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disorder. When the disorder of the two systems is perfectly correlated, J (L)

i1···iq = J
(R)
i1···iq , this

model is known to exhibit a phase transition at a finite temperature between the two-black
hole phase at high temperature and the traversable wormhole phase at low temperature. We
find that, as the correlation 〈J (L)

i1···iqJ
(R)
i1···iq〉 is decreased, the critical temperature becomes

lower. At the same time, the transmission between the L-system and R-system in the
low-temperature phase becomes more suppressed, while the chaos exponent of the whole
system becomes larger. Interestingly we also observe that when the correlation is smaller
than some q-dependent critical value the phase transition completely disappears in the
entire parameter space. At zero temperature, the energy gap becomes larger as we decrease
the correlation. We also use a generalized thermofield double state as a variational state.
Interestingly, this state coincides with the ground state in the large q limit.
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1 Introduction and summary

The Sachdev-Ye-Kitaev (SYK) model [1, 2] is a useful model to study various aspects of
strongly coupled many body systems. Moreover, the SYK model is also a toy model of
a quantum black hole [3]. Both theories show the same pattern of conformal symmetry
breaking at low energy and are described by the so-called Schwarzian action. This gives a
concrete connection between the two theories.

Related to black holes, the SYK model also plays an important role to understand
wormhole configurations in gravity. Two kinds of wormholes play important roles in the
literature. The first one is the spatial wormhole. Spatial wormholes are related to en-
tanglement [4–6]. In the context of AdS/CFT correspondence, the area of the wormhole
connecting distant regions corresponds to entanglement entropy in CFT [7–9]. Moreover,
it is expected that spatial wormholes are dual to entanglement between CFTs [5, 6] and the
spacetime is built from entanglement [10, 11]. The other kind of wormhole is the spacetime
wormhole or Euclidean wormhole. These are kinds of gravitational instanton and these
spacetime wormholes are related to random couplings [12–14]. The SYK model is a model
with random couplings and the wormhole configurations associated with a pattern of ran-
dom couplings are studied [15, 16]. These Euclidean wormholes also appear in the context
of the calculation of (Rényi) entanglement entropy. These are known as replica worm-
holes [17, 18] and play important roles in the context of black hole information problems.1
Actually, two types of wormholes have also connections. For example, considering static
spatial wormholes in Euclidean time, we get Euclidean wormholes. Those setups are in-
teresting because by taking a different analytic continuation of those Euclidean wormholes
we obtain a cosmological spacetime [20–24], which is originally pointed out in [25].

Usually, we assume that the random couplings of copies of SYK models have the same
couplings, i.e., in each realization of the random couplings we use the same realization for
all of the copies. This is a natural setup when we use the replica method to study the
Rényi entropy for example. However, to study entangled states we can also consider the
situation where the copies of SYK models have different random couplings. For example, if
we simulate the SYK models on quantum computers it may be natural to consider different
realizations because of errors etc.

Motivated by the above questions, we study the coupled SYK models where the two
SYK models have different realizations of random couplings. The two-coupled SYK model
was first considered in [31], with the two random couplings perfectly correlated, as the
holographic dual of the global AdS2 spacetime (eternal traversable wormhole), which is the
static version of the wormhole formation process by the bulk non-local interaction [3, 32].
In the setup of [31], for the wormhole to become traversable, or on the SYK side the
quantum teleportation to be successful, it is crucial for the state of the whole system to
be the thermofield double state [33]. It was found that the ground state of the coupled
SYK model is close to the thermofield double state [31, 34, 35], which ensures that the low-
temperature dynamics of the model can be related to the traversable wormhole. Indeed,

1Recent developments in various aspects of wormhole geometries are also summarized in a review
article [19].
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the coupled SYK model in the canonical ensemble exhibits a Hawking-Page-like phase
transition between the high-temperature phase dual to the two-sided AdS2 black hole and
the low-temperature phase dual to the global AdS2.

When the couplings of the two systems are different, it is not clear how to interpret
the entanglement structure of the ground state and whether the system is dual to the
traversable wormhole at low temperatures or not. It was also found in [36, 37] that the
coupled SYK model does not exhibit a phase transition when the two random couplings
are completely independent. Hence the correlation of the couplings is indeed important for
the wormhole formation, and it is a non-trivial question how much correlation would be
necessary for the wormhole to be formed.

More concretely, we consider the model where the two random couplings J (L)
i1···iq and

J
(R)
i1···iq obey the same Gaussian distribution while the two realizations are not completely

identical, which we quantify by 〈J (L)
i1···iqJ

(R)
i1···iq〉 normalized by 〈(J (L)

i1···iq)
2〉 (= 〈(J (R)

i1···iq)
2〉). By

analyzing this model in the large N limit, we find the following results:

(i) As the correlation between the two random couplings is decreased, the critical tem-
perature for the Hawking-Page-like phase transition becomes lower. This result can
also be rephrased that the strength of the LR coupling required for reaching the
wormhole phase at fixed temperature becomes higher, hence both the correlation
of random couplings and direct LR coupling make it easy to create a wormhole
configuration. This is also consistent with the fact that the wormhole phase exists
even without direct LR coupling if the two random couplings are super-correlated,
〈J (L)
i1···iqJ

(R)
i1···iq〉 > 〈(J

(L)
i1···iq)

2〉 [38–42].

(ii) We also observe that the phase transition completely disappears when the correlation
between J

(L)
i1···iq and J

(R)
i1···iq is smaller than a non-zero finite value. Technically this

occurs in the following way. Already in the original setup where the two random cou-
plings are identical, there is no phase transition when the LR coupling is larger than
some critical value: when the LR coupling is too large, even at a high temperature the
dynamics are approximately the same as that for the model without SYK interaction
which does not exhibit phase transition. We find that this critical value of the LR
coupling becomes smaller as the correlation between J

(L)
i1···iq and J (R)

i1···iq is decreased,
and reaches zero before the two random couplings become completely independent.
At the large q limit, we also estimate when the phase transition disappears as we
decrease the correlation of random couplings between two sides.

(iii) We also evaluate the transmission amplitude TLR between the L-side and the R-side
in the low-temperature wormhole phase, and found that for the same temperature
and the strength of the LR coupling, TLR becomes smaller as the correlation between
J

(L)
i1···iq and J (R)

i1···iq is decreased. On the other hand, the chaos exponent λL, which is
non-zero even in the wormhole phase, becomes larger as the correlation of the random
couplings is decreased. These two results are reasonable if λL of this model measures
the speed at that a simple initial excitation spread within a single side, which would
be suppressed if the excitation leaks to the other side.
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We observe the results (i-iii) numerically for q = 4 and also confirm the results (i, ii)
analytically in the large q limit.

The organization of this paper is as follows. In section 2, we clarify the model we
study in this paper and write the partition function in the large N limit with the bilocal
field formalism. By using the bilocal field formalism, we analyze how the large N phase
structure and various properties of each phase are modified by the imperfect correlation of
disorders for finite q in section 3 and in the large q limit in section 4. In section 5 we study
the structure of the ground state of the coupled system for 〈J (L)

i1···iqJ
(R)
i1···iq〉 < 〈(J

(L)
i1···iq)

2〉
which generalizes the structure of the thermofield double state for J (L)

i1···iq = J
(R)
i1···iq . In

section 6 we summarize our results and list possible future directions of research. Some
technical details of the calculation in the large q limit are collected in appendix A.

2 J
(L)
i1···iq
6= J

(R)
i1···iq

model

In this paper we consider a (0 + 1)-dimensional quantum mechanics with the following
disordered Hamiltonian:2

H = H
(L)
SYK +H

(R)
SYK + µHint, (2.1)

where

H
(L)
SYK = i

q
2

N∑
i1<i2<···<iq

J
(L)
i1i2···iqψ

L
i1ψ

L
i2 · · ·ψ

L
iq , H

(R)
SYK = i

q
2 (−1)

q
2

N∑
i1<i2<···<iq

J
(R)
i1i2···iqψ

R
i1ψ

R
i2 · · ·ψ

R
iq ,

Hint = i
N∑
i=1

ψLi ψ
R
i , (2.2)

{ψai , ψbj} = δabδij (a = L,R), and J (a)
i1i2···iq are random couplings drawn from the Gaussian

distribution with the following mean and variance:

〈J (a)
i1i2···iq〉 = 0, 〈J (a)

i1i2···iqJ
(a)
j1j2···jq〉 = J

2 · 2q−1(q − 1)!
q ·N q−1 δi1j1δi2j2 · · · δiqjq . (2.3)

Here J (a)
i1i2···iq are drawn independently for different sets of subscripts i1i2 · · · iq. On the

other hand, with respect to a = L,R, we consider the case where J (L)
i1i2···iq and J (R)

i1i2···iq are
imperfectly correlated with each other:

〈J (L)
i1i2···iqJ

(R)
j1j2···jq〉 = J̃

2 · 2q−1(q − 1)!
q ·N q−1 δi1j1δi2j2 · · · δiqjq , (2.4)

with 0 ≤ J̃ ≤ J .3 See figure 1 for an example of the Feynman diagrams affected by
this deformation. This partial correlation can be realized by drawing two independent

2Although we do not investigate in this paper, it would be also interesting to study how the correlation
between the disorders affects the two-coupled SYK model with Dirac fermions (so-called complex SYK
model) [43] whose phase structure was analyzed in [44, 45] when the random couplings on two sites are set
to be identical.

