X$ be defined by

$$Tx = \begin{cases} 0, & 0 \le x \le \frac{1}{2}, \\ \frac{1}{4}, & \frac{2}{3} \le x \le 1. \end{cases}$$

Note that for each $x \in \left[0, \frac{1}{2}\right]$ and for each $y \in \left[\frac{2}{3}, 1\right]$, we have $|Tx - Ty| = \frac{1}{4}$. Since

$$\frac{8}{27} \le \frac{|x - Ty| + |y - Tx|}{|x - Tx| + |y - Ty| + 1} \le \frac{15}{17},$$

thus, if we take $1 > \alpha \ge \frac{27}{32}$ (for example, $\alpha = \frac{7}{8}$), we have

$$|Tx - Ty| \le \alpha \frac{|x - Ty| + |y - Tx|}{|x - Tx| + |y - Ty| + 1}$$

Therefore,

$$|Tx - Ty| \le \alpha \max\left\{ |x - y|, |x - Tx|, |y - Ty|, \left(\frac{|x - Ty| + |y - Tx|}{|x - Tx| + |y - Ty| + 1} \right) \right\}.$$

Similar argument holds for the other cases with the same α . It is easy to see that *T* is *M*-continuous and $\delta_1(T, 0) < 1$. Therefore, *T* is satisfied in the conditions of Corollary 2.4 and so it has a fixed point in *X*.

Theorem 2.8. Let (X, ϱ) be a ϱ -complete non-triangular metric space and $T : X \to X$ be a mapping. Let there exists $\alpha \in [0, \frac{1}{2}]$ such that

$$\varrho(Tx, Ty) \le \alpha U_{T,\Theta}(x, y), \tag{4}$$

for all $x, y \in X$, where Θ : $\mathbb{R}^4 \to \mathbb{R}$ is a mapping such that $\Theta(t, s, z, w) \leq \max\{z, w\}$ and

$$U_{T,\Theta}(x, y) = \max\{\varrho(x, y), \varrho(x, Tx) + \varrho(y, Ty), \Theta(\varrho(x, Tx), \varrho(y, Ty), \varrho(x, Ty), \varrho(y, Tx))\}$$

If $\delta_1(T, x_0) < \infty$ for some $x_0 \in X$, then $\{T^n x_0\}$ converges to some $\omega \in X$. Also, if T M-continuous in ω , then ω is a fixed point of T.

Proof. We will use the same technique as the proof of Theorem 2.2. Let $\{x_n\}$ be the Picard sequence based at x_0 . We show that $\{x_n\}$ is a Cauchy sequence. Note that $0 \le \delta_{n+1}(T, x_0) \le \delta_n(T, x_0)$. Therefore, $\{\delta_n(T, x_0)\}$ is a monotone bounded sequence and so is convergent. Thus, there exists $\delta \ge 0$ such that $\lim \delta_n(T, x_0) = \delta$.

We shall show that δ =0. If δ >0, then by the definition of $\delta_n(T, x_0)$ for every $k \in \mathbb{N}$ there exist n_k , m_k such that $m_k > n_k \ge k$ and

$$\delta_k(T, x_0) - \frac{1}{k} < \rho(T^{m_k}(x_0), T^{n_k}(x_0)) \le \delta_k(T, x_0).$$
(5)

DE GRUYTER

Hence,

$$\lim_{k\to\infty}\rho(T^{m_k}(x_0), T^{n_k}(x_0)) = \delta.$$
(6)

Also, we have

$$\begin{split} \varrho(T^{m_k}(x_0), T^{n_k}(x_0)) &\leq \alpha \max\{\varrho(T^{m_k-1}(x_0), T^{n_k-1}(x_0)), \varrho(T^{m_k}(x_0), T^{m_k-1}(x_0)) + \varrho(T^{n_k}(x_0), T^{n_k-1}(x_0)), \\ &\Theta(\varrho(T^{m_k}(x_0), T^{m_k-1}(x_0)), \varrho(T^{n_k}(x_0), T^{n_k-1}(x_0)), \\ &\varrho(T^{m_k}(x_0), T^{n_k-1}(x_0)), \varrho(T^{m_k-1}(x_0), T^{n_k}(x_0)))\} \\ &\leq \alpha \max\{2\delta_{k-1}(T, x_0), \delta_k(T, x_0)\} \\ &= 2\alpha\delta_{k-1}(T, x_0). \end{split}$$

Taking limit as $k \to \infty$ we get $\delta \le 2\alpha\delta$. Thus, $\alpha \ge \frac{1}{2}$ and this is a contradiction. Therefore, we deduce that $\delta = 0$ and so $\{x_n\}$ is a ϱ -Cauchy sequence. Since (X, ϱ) is ϱ -complete, there exists some $\omega \in X$ such that $\{x_n\}$ is ϱ -convergent to ω . Proof that ω is a unique fixed point of T is similar to that in the proof of Theorem 2.2.

From Theorem 2.8 we obtain version of Kannan's result on fixed point (see [33]).

Corollary 2.9. Let (X, ϱ) be a ϱ -complete non-triangular metric space and $T: X \to X$ be a mapping. Let there exists $\alpha \in \left[0, \frac{1}{2}\right)$ such that

$$\varrho(Tx, Ty) \le \alpha[\varrho(x, Tx) + \varrho(y, Ty)] \tag{7}$$

for all $x, y \in X$. If $\delta_1(T, x_0) < \infty$ for some $x_0 \in X$, then $\{T^n x_0\}$ converges to some $\omega \in X$. Also, if T \mathcal{M} -continuous in ω , then ω is a fixed point of T.

3 Some applications in *b*-metric spaces

The next theorem is known, see for example [32, Theorem 12.2]. We give another proof here.

Theorem 3.1. Let (X, d) be a complete b-metric space with coefficient s and $T : X \to X$ be a mapping satisfying:

$$d(Tx, Ty) \le \lambda d(x, y) \tag{8}$$

for all $x, y \in X$, where $0 \le \lambda < 1$. Then T has a unique fixed point x^* , and for every $x_0 \in X$, the sequence $\{T^n x_0\}$ converges to x^* .

Proof. In view of Corollary 2.3 it suffices to prove that

 $\delta_1(T, x_0) = \sup\{d(T^i x_0, T^j x_0) : i, j \ge 1\} < \infty$ for some $x_0 \in X$.

Since for j > i and for each x_0 we have

$$d(T^{i}x_{0}, T^{j}x_{0}) \leq \lambda^{j-i}d(x_{0}, T^{j-i}x_{0}) < d(x_{0}, T^{j-i}x_{0}),$$

so we need to show that there is a constant C > 0 such that $d(x_0, T^n x_0) \le C$ for all $n \in \mathbb{N}$. We know that there exists $n_0 \in \mathbb{N}$ such that $\lambda^{n_0} < \frac{1}{s^2}$. Let $x_0 \in X$ be arbitrary. Define the sequence $\{x_n\}$ by $x_{n+1} = T^n x_0$ for all $n \ge 0$. Then (8) implies that

$$d(T^{n+n_0}x_0, T^nx_0) \le \lambda^n d(T^{n_0}x_0, x_0)$$
(9)

and

$$d(T^{n+n_0}x_0, T^{n_0}x_0) \le \lambda^{n_0} d(T^n x_0, x_0).$$
⁽¹⁰⁾

Applying the triangle-type inequality (3) for b-metric space to triples, we have

$$\begin{aligned} d(x_0, T^n x_0) &\leq s[d(x_0, T^{n_0} x_0) + d(T^{n_0} x_0, T^n x_0)] \\ &\leq sd(x_0, T^{n_0} x_0) + s^2[d(T^{n_0} x_0, T^{n+n_0} x_0) + d(T^{n+n_0} x_0, T^n x_0)] \\ &\leq sd(x_0, T^{n_0} x_0) + s^2 \lambda^{n_0} d(T^n x_0, x_0) + s^2 \lambda^n d(T^{n_0} x_0, x_0). \end{aligned}$$

Using (9) and (10) and the fact that $\lambda^n < 1$, for each $n \in \mathbb{N}$, we obtain

$$d(x_0, T^n x_0) \leq \frac{(s + s^2 \lambda^{n_0}) d(T^{n_0} x_0, x_0)}{1 - s^2 \lambda^n} = C_1.$$

Hence, we have

 $d(x_0, T^n x_0) \leq C = \max\{d(x_0, Tx_0), \dots, d(x_0, T^{n-1} x_0), C_1\} < \infty.$

Now, using Corollary 2.3 *T* has a unique fixed point in *X*.

From Corollary 2.9, we obtain the following result.

Theorem 3.2. Let (X, d) be a complete *b*-metric space with coefficient $s \ge 1$ and $T : X \to X$ be a mapping satisfying:

$$d(Tx, Ty) \le \lambda[d(x, Tx) + d(y, Ty)]$$
(11)

for all $x, y \in X$, where $0 \le \lambda < \frac{1}{2}$ and $s\lambda < 1$. Then *T* has a unique fixed point x^* , and for every $x_0 \in X$, the sequence $\{T^n x_0\}$ converges to x^* .