3One may also consider the case J̃ > J , where the Hamiltonian is non-Hermitian [38–42].
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µ
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L  i

R
 i
L  i

R

hJLJRi / J̃ 2

Figure 1. Left: a diagram that is not affected by the random couplings. Right: a typical diagram
whose contribution is reduced when we decrease the correlation between the left random couplings
and the right random couplings.

random variables J (α)
i1i2···iq (α = 1, 2) from the same distribution as J (L)

i1i2···iq (2.3) and writing
J

(a)
i1i2···iq as

J
(L)
i1i2···iq = J

(1)
i1i2···iq

√
1 + J̃ 2/J 2

2 + J
(2)
i1i2···iq

√
1− J̃ 2/J 2

2 ,

J
(R)
i1i2···iq = J

(1)
i1i2···iq

√
1 + J̃ 2/J 2

2 − J (2)
i1i2···iq

√
1− J̃ 2/J 2

2 . (2.5)

Consider the Euclidean partition function (annealed average) of this theory at finite tem-
perature β−1:

Z(β) =
〈∫
Dψ(a)

i (τ)exp
[
−
∫
dτ

( ∑
a=L,R

N∑
i=1

1
2ψ

a
i ∂τψ

a
i +H

)]〉
J

(α)
i1i2···ia

= N−1
∫  ∏

α=1,2

N∏
i1<i2<···<iq

dJ
(α)
i1i2···iqe

− 1
2

q·Nq−1

J 2·2q−1(q−1)!
(J(α)
i1i2···iq

)2


∫
Dψ(a)

i (τ)exp
[
−
∫
dτ

( ∑
a=L,R

N∑
i=1

1
2ψ

a
i ∂τψ

a
i +H

)]
. (2.6)

After the same manipulation as [37] we can rewrite the partition function in terms of the
bilocal fields Gab(τ, τ ′) and Σab(τ, τ ′) as

Z(β) =
∫
DGab(τ, τ ′)DΣab(τ, τ ′)e−SE , (2.7)

where the effective action is

−SE/N = logPf
(
− δ(τ − τ ′)∂τ ′δab + Σab(τ, τ ′)− Σba(τ ′, τ)

2

)

− 1
2

∫
dτdτ ′

∑
a,b

[
Σab(τ, τ ′)Gab(τ, τ ′)− sab

J 2
ab

2q2 [2Gab(τ, τ ′)]q
]

+ iµ

2

∫
dτ [−GLR(τ, τ) +GRL(τ, τ)]. (2.8)
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Here sLL = sRR = 1, sLR = sRL = (−1)
q
2 and JLL = JRR = J , JLR = JRL = J̃ . The

Schwinger-Dyson equations δSE
δGab(τ,τ ′) = δSE

δΣab(τ,τ ′) = 0 are

∂τGab(τ, τ ′)−
∑
c

∫
dτ ′′

Σac(τ, τ ′′)− Σca(τ ′′, τ)
2 Gcb(τ ′′, τ ′) = δabδ(τ − τ ′),

Σab(τ, τ ′) = sabJ 2
ab

q
(2Gab(τ, τ ′))q−1 + iµ(−δaLδbR + δaRδbL)δ(τ − τ ′). (2.9)

From the two equations it follows that

Gab(τ, τ ′) = −Gba(τ ′, τ). (2.10)

By identifying Gab(τ, τ ′) with (α = 1, 2)

Gab(τ, τ ′) = 1
N

N∑
i=1
〈T ψai (τ)ψbi (τ ′)〉β

=


1

N〈tre−βH〉
J

(α)
i1···iq

∑N
i=1〈treτHψai e−H(τ−τ ′)ψbi e

−(τ ′+β)H〉
J

(α)
i1···iq

(τ > τ ′)

− 1
N〈tre−βH〉

J
(α)
i1···iq

∑N
i=1〈treτ

′Hψbi e
−H(τ ′−τ)ψbi e

−(τ+β)H〉
J

(α)
i1···iq

(τ < τ ′) ,

(2.11)

we also find that Gab(τ, τ ′) obeys the following conditions4

Gab(τ, τ ′)∗ = −Gab(−τ,−τ ′), Gab(τ + β, τ ′) = −Gab(τ, τ ′). (2.12)

From (2.11) and (2.9) it also follows that Gab(τ, τ ′),Σab(τ, τ ′) depends on τ, τ ′ only through
τ − τ ′, hence we may denote Gab(τ, τ ′) and Σab(τ, τ ′) respectively as Gab(τ − τ ′),Σab(τ −
τ ′). Taking these into account, the Schwinger-Dyson equations (2.9) and the symmetry
properties (2.10), (2.12) are written in a simpler way as

∂τGab(τ)−
∑
c

∫
dτ ′Σac(τ − τ ′)Gcb(τ ′) = δabδ(τ),

Σab(τ) = sabJ 2
ab

q
(2Gab(τ))q−1 + iµ(−δaLδbR + δaRδbL)δ(τ), (2.13)

Gab(τ) = −Gba(−τ), Gab(τ)∗ = −Gab(−τ), Gab(τ + β) = −Gab(τ). (2.14)

Note that when we set J̃ = J , the effective action and the Schwinger-Dyson equation
coincide with those in the Maldacena-Qi model [31] since the Hamiltonian reduces to the
one in [31]. Also note that when we set J̃ = 0 the effective action and the Schwinger-
Dyson equations coincide with those in the Kourkoulou-Maldacena model [46] if we identify
GLL(τ, τ ′) = GRR(τ, τ ′) = Gdiag(τ, τ ′), GLR(τ, τ ′) = Goff(τ, τ ′).

By using the operator relations

∂τ (eτHψai e−τHψai )|τ→+0 = [H,ψai ]ψai = qH
(a)
SYK + µHint, (a = L,R) (2.15)

4These arguments can be generalized to complex τ, τ ′ and we obtain Gab(u1, u2)∗ = −Gab(−u∗1,−u∗2),
which we will use later in section 3.3.
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together with the identification (2.11), we can express the energy E =
〈trHe−βH〉

J
(α)
i1···iq

〈tre−βH〉
J

(α)
i1···iq

as

E

N
=
[

1
q
∂τGLL(τ, 0) + 1

q
∂τGRR(τ, 0) + iµ

(
1− 2

q

)
GLR(τ, 0)

]
τ→+0

. (2.16)

Using the Schwinger-Dyson equations (2.13) and the symmetry property of Gab(τ) (2.14)
it follows

lim
τ→+0

∂τGaa(τ, 0) =
∑
c

∫
dτΣac(τ)Gca(−τ) = −

∑
c

sacJ 2
ac

2q

∫
dτ(2Gac(τ))q, (2.17)

hence the energy (2.16) can be further rewritten as

E

N
= −

∑
a,b

sabJ 2
ab

2q2

∫
dτ(2Gab(τ))q + iµGLR(0). (2.18)

In the following sections, we study the solutions of the Schwinger-Dyson equations
both numerically and analytically.

3 Finite q, large N

In this section, we study the two-coupled model (2.1) with q = 4 in the large N limit
numerically by using the bilocal field formalism (2.7) with (2.8), (2.9).

3.1 Phase diagram

In the large N limit, we can evaluate the partition function (2.8) by the solution of the
equations of motion (2.9). If we define the Fourier transformation as

f(τ)→ f̂(ν) =
∫ β

0
dτeiντf(τ), (3.1)

and also impose an ansatz GRR(τ) = GLL(τ), the Euclidean Schwinger-Dyson equa-
tions (2.9) can be rewritten as

ĜLL(ν) + iν + Σ̂LL(ν)
(iν + Σ̂LL(ν))2 + Σ̂LR(ν)2

= 0,

ĜLR(ν)− Σ̂LR(ν)
(iν + Σ̂LL(ν))2 + Σ̂LR(ν)2

= 0,

ΣLL(τ) = J
2

q
(2GLL(τ))q−1, ΣLR(τ) = (−1)

q
2 J̃ 2

q
(2GLR(τ))q−1 + iµδ(τ). (3.2)

The partition function, or the free energy F = − 1
β logZ, can be evaluated in the large N

limit by the solutions of (3.2) as

F ≈ min
{ 1
β
SE [Gab(τ, τ ′),Σab(τ, τ ′)]

∣∣∣∣ (Gab,Σab): solution of (3.2)
}
. (3.3)
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Figure 2. Top left/right: critical temperatures Tc,2BH(µ) and Tc,WH(µ) for various values of J̃J .
Bottom: free energy for the two solutions for µ = 0.09 and various values of J̃J (for J̃ 2

J 2 = 0.4 the
two solutions are smoothly connected with each other).

The set of equations (3.2) can be solved numerically for each value of (q,J , J̃ , µ) and the
inverse temperature β = T−1. We performed the numerical analysis for q = 4,J = 1, and
various values ( J̃J , µ, β). In particular, as we vary (µ, β) we obtained the following results:

(i) When the temperature T is sufficiently large, there is a solution where SE
β is similar to

the (annealed) free energy of two uncoupled SYK systems. We shall call this solution
the two-black hole solution.

(ii) As we decrease the temperature slowly (we have chosen ∆T = 0.0001), this solution
is deformed continuously until some temperature T = Tc,2BH. Once the temperature
crosses Tc,2BH, the two-black hole solution ceases to exist and the numerical analysis
detects another solution where the free energy is almost constant in T . We shall call
this solution the wormhole solution.

(iii) As we increase the temperature from T < Tc,2BH the wormhole solution is deformed
continuously until some temperature T = Tc,WH which is greater than Tc,2BH. Once
T exceeds Tc,WH the wormhole solution disappears.

(iv) When µ is larger than some critical value µ∗, (ii) and (iii) do not occur; the two-black
hole solution and the wormhole solution merge to a single solution that exists at any
value of the temperature.

See figures 2 and 3. These behaviors of the solution and the free energy are qualitatively
the same as those for the case with J̃ = J [31, 37]. In the temperature regime Tc,2BH <
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Figure 3. Phase diagram for various values of J̃J . Points connected by the solid line are Tc,WH(µ)
such that the wormhole solution does not exists for T > Tc,WH(µ). Points connected by the dashed
line are Tc,2BH(µ) such that the two-black hole solution does not exist for T < Tc,2BH(µ). The
two lines intersect at a point (µ∗, T∗) (T∗ = Tc,WH(µ∗) = Tc,2BH(µ∗)) which depends on J̃J . In the
regime where either µ > µ∗ or T > T∗ is satisfied, the wormhole solution and the two-black hole
solution are smoothly connected with each other.

T < Tc,WH both the two-black hole solution and the wormhole solution exist, hence the free
energy is given by the smaller one of the two values of SE evaluated at these two solutions.
We observe that the two values cross at one point T = Tc, where the system undergoes a
phase transition.

As we further vary J̃J we observed that these behaviors change in the following way:

(v) Tc,WH and Tc decrease as J̃J is decreased. On the other hand, Tc,2BH also decreases,
but it is almost independent of J̃J when µ is small. This is consistent with the fact
that Tc,2BH is determined as a property of the two-black hole solution where the off-
diagonal component GLR,ΣLR are small and hence the correlation between J (L)

i1i2···iq

and J (R)
i1i2···iq is less important. See figure 2.

(vi) The critical value µ∗ of µ where the phase transition disappears decreases as J̃J is
decreased. See figure 4. From the results, we also expect that µ∗ becomes zero
somewhere in the range 0.2 < J̃ 2

J 2 < 0.3 (b and b′2 in figure 4), that is, the phase
transition completely disappears as J̃ 2

J 2 is decreased below this value.
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Figure 4. The critical value µ∗ of µ for each J̃J such that the phase transition does not exist for µ >
µ∗, with the red/green curve obtained by fitting the data with the ansatz µ∗ = a

((
J̃
J

)n
− b
)c

. Here

we have determined a, c by first fitting the data of d((
J̃
J )n)
dµ∗

obtained by the numerical differentiation

with the ansatz log d(( J̃J )n)
dµ∗

=
( 1
c − 1

)
log µ∗

a + log 1
ac and then determined b by fitting

(
J̃
J

)n
with

the ansatz
(
J̃
J

)n
=
(
µ∗
a

) 1
c + b. We have performed the fitting for n = 1, 2 and have found almost

the same value of b 1
n , the value of J̃J where µ∗ vanishes. For comparison, we have also displayed

the points on the phase transition lines in the
(
µ, J̃

2

J 2

)
-plane with a fixed temperature T = 0.02,

i.e., the points where Tc,2BH

(
µ; J̃ 2

J 2

)
= 0.02 and Tc,WH

(
µ; J̃ 2

J 2

)
= 0.02.

Though the observation that µc depends on J̃J might be surprising, it is consistent with
the fact that for J̃J = 0, our model (2.1) is equivalent in the large N limit to the single-side
model [46] which does not exhibit phase transition at any value of µ [36].

Notice that our claim (vi) for the absence of the phase transition is based on the obser-
vation that SE obtained by decreasing T from a high-temperature regime and SE obtained
by increasing T from a low -temperature regime do not deviate at discrete points spaced
with ∆T = 0.00001, but this does not exclude the possibility that the phase transition
exists with Tc,WH − Tc,2BH < 0.00001. In our approach, it is in principle impossible to
prove the absence of phase transition at µ > µ∗. As we see in section 4, however, we can
rigorously show the absence of the phase transition in the large q limit.

3.2 Energy gap

Next, we look at the energy gap Egap of the two-coupled model (2.1) in the large N limit.
In [36] we have observed that Egap of the model (2.1) with J̃ = J [31] and Egap of the
single-sided model [46] which is equivalent in the large N limit to the two-coupled model
with J̃ = 0 show different power law behavior for small µ: Egap(J̃ = J ) ∼ µ

q
2(q−1)

and Egap(J̃ = 0) ∼ µ
q
q−2 . In this section, we investigate how these two behaviors are

interpolated as we vary J̃J from 0 to 1.
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Figure 5. The energy gap Egap for various values of J̃J read off by fitting Gab(τ) with the
ansatzes (3.4). Here the legends of the right plot are the same as those indicated in the left plot.

The large N energy gap can be read off from the Euclidean two-point functions Gab(τ)
in the low-temperature phase as [31]

GLL(τ) ∼ cosh
[
Egap

(β
2 − τ

)]
, GLR(τ) ∼ sinh

[
Egap

(β
2 − τ

)]
. (1� τ � β) (3.4)

By fitting Gab(τ) with these ansatz we have obtained Egap for 0.1 ≤ J̃ 2

J 2 ≤ 1 as displayed
in figure 5. We observe the followings

• For any value of µ, Egap increases monotonically in J̃ 2

J 2 .

• When µ is sufficiently large, Egap scales as Egap ∼ µ regardless of the value of J̃ 2

J 2 .

• When µ is sufficiently small, Egap ∼ µ2/3 for J̃ 2

J 2 = 1 while Egap ∼ µ2 for J̃ 2

J 2 < 1.

• When J̃ 2

J 2 is less than 1 but close to 1, there is also an intermediate regime where
Egap ∼ µ

2
3 . The range of the intermediate regime becomes wider in µ as J̃ 2

J 2 ap-
proaches 1.

3.3 Real time response

Next, we study real-time dynamics of the two-coupled model (2.3), in particular, the trans-
mission amplitude TLR [47] which measures how an excitation on the right side affects the
left side at a late time, and the decay of the out-of-time-ordered four-point function [48]
which is characterized with the quantum chaos exponent λL. For this purpose, we need to
continue the GΣ formalism for real τ (2.7)–(2.9) in section 2 to complex u = τ + it, which
can be done in the following way.5 First, we define the two different components of the
two point functions at Re[u] = 0, G>ab, G<ab, depending on how Re[u] approaches 0:

G>ab(t1, t2) = −iGab(it−1 , it+2 ) = −i lim
ε→+0

Gab(ε+ it1,−ε+ it2),

G<ab(t1, t2) = −iGab(it+1 , it−2 ) = −i lim
ε→+0

Gab(−ε+ it1, ε+ it2), (3.5)

5Note the calculations in this section are completely parallel to the case with J
(L)
i1···iq = J

(R)
i1···iq in [37].

Hence we shall skip the details of the derivations which can be found in section 3 in [37].
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with which we also define the retarded/advanced components of the two-point functions as

GRab(t1, t2) = θ(t1 − t2)(G>(t1, t2)−G<(t1, t2)),
GAab(t1, t2) = θ(t2 − t1)(G<(t1, t2)−G>(t1, t2)). (3.6)

We also define the >,<,R,A components of Σab(u) at u = it in the same ways.
With these notations, the real-time continuation of the Schwinger-Dyson equations (2.9)

reduce to the followings

G̃RLL(ω) = −(−ω + Σ̃R
RR(ω))

(−ω + Σ̃R
LL(ω))(−ω + Σ̃R

RR(ω))− (Σ̃R
LR + iµ)(Σ̃R

RL − iµ)
,

G̃RLR(ω) = Σ̃R
LR(ω) + iµ

(−ω + Σ̃R
LL(ω))(−ω + Σ̃R

RR(ω))− (Σ̃R
LR + iµ)(Σ̃R

RL − iµ)
,

G̃RRL(ω) = Σ̃R
RL(ω)− iµ

(−ω + Σ̃R
LL(ω))(−ω + Σ̃R

RR(ω))− (Σ̃R
LR + iµ)(Σ̃R

RL − iµ)
,

G̃RRR(ω) = −(−ω + Σ̃R
LL(ω))

(−ω + Σ̃R
LL(ω))(−ω + Σ̃R

RR(ω))− (Σ̃R
LR + iµ)(Σ̃R

RL − iµ)
,

Σ>
ab(t1, t2) = − i

qJ 2
ab

q
sabG

>
ab(t1, t2)q−1, (3.7)

ΣR
ab(t1, t2) = θ(t1 − t2)(Σ>

ab(t1, t2) + Σ>
ba(t2, t1)),

G̃>ab(ω) = G̃Rab(ω)− (G̃Rba(ω))∗
1 + e−βω

, (3.8)

where we have defined the Fourier transform in the real time t as

f̃X(ω) =
∫ ∞
−∞
dteiωtfX(t), fX(t) =

∫ ∞
−∞

dω

2π e
−iωtf̃X(t), (f=Gab,Σab, X=>,<,R,A).