Proof. Take $\Theta(x, y, z, w) = \frac{z+w}{2}$. Obviously, *T* is a surrounding quasi-contraction with respect to Θ . In view of Theorem 2.2, it suffices to prove that $\delta_1(T, x_0) < 1$ for some $x_0 \in X$. Let $x_0 \in X$ be arbitrary. Define the sequence $\{x_n\}$ by $x_{n+1} = T^n x_0$ for all $n \ge 0$. Then (11) implies that

$$d(T^{n+1}x_0, T^nx_0) \le \lambda [d(T^nx_0, T^{n+1}x_0) + d(T^{n-1}x_0, T^nx_0)]$$

and

$$d(T^{n+1}x_0, T^nx_0) \leq \frac{\lambda}{1-\lambda} d(T^nx_0, T^{n-1}x_0),$$

so,

$$d\left(T^{n+1}x_0, T^n x_0\right) \le \left(\frac{\lambda}{1-\lambda}\right)^n d(Tx_0, x_0).$$
(12)

Applying the triangle-type inequality for *b*-metric space, and from (11) and (12), we have

$$d(x_0, T^n x_0) \leq s[d(x_0, Tx_0) + d(Tx_0, T^n x_0)] \\\leq s[d(x_0, Tx_0) + \lambda(d(x_0, Tx_0) + d(T^{n-1}x_0, T^n x_0))] \\\leq s\left[d(x_0, Tx_0) + \lambda\left(d(x_0, Tx_0) + \left(\frac{\lambda}{1-\lambda}\right)^{n-1}d(x_0, Tx_0)\right)\right] \\\leq 3sd(x_0, Tx_0).$$

So, we can put

 $C = 3sd(x_0, Tx_0).$

Now we obtain that x^* is the unique fixed point of *T*. Let $n \in \mathbb{N}$ be arbitrary, we have

$$d(x^*, Tx^*) \leq s[d(x^*, x_{n+1}) + d(x_{n+1}, Tx^*)]$$

= $s[d(x^*, x_{n+1}) + d(Tx_n, Tx^*)]$
 $\leq s[d(x^*, x_{n+1}) + \lambda(d(x_n, x_{n+1}) + d(x^*, Tx^*))].$

Since $\lim d(x_{n+1}, x_n) = 0$ and $\lim d(x^*, x_{n+1}) = 0$, we have

$$d(x^*, Tx^*) \leq \lambda s d(x^*, Tx^*).$$

Since $\lambda s < 1$, then $d(x^*, Tx^*) = 0$, i.e., $Tx^* = x^*$.

For uniqueness, let y^* be another fixed point of *T*. Then it follows from (11) that

 $d(x^*, y^*) = d(Tx^*, Ty^*) \le \lambda(d(x^*, Tx^*) + d(y^*, Ty^*)) = 0.$

Therefore, we must have $d(x^*, y^*) = 0$, i.e., $x^* = y^*$.

Remark 3.3. Using the technique from the proofs of Theorem 3.1 and Theorem 3.2 we can also get the main result in [22], as well as the main result in [23], also in this way we can also get a whole series of known results in b-metric, rectangular metric and b-rectangular metric spaces.

References

- [1] S. Banach, *Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales*, Fund. Math. **3** (1922), 133–181.
- D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), no. 2, 458–464, DOI: 10.2307/2035677.
- [3] N. Hussain, Z. Kadelburg, S. Radenović, and F. Al-Solamy, *Comparison functions and fixed point results in partial metric spaces*, Abstr. Appl. Anal. **2012** (2012), 605781, DOI: 10.1155/2012/605781.
- [4] N. Hussain, M. A. Kutbi, S. Khaleghizadeh, and P. Salimi, *Discussions on recent results for* α - ψ -contractive mappings, Abstr. Appl. Anal. **2014** (2014), 456482, DOI: 10.1155/2014/456482.
- [5] F. Khojasteh, A. Razani, and S. Moradi, *A fixed point of generalized T_F-contraction mappings in cone metric spaces*, Fixed Point Theory Appl. **2011** (2011), 14, DOI: 10.1186/1687-1812-2011-14.
- [6] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), no. 1, 177–188, DOI: 10.1016/0022-247X(89)90214-X.
- [7] B. E. Rhoades, A comparison of various definitions of contractive mappings, Tran. Amer. Math. Soc. 226 (1977), 257–290.
- [8] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), no. 4, 2683–2693, DOI: 10.1016/ S0362-546X(01)00388-1.
- [9] W.-Sh. Du and F. Khojasteh, *New results and generalizations for approximate fixed point property and their applications*, Abstr. Appl. Anal. **2014** (2014), 581267, DOI: 10.1155/2014/581267.
- [10] F. Khojasteh, W.-Sh. Du, and Y. N. Chiu, Some generalizations of Mizoguchi-Takahashi's fixed point theorem with new local constraints, Fixed Point Theory Appl. 2014 (2014), 32, DOI: 10.1186/1687-1812-2014-31.
- [11] M. Jleli and B. Samet, *A generalized metric space and related fixed point theorems*, Fixed Point Theory Appl. **2015** (2015), 61, DOI: 10.1186/s13663-015-0312-7.
- [12] I. A. Bakhtin, *The contraction mapping principle in quasimetric spaces*, Funct. Anal. Unianowsk Gos. Ped. Inst. **30** (1989), 26–37.
- [13] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), no. 1, 5-11.
- [14] S. Aleksić, H. Huang, Z. D. Mitrović, and S. Radenović, *Remarks on some fixed point results in b-metric spaces*, J. Fixed Point Theory Appl. **20** (2018), 147, DOI: 10.1007/s11784-018-0626-2.
- [15] M. Boriceanu, M. Bota, and A. Petrusel, *Multivalued fractals in b-metric spaces*, Cent. Eur. J. Math. 8 (2010), 367–377, DOI: 10.2478/s11533-010-0009-4.
- [16] M. Bota, A. Molnar, and C. Varga, *On Ekeland's variational principle in b-metric spaces*, Fixed Point Theory **12** (2011), no. 2, 21–28.
- [17] N. Hussain and Z. D. Mitrović, On multi-valued weak quasi-contractions in b-metric spaces, J. Nonlinear Sci. Appl. 10 (2017), 3815–3823, DOI: 10.22436/jnsa.010.07.35.
- [18] N. Hussain, Z. D. Mitrović, and S. Radenović, A common fixed point theorem of Fisher in b-metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), 949–956, DOI: 10.1007/s13398-018-0524-x.