(3.9)

Note that we can obtain Gab(u) for general u ∈ C from G̃Rab(ω) as

Gab(u) = iG>ab(t = −iu) = i

∫
dω

2π e
−ωu G̃

R
ab(ω)− (G̃Rba(ω))∗

1 + e−βω
, (3.10)

which we use to compute the chaos exponent in section 3.3.2.

3.3.1 Transmission amplitude in low temperature regime

Let us define the transmission amplitude TLR(t) as TLR(t) = 2|G>LR(t)|, which measures the
probability to find the excitation of ψLi at time t after the insertion of ψRi at time t = 0 [47].
We have displayed TLR(t) for q = 4,J = 1, µ = 0.1, T = 0.019, and various values of J̃ 2

J 2 in
figure 6. We find that the transmission is reduced by decreasing LR correlation J̃ 2

J 2 . Note
that when the temperature is sufficiently small, G>LR(t) is well approximated by a single
quasi-particle with the speed ω1 and a finite lifetime Γ1: G>LR(t) ∼ e−iω1t−Γ1t. Hence the
suppression of TLR(t) can be explained by the decrease of ω1 and increase of Γ1, both of
which are encoded in the first peak of the spectral function ρLR(ω) = −2Re[G̃LR(ω)], as
J̃ 2

J 2 is decreased. See figure 7.

– 12 –



J
H
E
P
0
4
(
2
0
2
3
)
1
4
5

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. Transmission amplitude TLR(t) = 2|G>LR(t)| for various values of J̃ 2

J 2 in the low-
temperature phase. Note that for J̃ 2

J 2 = 0.4, there is no phase transition for µ = 0.1 (see figure 3),
hence (µ, T ) = (0.1, 0.019) belongs to the supercritical regime. For comparison, we have also plotted
2|G>(t)| for the single SYK model (dashed black line).
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Figure 7. Spectral function ρLR(ω) = −2Re[G̃RLR(ω)].

3.3.2 Chaos exponent

To compute the chaos exponent, we consider the four-point functions

1
N2

N∑
i,j

〈ψai (u1)ψbi (u2)ψcj(u3)ψdj (u4)〉 = 1
Z

∫
DGabDΣabGab(u1, u2)Gcd(u1, u2)e−NS . (3.11)
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with u1 = 3β
4 + it1, u2 = β

4 + it2, u3 = β
2 , u4 = 0. The chaos exponent λL is given by the

following late-time behavior of the four-point functions:

1
N2

N∑
i,j

〈ψai (u1)ψbi (u2)ψcj(u3)ψdj (u4)〉 = Gab(u1, u2)Gcd(u3, u4) + 1
N
Fabcd(u1, u2, u3, u4),

Fabcd(u1, u2, u3, u4) ∼ e
λL(t1+t2)

2 (t1, t2 � 1). (3.12)

In the large N limit and at late times, we find that Fabcd(t1, t2) obeys the following equa-
tion [37]

Fabcd(t1, t2) ≈
∑
ef

∫
dtdt′KRabef (t1, t2, t, t′)Fefcd(t, t′),

KRabcd(t1, t2, t3, t4) = −J
2
cd2q−1(q − 1)

q
GRac(t1 − t3)GRbd(t2 − t4)scdGcd

(
β

2 + i(t3 − t4)
)q−2

.

(3.13)

If we substitute the ansatz Fabcd(t1, t2) = e
λL(t1+t2)

2 fabcd(t12), this equation can be rewritten
as an eigenequation of fab··(t) with eingenvalue 1 [37]:∑

e,f

∫
dt′Mabef (λL; t, t′)fefcd(t′) ≈ fabcd(t),

Mabcd(λL; t, t′) = −J
2
cd2q−1(q − 1)

q
e−

λL(t−t′)
2

×
[∫

dt′′GRac(t− t′ − t′′)GRbd(−t′′)eλLt
′′
]
scdGcd

(
β

2 + it′
)q−2

. (3.14)

The chaos exponent λL can be determined so that the largest eigenvalue of the λL-
dependent kernelMabcd(λL; t, t′) crosses 1.

Notice that (3.14) can be decomposed into the following two equations with σ = ±1 [37](
f2,LL(t) + σf2,RR(t)
f2,LR(t)− σf2,RL(t)

)
a

=
∑
b

∫
dt′Mab(σ, λL; t, t′)

(
f2,LL(t′) + σf2,RR(t′)
f2,LR(t′)− σf2,RL(t′)

)
b

, (3.15)

where a, b = 1, 2 and

Mab(σ, λL; t, t′)

=
(

(M1,LLLL(t− t′) + σM1,LRLR(t− t′))M2,LL(t′) (M1,LLLR(t− t′)− σM1,LRLL(t− t′))M2,LL(t′)
−(M1,LLLR(t− t′)− σM1,LRLL(t− t′))M2,LR(t′) (M1,LLLL(t− t′) + σM1,LRLR(t− t′))M2,LR(t′)

)
,

(3.16)

with

f2,ab(t12) = e
λLt12

2 fab(t12),

M1,abcd(t) =
∫
dt′GRab(t− t′)GRcd(−t′)eλLt

′
,

M2,ab(t) = −J
2
ab2q−1(q − 1)

q
sabGab

(
β

2 + it

)q−2
. (3.17)
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Figure 8. The chaos exponent λL for the two sectors σ = ±1. Here we have displayed the data
points where the largest absolute value of the eigenvalues of Mab(−1, λL; t, t′) does not cross 1 in
0 < λL ≤ 2πT with empty triangle markers.

Hence we can compute the chaos exponent λL(σ) for each sector rather than computing
only the chaos exponent of the full system λL = max{λL(1), λL(−1)}.

By performing a binary search for the value of λL in the range 0 < λL ≤ 2πT such
that the largest eigenvalue of Mab(σ, λL; t, t′) is 1, we obtained the chaos exponent for
σ = ±1 and various values of J̃ 2

J 2 , as displayed in figure 8. We found that as J̃ 2

J 2 is
decreased the chaos exponent of each sector increases while their temperature dependence
remains qualitatively the same. This result may be interpreted in the following way. Let
us assume that the chaos exponent is associated with the operator growth over a single
side (say Left). In the two-coupled system, the operator growth on a single side should be
reduced due to the leakage of the operator to the operators supported on the other side.
As we have seen in the previous section, as J̃ 2

J 2 is decreased the LR transmission becomes
suppressed. Hence the chaos exponent is expected to become larger as J̃ 2

J 2 is decreased,
which is consistent with the results in figure 8. Note, however, that this interpretation
is only a matter of speculation at present. In terms of the operator growth, the growth
over the L side and the “leakage” would be characterized respectively by the commutator
squares ∑i,j〈−{ψLi (t), ψLj (0)}2〉 and ∑i,j〈−{ψLi (t), ψRj (0)}2〉, and the relevant components
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Figure 9. The temperature Tc,Ly where the binary search to determine λL(−1) fails.

of the regularized out-of-time-ordered correlators are respectively FLLLL and FRRLL. Since
the ladder kernel mixes these two components, we are not able to evaluate the two effects
separately with the method in this section. It would be interesting for future work to
analyze the operator growth of the two-coupled model directly, keeping track of the size
as an operator on the L-side and the size as an operator on the R-side, not only the total
size. Such analysis might provide us with a more concrete picture of the relation between
the scrambling property of the system and the uncorrelated disorder.

Interestingly we also found that when the temperature is lower than some critical
value Tc,Ly( J̃J , µ) (which is larger than Tc,2BH), the absolute values of the eigenvalues of
Mab(−1, λL; t, t′) are smaller than 1 for any value of λL in 0 < λL ≤ 2πT . This would
imply that there are no exponentially growing modes in σ = −1 sector for T < Tc,Ly. In
figure 9 we display the observed values of Tc,Ly for various J̃ /J and µ.

4 large q limit

In the large q limit, we can study the J (L)
i1···iq 6= J

(R)
i1···iq model analytically. In this section,

we study this limit and compare it with the results of the numerical analysis at finite q in
the previous section.

4.1 Large q limit at zero temperature

In the large q limit, the GΣ action reduces to the Liouville action:
SE
N

= 1
8q2

∫
dτ1

∫
dτ2
(
∂τ1gLL(τ1, τ2)∂τ2gLL(τ1, τ2)− ∂τ1gLR(τ1, τ2)∂τ2gLR(τ1, τ2)

)
− J

2

2q2

∫
dτ1

∫
dτ2e

gLL(τ1,τ2) − J̃
2

2q2

∫
dτ1

∫
dτ2e

gLR(τ1,τ2) − µ̂

2q2

∫
dτgLR(τ, τ), (4.1)

with the following ansatz for the large q expansion

GLL(τ) = GRR(τ) = 1
2sgn(τ)

(
1 + 1

q
gLL(τ) + · · ·

)
,

GLR(τ) = −GRL(τ) = i

2

(
1 + 1

q
gLR(τ) + · · ·

)
. (4.2)
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Here we have also scaled µ so that µ̂ = µq is kept finite in the large q limit. At a small
temperature and a late time of order τ ∼ q, this approximation is not valid because of the
exponential decay of the correlation functions. In this case, we also consider the solution
in τ � q regime and impose the matching condition between τ � q and τ � q solutions,
as we discuss in section 4.2. The Schwinger-Dyson equations reduce to the following two
equations:

∂2
τ gLL(τ) = 2J 2egLL(τ), (for τ > 0)
∂2
τ gLR(τ) = −2J̃ 2egLR(τ) − 2µ̂δ(τ), (4.3)

with the boundary conditions

gLL(0) = 0, ∂τgLR(0+) = −µ̂,
gLL(τ)− gLR(τ)→ 0, as τ →∞. (4.4)

The general solution of the equations (4.3) is

egLL(τ) = α2

J 2 sinh2(α|τ |+ γ)
,

egLR(τ) = α̃2

J̃ 2 cosh2(α̃|τ |+ γ̃)
, (4.5)

with constants of the integration α, α̃, γ, γ̃. These parameters are determined by the bound-
ary conditions which depend on the temperature.

Each of the boundary conditions (4.4) fixes the constants of integration in the following
way. First, the boundary conditions at τ = 0 give the relations

gLL(0) = 0 ⇒ α

J sinh γ = 1,

∂τgLR(0+) = −µ̂ ⇒ 2α̃ tanh γ̃ = µ̂, (4.6)

whereas the boundary condition at τ =∞ gives

gLL(τ)− gLR(τ)→ 0, as τ →∞ ⇒ γ̃ = γ + s, α = α̃. (4.7)

Here s = log JJ̃ is a positive parameter and vanishes when J̃ = J . Finally, γ satisfies the
equation

sinh γ tanh(γ + s) = µ̂

2J , (4.8)

and other parameters are determined through γ. The physical gap Egap is given by

Egap = 2α
q
. (4.9)

For the small j ≡ J − J̃ limit, we can separate the scale of Maldacena-Qi behavior and
Kourkoulou-Maldacena behavior. When j � µ, we can ignore the parameter s and we
obtain

sinh γ tanh γ = µ̂

2J , (4.10)
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which is exactly the same equation as in the Maldacena-Qi model. γ is given by

tanh2 γ = ε

2
(√

4 + ε2 − ε
)
, ε = µ̂

2J . (4.11)

In the range j � µ̂� J , we can expand as

γ ≈
√
ε =

√
µ̂

2J , α = J sinh γ ≈
√
µ̂J
2 , (4.12)

and the gap is given by

Egap = 2α
q
≈
√

2µ̂J
q

. (4.13)

This parameter regime exists only when j � J . In the regime µ̂ � j, we can ignore γ
from the term tanh(γ + s). Therefore we obtain the equation

sinh γ tanh s ≈ µ̂

2J . (4.14)

We can evaluate tanh s as

tanh s = es − e−s

es + e−s
= J

2 − J̃ 2

J 2 + J̃ 2 . (4.15)

Then, γ is evaluated as
sinh γ ≈ µ̂

2J tanh s. (4.16)

When J̃ = 0 this reduces to the relation of Kourkoulou-Maldacena model. This parameter
regime always exists but we need to take µ̂ to be smaller than j. When J̃ = J , i.e., the
perfect correlation between left and right SYK model, this regime disappears, which occurs
in the Maldacena-Qi model. The parameter α becomes α ≈ µ̂

2 tanh s . The mass gap in this
limit becomes

Egap = 2α
q
≈ µ̂

q tanh s. (4.17)

For j = J , i.e., when there are no correlations between J (L)
i1···iq and J

(R)
i1···iq , we have Egap = µ̂

q ,
which is the same as that of the Kourkoulou-Maldacena model.

Let us study how the behavior of Egap in µ changes when we decrease µ. The plot
of Egap as a function of µ is shown in figure 10. The power of the gap in µ is defined as
d logEgap
d logµ . Here we take the derivative with respect to µ while we fix J and J̃ . Then s is

also fixed and this is equivalent to taking the derivative with respect to γ while fixing s.
This becomes

d logEgap
d logµ = µ̂

α

∂γ

∂µ̂

∂α

∂γ
= sinh(γ + s) cosh(γ + s)

sinh(γ + s) cosh(γ + s) + tanh γ . (4.18)

The plot of (4.18) is shown in figure 11. We can see that for a very small j, there is a region
where the power in µ is almost 1/2, which is the behavior in the Maldacena-Qi model. On
the other hand, even for small j, the power in µ approaches 1 for sufficiently small µ as we
expect.
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Figure 10. Plot of Egap as a function of µ̂.
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Figure 11. Plots of the power of Egap in µ̂.

The real-time correlation function is obtained by analytically continuing to the Lorent-
zian time. At a low temperature of order β = O(q log q) we see that there are no decay and
the return amplitude just oscillates. This is because the decay rate is of order e−( q2−1)Egap ,
which is non-perturbatively small in q [37, 49] at large q limit, and we did not take into
account this decay rate at large q. Since the decay rate is also suppressed by the energy gap
Egap, the decay rate will increase as we decrease the correlation of the random couplings
between the two sides.

4.2 Finite temperature

For τ � q we can still use the solution (4.5) together with the boundary conditions at
τ → 0 (4.6). For τ � q, we can make a different approximation for the Schwinger-
Dyson equation (2.13) which goes as follows. First, from the second equation in (2.9) we
can approximate the self energy Σab(τ) at the time scale of Gab(τ) by the delta function
configurations (see section 5.4 in [31])

ΣLL(τ),ΣRR(τ) ≈ ρ∂τδ(τ), ΣLR(τ) = −ΣRL(τ) ≈ −iνδ(τ), ν = i

∫ β

0
ΣLR(τ)dτ = 2α̃

q
,

(4.19)
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where ρ is a constant of order O(q−1). We have evaluated the last integration by using
GLR(τ) in the small τ regime (4.2), (4.5) which gives iΣLR(τ) ≈ α̃2

q cosh2(α̃|τ |+γ̃) + µδ(τ),
and replacing the domain of integration with (−∞,∞). With (4.19), the other Schwinger-
Dyson equations are simplified as

(1− ρ)∂τGLL(τ)− iνGLR(τ) = 0, (4.20)
(1− ρ)∂τGLR(τ) + iνGLL(τ) = 0. (4.21)

We can ignore ρ in each equation since it gives a sub-leading correction in the large q limit.
Solving these equations we have

GLL(τ) = A cosh
[
ν

(
β

2 − τ
)]
, GLR(τ) = iA sinh

[
ν

(
β

2 − τ
)]
, (4.22)

where A is an integration constant. The other integration constant (translation in τ)
is fixed by the conditions GLL(τ) = GLL(β − τ), GLR(τ) = −GLR(β − τ) which follows
from (2.14).

Let us define σ = qe−βν as a new parameter corresponding to the temperature, and
assume that σ is of order O(q0) (i.e., β = O(q log q)). Matching the two solutions in the
overlapping regime, i.e., the large τ expansion of the solution for τ � q with the small τ
expansion of the solution for τ � q as

GLL(τ) ≈ 1
2 + 1

q
log 2α
J
− γ

q
− ατ

q
≈ A

(
cosh νβ2 − ντ sinh νβ2

)
,

−iGLR(τ) ≈ 1
2 + 1

q
log 2α̃
J̃
− γ̃

q
− α̃τ

q
≈ A

(
sinh νβ2 − ντ cosh νβ2

)
, (4.23)

we find the integration constants as

α̃ = α, γ̃ = γ + s+ σ, α = J sinh γ, µ̂ = 2α̃ tanh γ̃. (4.24)

Using the relation between the correlation functions and the energy (2.16), we obtain

E

N
= 1

2q∂τgLL(0) + 1
2q∂τgRR(0) + iµ

(
1− 2

q

)
i

2

(
1 + 1

q
gLR(0)

)
= −2J

q2 cosh γ − µ̂

2q + µ̂

q2

(
1 + log e

s sinh γ
cosh γ̃

)
. (4.25)

The effective action ` = 1
N logZ is then (see appendix A)

`(σ, γ) =
tanh γ̃ log q

σ

q

(
q

2 − 1 + 1
tanh γ tanh γ̃ + log sinh γ

cosh γ̃ + σ

tanh γ̃ + s

)
+ σ

q
. (4.26)

Now we study the free energy F
N = − `

β for representative J̃ . This can be worked out in
the following way. First, we choose q,J , J̃ , µ̂ to a particular set of values. Then, by using
the relations µ̂ = 2J sinh γ tanh γ̃ (4.24) and β = − 1

2J sinh γ log σ
q we can compute γ(σ) and

T (σ) = β(σ)−1 as functions of σ, with which the data points (T (σ),− `(σ,γ(σ))
β(σ) ) for the free
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Figure 12. Plot of the free energy as a function of the temperature for representative J̃ /J .

energy can be generated. The plot of the free energy as a function of T for representative
(J̃ /J )2 is shown in figure 12. In figure 13, we plot the phase diagram for representative
(J̃ /J )2 with q = 96. Clearly, we can see that the phase transition exists for small µ̂ and T
for sufficiently large J̃ . However, as we decrease J̃ finally the phase transition disappears
for any µ̂ and J (in the example of q = 96, µ̂ = 0.36 and J = 1 in figure 12 the phase
transition does not exist for (J̃ /J )2 = 0.4). In figure 14, we show the phase boundaries
Tc,2BH and Tc,WH for the same J̃ simultaneously. We see that the power of µ in Tc,2BH is
not changed much but Tc,WH becomes more straight for smaller J̃ .