- [19] W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Berlin, 2014, pp. 113–131.
- [20] Z. D. Mitrović, A note on the results of Suzuki, Miculescu and Mihai, J. Fixed Point Theory Appl. 21 (2019), 24, DOI: 10.1007/s11784-019-0663-5.
- [21] Z. D. Mitrović and N. Hussain, On weak quasicontractions in b-metric spaces, Publ. Math. Debrecen Ref. No. 8260, (2019), 1–10, DOI: 10.5486/PMD.2019.8260.
- [22] Z. D. Mitrović and S. Radenović, *The Banach and Reich contractions in* $b_v(s)$ *-metric spaces*, J. Fixed Point Theory Appl. **19** (2017), 3087–3095, DOI: 10.1007/s11784-017-0469-2.
- [23] Z. D. Mitrović, On an open problem in rectangular b-metric space, J. Anal. 25 (2017), 135–137, DOI: 10.1007/s41478-017-0036-7.
- [24] Z. D. Mitrović, A note on a Banach's fixed point theorem in b-rectangular metric space and b-metric space, Math. Slovaca **68** (2018), no. 5, 1113–1116, DOI: 10.1515/ms-2017-0172.
- [25] U. Aksoy, E. Karapinar, and I. M. Erhan, *Fixed points of generalized alpha-admissible contractions on b-metric spaces with an application to boundary value problems*, J. Nonlinear Convex Anal. **17** (2016), no. 6, 1095–1108.
- [26] H. Alsulami, S. Gulyaz, E. Karapinar, and I. Erhan, An Ulam stability result on quasi-b-metric-like spaces, Open Math. 14 (2016), 1087–1103, DOI: 10.1515/math-2016-0097.
- [27] H. Aydi, M.-F. Bota, E. Karapinar, and S. Moradi, *A common fixed point for weak phi-contractions on b-metric spaces*, Fixed Point Theory **13** (2012), no. 2, 337–346.
- [28] M.-F. Bota, E. Karapinar, and O. Mlesnite, Ulam-Hyers stability results for fixed point problems via alpha-psi-contractive mapping in b-metric space, Abstract Appl. Anal. 2013 (2013), 825293, DOI: 10.1155/2013/825293.
- [29] M.-F. Bota and E. Karapinar, A note on "Some results on multi-valued weakly Jungck mappings in b-metric space", Cent. Eur. J. Math. 11 (2013), no. 9, 1711–1712, DOI: 10.2478/s11533-013-0272-2.
- [30] M. Bota, C. Chifu, and E. Karapinar, Fixed point theorems for generalized $(\alpha \psi)$ -Ćirić-type contractive multivalued operators in b-metric spaces, J. Nonlinear Sci. Appl. **9** (2016), 1165–1177.
- [31] Selma Gulyaz Ozyurt, On some alpha-admissible contraction mappings on Branciari b-metric spaces, Advances Theory Nonlinear Anal. Appl. 1 (2017), no. 1, 1–13, DOI: 10.31197.318445.
- [32] F. Khojasteh and H. Khandani, *Scrutiny of some fixed point results by S-operators without triangular inequality*, Math. Slovaca **70** (2020), no. 2, 467–476, DOI: 10.1515/ms-2017-0364.
- [33] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.