The phase transition is replaced by crossover at µ = µ∗ where Tc,2BH and Tc,WH meet
in the phase diagrams. We call this temperature T∗. We plot µ∗ and T∗ as a function
in J̃ /J in figure 15. In particular, µ∗ = 0 when J̃ ≈ 0.50J for q = 96, where phase
transition itself entirely disappears. For smaller J̃ the phase transition does not exist for
all µ and we only see the crossover. In particular, we can confirm the disappearance of the
phase transition at finite J̃ /J from the large q analysis.

4.3 Absence of phase transitions for small J̃ /J

Let us regard (J , J̃ , µ̂, σ) as fundamental variables instead of (J , J̃ , µ̂, T ) and express T
as a function of σ (and J , J̃ , µ̂) as explained above. When (J̃ /J )2 is sufficiently large
and µ̂ is sufficiently small, T (σ) is not a monotonic function of σ, hence a single point
in T -µ plane may correspond to several different values of σ. On such a point, different
phases corresponding to each value of σ coexist together. On the other hand, when T (σ)
is monotonic, there are no phase transitions since `(σ) is a smooth function, and hence the
free energy F is a smooth function of the temperature T .

Now we study the monotonicity of β(σ). The derivative of β(σ) is

dβ

dσ
≡ dβ(γ(σ), σ)

dσ
= q

µ̂
tanh γ̃

( log q
σ

sinh γ̃ cosh γ̃ + tanh γ −
1
σ

)
. (4.27)

Here we used the chain rule dβ
dσ = dγ

dσ
∂β
∂γ + ∂β

∂σ , together with dγ(σ)
dσ = − tanh γ

sinh γ̃ cosh γ̃+tanh γ
which follows from the relation µ̂ = 2J sinh γ tanh γ̃ (4.24). Here we take the σ derivative
while keeping µ̂. For J̃ = J , which is the equal coupling in left and right, (4.27) is not
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Figure 13. The plots of phase diagrams for representative J̃ .
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Figure 14. Plots of Tc,2BH and Tc,WH . The parameters are taken to be J = 1, q = 96.

monotonic for sufficiently small µ̂ and shows the first-order phase transition. In figure 13,
we have observed that as J̃ /J is decreased, µ∗, the critical value of µ where the phase
transition disappears becomes smaller. When J̃ /J crosses some critical value, µ∗ finally
reaches zero, where the phase transition completely disappears on the (µ, T )-plane. To
determine this critical value of J̃ /J as a function of q, let us consider the limit µ̂ → 0,
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Figure 15. Plots of T∗ and µ∗. The parameters are taken to be J = 1, q = 96. Left: plot of
critical µ as a function of J̃ /J . Middle: plot of critical T as a function of J̃ /J . Right: parametric
plot of T∗(J̃ /J ) and µ∗(J̃ /J ).

which gives us

γ(σ) ≈ µ̂

2J tanh(s+ σ) ,
dβ

dσ
≈ q

2µ̂σ cosh2(s+ σ)

( 2σ log q
σ

1 + µ̂
sinh2(s+σ)

− sinh(2s+ 2σ)
)
.

(4.28)

We are interested only in whether dβ
dσ flips its sign or not. Writing dβ

dσ in the following form
dβ

dσ
= (positive)×

(
2σ log q

σ
− sinh(2s+ 2σ)

)
, (4.29)

we find that the last factor is negative at σ → 0,∞ and gain its maximum at some finite
σ∗ where d

dσ (dβdσ )|σ∗ = 0, which is given by

2 log q

σ∗
− 2− 2 cosh(2s+ 2σ∗) = 0. (4.30)

Hence the critical value of (J̃ /J )2 is determined by the condition dβ
dσ |σ∗ = 0. Solving

this condition numerically we obtain figure 16. In particular, when q = 96 we obtain
J̃ /J = 0.500577, which is consistent with the critical value we have observed in the
previous section.

If we further consider the case J̃ � J , i.e., s� 1, the condition (4.30) for σ∗ reduces
to log q

σ∗
≈ 1

2e
2s, and the condition dβ

dσ |σ∗ = 0 gives the critical value of (J̃ /J )2 as( J̃
J

)2
≈ 1

2 log(2q) . (4.31)

This result also suggests that the phase transition remains in the limit q → ∞ as far as
the J (L)

i1···iq and J (R)
i1···iq are correlated even slightly.

The derivative of ` is
d`

dσ
=
( log q

σ

sinh γ̃ cosh γ̃ + tanh γ −
1
σ

) 1
log q

σ

β
∂`

∂β

= q

µ̂ tanh γ̃ log q
σ

dβ

dσ
β
∂`

∂β
. (4.32)

Since ∂`
∂β = −E/N is always positive from the expression (4.25), `(σ) is also a monotonic

function when β(σ) is monotonic. Therefore, when β(σ) is monotonic the free energy F is
also a monotonic function of the temperature T .
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Figure 16. The critical value of (J̃ /J )2 in the large q approximation where the phase transition
becomes a smooth crossover in the entire (µ̂, T )-plane.

4.4 Inverse temperature of order β ∼ q and beyond

First, we consider the order of β ∼ q. In this regime, GLR is smaller than 1/2 even for
τ � q. Therefore we can put GqLR = 0 for τ � q and the effective decay rate ν becomes
the naive one ν = µ. Matching with the solution with τ � q regime we obtain

α = J sinh γ = µ̂

2 tanh βµ2 . (4.33)

The ratio J̃ /J does not enter in the correlation function and J̃ dependence disappears
at the order of β ∼ q. Indeed the correlation function and the partition function take the
same form both in Maldacena-Qi model [31] and Kourkoulou-Maldacena model [36]. Since
the behaviors are exactly the same for any J̃ , we only quote the results from [31, 36] in
this paper.

The free energy now becomes

− βF

N
= log

(
2 cosh βµ2

)
+ βµ

q
tanh βµ2

[
log(2 sinh γ) + 1

tanh γ − γ − 1
]
. (4.34)

This is independent from the ratio J̃ /J and does not depend on the incompleteness of the
correlation of the random couplings.

At the order of β ∼ √q, the chaos exponent increases from very small value and finally
saturates the chaos bound [31, 36]. The correlation function GLR at this order becomes

GLR(τ) = i

2µ
(
β

2 − τ
)
, (4.35)

which is of order 1/√q. The free energy is

− βF

N
= log 2 + (βµ)2

8 + 2βJ
q2 + (βµ)2

2q log(βJ ) + h[q(βµ)2]
q2 . (4.36)

where h is a function that we have not determined.
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At the order of β ∼ 1, we can set µ = 0 to compute gLL, gRR and we recover the
decoupled SYK models at large q limit. The free energy is

F

N
= 2FSYK

N
− βµ2

8 , (4.37)

where FSYK is the free energy of the SYK.

4.4.1 Comments on subleading Lyapunov exponents

At finite q, we have found that there is a subleading Lyapunov exponents in the σ = −1
sector. In the large q perspective, the problem to find Lyapunov exponents reduces to
studying the bound states of a Schrödinger equation, and we would be able to understand
the subleading Lyapunov exponents using that language as follows. At µ = 0 we have
two copies of the SYK and the Lyapunov exponents are degenerate. After introducing µ,
two degeneracies are resolved and we will get two different exponents, which leads to the
subleading Lyapunov exponents.

However, at the leading order of 1/q expansion, the degeneracy is not resolved because
σ dependent term is actually of order 1/q at large q limit. By taking the large q limit
of (3.16), we obtain

M1,LLLL(t) ∝ (GRLL)2 = O(1), M1,LLLR(t) ∝ GRLLGRLR = O(1/√q),
M1,LRLR(t) ∝ (GRLR)2 = O(1/q), M2,LL(t) = −2J 2egLL(β/2+it), M2,LR(t) = 0,

(4.38)

where we have used the fact that GLR is of order 1/√q. Therefore the only surviving terms
at the large q are M1,LLLL(t) and M2,LL(t) and we find that σ dependent terms drop at
the leading order in the 1/q expansion. This means that what we get is the degenerate
Lyapunov exponents at any temperature at large q. We hope to investigate the subleading
corrections in the 1/q expansion to see the resolution of the degeneracy in future works.

5 Structure of ground state for imperfectly correlated disorders

In this section, we investigate the structure of the ground state of the coupled model (2.1).
Let us consider the following state |I(β)〉

|I(β)〉 = 1
N
e−

β
4 (H(L)

SYK+H(R)
SYK)|I〉, (5.1)

where |I〉 is the ground state of Hint = i
∑N
i=1 ψ

L
i ψ

R
i and N =

√
〈I|e−

β
2 (H(L)

SYK+H(R)
SYK)|I〉

is the normalization factor. When the correlation of J (L)
i1···iq and J

(R)
i1···iq is perfect, this

state is the thermofield double state. Therefore the state |I(β)〉 is a generalization of the
thermofield double state. In the limit µ → ∞, the ground state of H approaches |I(β)〉
with β = 0. Also in the limit β → ∞, |I(β)〉 is approximated with the ground state of
H

(L)
SYK +H

(R)
SYK. If we assume that the ground state of H(L)

SYK +H
(R)
SYK is non-degenerate, it

coincides with the ground state of the coupled model in the limit µ→ 0. Therefore |I(β)〉
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should be a good one-parameter ansatz to approximate the ground state of the two-coupled
system (2.1) at least in the limit µ → ∞ and µ → 0. When the two random couplings
are perfectly correlated, |I(β)〉 was found to be a good approximation of the ground state
also for finite µ [31, 34, 35]. In this section, we provide some pieces of evidence that |I(β)〉
approximates the ground state for finite µ well even when the correlation between J

(L)
i1···iq

and J (R)
i1···iq is imperfect.

5.1 Variational approximation in large q limit

To understand the ground state for 〈J (L)
i1···iqJ

(R)
i1···iq〉 < 〈(J

(L)
i1···iq)

2〉, here we study the varia-
tional approximation by the generalized thermofield double state

|I(β)〉 = 1√
ZLR

e−
β
4HLe−

β
4HR |I〉 . (5.2)

Here |I〉 is the maximally entangled state defined by

ψiL |I〉 = −iψiR |I〉 . (5.3)

This is the ground state of the coupling Hamiltonian Hint = −iµ∑N
i=1 ψ

i
Lψ

i
R. ZLR is the

normalization factor defined by

ZLR = 〈I| e−
β
2HLe−

β
2HR |I〉 = Tr(e−

β
2HSYK(J(L)

i1···iq
)
e
−β2HSYK(J(R)

i1···iq
)). (5.4)

Here HSYK(Ji1···iq) is the SYK Hamiltonian with the random coupling Ji1···iq acting on a
single-side Hilbert space. In Maldacena-Qi model, choosing an appropriate β, |I(β)〉 is a
very good approximation for the exact ground state in the sense that the leading term
of the overlap between them becomes 1 in the small µ limit or in the large q limit. In
Kourkoulou-Maldacena model, this state is still a good approximation in the sense that
the leading overlap is 1 at large q. Therefore, we expect that the state |I(β)〉 is a good
approximation for the exact ground state even when the correlation of J (L)

i1···iq and J (R)
i1···iq is

imperfect.
We study the variational approximation by |I(β)〉 at large q. To do that, we minimize

the trial energy

Etrial(β) = 〈I(β)|HL +HR +Hint|I(β)〉 . (5.5)

In terms of the Euclidean correlation functions on the thermal circle with interfaces which
are schematically depicted in figure 17, the trial energy is

Etrial(β) = 1
q
∂τGLL(τ, 0)

∣∣∣∣
τ→0+

+ 1
q
∂τGLR(τ, 0)

∣∣∣∣
τ→0+

+ iµGLR(0, 0). (5.6)
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Figure 17. The schematic pictures of the correlation functions. Left: the path integral represen-
tation for the partition function ZLR. Middle: the correlation function GLL. Right: the correlation
function GLR.

In the large q limit, the correlation function becomes Gαβ(τ1, τ2) = G0,αβ

(
1+ 1

q gαβ(τ1, τ2)
)

with [50, 51]

egLL(τ1,τ2) = egRR(τ1,τ2) =
(

α̌

J sin(α̌|τ1 − τ2|+ γ̌)

)2
, for − β

4 < τ1, τ2 <
β

4 ,

egLR(τ1,τ2) =
(

α̌2/J 2

−λ2 sin
(
α̌
(
τ1+ β

4

))
sin
(
α̌
(
τ2− β

4

))
+ sin

(
α̌
(
β
4−τ1

)
+γ̌
)

sin
(
α̌
(
β
4−τ2

)
+γ̌
))2

,

for − β

4 < τ1, τ2 <
β

4 . (5.7)

Here we have introduced a parameter λ = J̃ /J . The parameters α̌ and γ̌ satisfy

α̌ = J sin γ̌, sin
(
α̌β

2 + 2γ̌
)

= λ2 sin
(
α̌β

2

)
. (5.8)

Then, Etrial(β) becomes

Etrial(β) = −2J
q2 cos γ̌ − µ̂

2q −
µ̂

q2 log
[ sin2 γ̌

(1− λ2) +
√

(1− λ2)2 + 4λ2 sin2 γ̌

]
. (5.9)

Here we have used the relation

1
q
∂τGLL(τ, 0)

∣∣∣∣
τ→0+

= −J
q2 cos γ̌,

egLR(0,0) =
(

α̌2/J 2

−λ2 sin2 α̌β
4 + sin2( α̌β4 + γ̌)

)2
=
( 2 sin2 γ̌

(1− λ2) +
√

(1− λ2)2 + 4λ2 sin2 γ̌

)2
.

(5.10)
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Because of the chain rule, we can instead take the derivative w.r.t. γ̌ to minimize the trial
energy:

q2∂Etrial
∂γ̌

= 2J sin γ̌ − µ̂

tan γ̌
(1− λ2) +

√
(1− λ2)2 + 4λ2 sin2 γ̌√

(1− λ2)2 + 4λ2 sin2 γ̌
= 0. (5.11)

This equation is solved as

cos γ̌ = cosh γ − sinh γ tanh γ̃, (5.12)

where γ is the solution of the equation (4.8). This determines the variational parameter β
as a function of µ.

We find that the SYK energy and the expectation value of the interaction Hamiltonian
completely agree:

〈G(µ)|HL +HR|G(µ)〉 = 〈I(β(µ))|HL +HR|I(β(µ))〉 = −2J
q2 cos γ̌,

〈G(µ)|ψLψR|G(µ)〉 = 〈I(β(µ))|ψLψR|I(β(µ))〉 = i

2

[
1 + 1

q
log

(
es sinh γ
cosh γ̃

)2]
. (5.13)

Therefore, the variational energy actually is equal to the true energy (4.25)

Etrial(β(µ)) = Eg. (5.14)

This means that the |I(β(µ))〉 = |G(µ)〉 in the large q limit.

5.2 Overlap between ground state and |I(β)〉 for finite q
In the previous section we have found that |I(β)〉 (5.1), with β(µ) chosen appropriately,
approximates the energy of the ground state well when both q and N are large. This is
strong evidence that |I(β)〉 approximates well the true ground state |gs〉 of the two-coupled
Hamiltonian (2.1). In this section, we study the validity of this approximation for finite q
by comparing the two states directly for finite N .

Note that there are several subtleties. First, since the full Hamiltonian as well as
i
∑N
i=1 ψ

L
i ψ

R
i commute with the fermion number parity Γc (B.4), both |I(β)〉 and the ground

state of H are eigenstates of Γc. When µ is not sufficiently large, the parity of the ground
state of H depends on the realization of J (a)

i1···iq and hence is not always the same as the
parity of |I(β)〉. Hence to make the comparison reasonable we should compare |I(β)〉 with
|gs, (−1)

N(N−1)
2 〉, the eigenstate of H with the lowest energy in the same parity sector as

|I(β)〉, Γc = (−1)
N(N−1)

2 , rather than the true ground state of H.
Second, although |I(β)〉 approximates well the ground state at µ ≈ 0 when the ground

state of H(L)
SYK +H

(R)
SYK is non-degenerate, the spectrum of single SYK Hamiltonian has the

following degeneracy depending on the value of q and N mod 8 [52]:

q,N degeneracy of single SYK spectrum
q = 0 mod 4, N = 2, 6 mod 8 2 (between different parity sectors)
q = 0 mod 4, N = 4 mod 8 2 (in each parity sector)
q = 0 mod 4, N = 0 mod 8 non-degenerate

q = 2 mod 4 non-degenerate

, (5.15)
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which implies that the ground state of H(L)
SYK +H

(R)
SYK is also degenerate in the cases of the

first two rows. On the other hand, |I〉 contains only a certain linear combination of them
(which can be identified explicitly for J (L)

i1···iq = J
(R)
i1···iq case, as summarized in appendix B).

Note that this degeneracy cannot be removed completely by the total fermion number
parity Γc. When µ is small but non-zero, the degeneracy is removed and the true ground
state is approximately a certain linear combination of the degenerate ground states at
µ = 0. This linear combination varies depending on the realization of J (a)

i1···iq and is not
necessarily the same as the linear combination contained in |I〉.

To avoid these subtleties, here we choose q = 6 where the ground state in Γc =
(−1)

N(N−1)
2 sector at µ = 0 is non-degenerate for any N , and consider the overlap between

|I(β)〉 and |gs, (−1)
N(N−1)

2 〉, maximized with respect to β. As a result, we obtain figure 18.
The results suggest that |I(β)〉 is indeed a good approximation to |gs, (−1)

N(N−1)
2 〉 also for

finite µ.

6 Discussion and future works

In this paper, we have studied the thermodynamic and chaotic properties of the two-
coupled SYK model where the two random couplings are not completely the same. As
a result, we have found that the phase transition temperature becomes smaller as the
correlation of the random couplings is reduced. This is consistent with the intuition that
the correlation between the random couplings makes it easier for the wormhole to form
between the two sides.

Then, we have studied the properties of the ground state of the coupled SYK model
with an imperfect correlation of the random couplings. As we change the correlation, the
behavior of the energy gap also changes. When J̃ /J is close to 1, the SYK interaction
still helps to make the gap larger than the naive one Egap ∼ µ. However, as we decrease µ,
finally the effect of imperfect correlation wins, and the energy gap becomes smaller than
the naive one, which we expect when we have no correlation between J (L)

i1···iq and J
(R)
i1···iq . For

J̃ where the thermal phase transition disappears, the energy gap is close to that without
〈J (L)
i1···iqJ

(R)
i1···iq〉 correlation as far as we have checked.

We have also found that the transmission amplitude between the two sides in the
wormhole phase for fixed temperature T and the direct LR coupling µ becomes smaller as
the correlation of the random couplings is reduced. On the other hand, as the correlation
is reduced the largest chaos exponent becomes larger. Assuming that the largest chaos
exponent is associated with the information spreading within each side rather than between
the two sides, this behavior of the chaos exponent is also consistent with the same intuition.
Interestingly, we have also found that the phase transition completely disappears when the
correlation between the random couplings is smaller than some non-zero finite value which
is around 〈J (L)

i1···iqJ
(R)
i1···iq〉 ≈ 0.3〈(J (L)

i1···iq)
2〉 for q = 4 and 〈J (L)

i1···iqJ
(R)
i1···iq〉 ∼ (log q)−1〈(J (L)

i1···iq)
2〉

for large q.
Finally, to understand the properties of the ground state, we have studied how it

is close to the generalized thermofield double state (5.1). This generalized theromfield
double state has a jump of couplings in Euclidean time and is studied in the context of
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Figure 18. The overlap |〈Iβ |gs, (−1)
N(N−1)

2 〉| maximized with respect to β.

black holes [26–28, 30]. It turns out that the ground state coincides with the generalized
thermofield double state at large q. In this sense, the coupled Hamiltonian prepares an
“SYK Janus black hole” as its ground state. In the case of SYK Janus black holes, we have
an expanded interior. Intuitively, this expanded interior makes the length between the two
mouths of the wormholes longer and it takes more time to traverse the wormhole. This is
an intuitive explanation for why Egap, which is roughly the time to traverse the wormhole,
becomes larger for smaller J̃ /J .

In section 3.3.2 we have found that the ladder kernel for the four-point functions can
be block-diagonalized into two sectors labeled by σ = ±1, and have observed that the
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chaos exponent in the σ = −1 sector vanishes at some temperature T = Tc,Ly(µ, J̃ /J )
which is larger than Tc,WH (the vanishing chaos exponent was also observed in [37] for
J

(L)
i1···iq = J

(R)
i1···iq). It would be interesting to investigate the physical interpretation of this

phenomenon. For this purpose, it would be important to reproduce the same phenomenon
analytically in the large q limit. As commented in section 4.4.1 this requires the analysis
of the sub-leading correction in 1/q.

In this paper, we have studied the effect of the correlation between J
(L)
i1···iq and J (R)

i1···iq

in the two-coupled model without modifying the probability distributions of each J
(a)
i1···iq

themselves. One may also consider different modifications of the distribution of the random
couplings such as an imbalanced rescaling J (R)

i1···iq = cJ
(L)
i1···iq with c 6= 1 [53] or the sparse

couplings [54–56] instead of full J (a)
i1···iq . It would also be interesting to study how the

traversability and other properties of these models change as the correlation between the
random couplings on two sides is varied.

One may also adopt different kinds of LR interactions instead of the one i∑i ψ
L
i ψ

R
i

we have used. For example, the LR interaction can also be turned on by considering
H = f(H(L)

SYK + H
(R)
SYK) with any non-linear function f . Such a transformation of the

Hamiltonian naturally arises in the context of T T̄ deformation [57–63], whose quench
protocol was studied in [64]. It would be interesting to investigate the properties of such
models further.
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A A derivation of the large q partition function

The solution for τ � q is

egLL(τ) = α2

J 2 sinh2(α|τ |+ γ)
,

egLR(τ) = α̃2

J̃ 2 cosh2(α̃|τ |+ γ̃)
, (A.1)

and for τ � q

GLL(τ) = A cosh
[
ν

(
β

2 − τ
)]
,

GLR(τ) = iA sinh
[
ν

(
β

2 − τ
)]
, (A.2)
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where
ν = i

∫ ∞
−∞

ΣLR(τ)dτ = 2α̃
q

= µ̂

q tanh γ̃ . (A.3)

In the matching region, GLL and GLR are expanded as

GLL ∼
1
2 −

1
q

(
log J

α
+ γ + ατ

)
∼ A

[
cosh νβ2 − τν sinh νβ2

]
−iGLR ∼

1
2 −

1
q

(
log J̃

α̃
+ γ̃ + α̃τ

)
∼ A

[
sinh νβ2 − τν cosh νβ2

]
. (A.4)

This determines the parameters to be

α = α̃, γ̃ = γ + σ + s. (A.5)

Here we have defined σ by
σ = qe−βν , (A.6)

which is of order O(1). The boundary conditions at τ = 0 give

α = J sinh γ, µ̂ = 2α̃ tanh γ̃. (A.7)

The conditions (A.5), (A.6) and (A.7) determine the relation between the physical param-
eters µ̂,J , J̃ , β and σ, γ, s. The energy is

E

N
= − 1

N
∂β logZ = 1

2q∂τgLL(0) + 1
2q∂τgRR(0) + iµ

(
1− 2

q

)
i

2

(
1 + 1

q
gLR(0)

)
= −2J

q2 cosh γ − µ̂

2q + µ̂

q2

(
1 + log e

s sinh γ
cosh γ̃

)
. (A.8)

In the following we choose the fundamental variables as either (µ̂,J , s, β) or (σ, γ, s, β)
interchangeably. Using the effective action we can write6

J ∂`

∂J

∣∣∣∣
µ̂,s,β

= β

∫ ∞
0

(J 2egLL + J̃ 2egLR)dτ = βµ̂

q2

[ 1
tanh γ tanh γ̃ − 1

]
,

µ
∂`

∂µ̂

∣∣∣∣
J ,s,β

= −iβµGLR(0) = βµ̂

q2

[
q

2 + log
( sinh γ

cosh γ̃

)
+ s

]
. (A.9)

By the change of variables, the partial derivatives are given by

1
µ̂

∂µ̂

∂γ

∣∣∣∣
σ,s,β

− 1
J
∂J
∂γ

∣∣∣∣
σ,s,β

= 1
tanh γ + 1

sinh γ̃ cosh γ̃ ,
1
βµ̂

∂(βµ̂)
∂γ

∣∣∣∣
σ,s,β

= 1
sinh γ̃ cosh γ̃ ,

1
µ̂

∂µ̂

∂σ

∣∣∣∣
γ,s,β

− 1
J
∂J
∂σ

∣∣∣∣
γ,s,β

= 1
sinh γ̃ cosh γ̃ ,

1
βµ̂

∂(βµ̂)
∂σ

∣∣∣∣
γ,s,β

= 1
sinh γ̃ cosh γ̃ −

1
σ log q

σ

.

(A.10)

6Here we take the J derivative with fixed s and ∂J also acts on J̃ terms.
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Then, the derivative of ` in γ, σ is determined through

∂`

∂γ

∣∣∣∣
σ,s,β

= 1
βµ̂

∂(βµ̂)
∂γ

∣∣∣∣
σ,s,β

β
∂`

∂β

∣∣∣∣
µ̂,J ,s

−
( 1
µ̂

∂µ̂

∂γ

∣∣∣∣
σ,s,β

− 1
J
∂J
∂γ

∣∣∣∣
σ,s,β

)
J ∂`

∂J

∣∣∣∣
µ̂,s,β

,

∂`

∂σ

∣∣∣∣
γ,s,β

= 1
βµ̂

∂(βµ̂)
∂σ

∣∣∣∣
γ,s,β

β
∂`

∂β

∣∣∣∣
µ̂,J ,s

−
( 1
µ̂

∂µ̂

∂σ

∣∣∣∣
γ,β,s

− 1
J
∂J
∂σ

∣∣∣∣
γ,β,s

)
J ∂`

∂J

∣∣∣∣
µ̂,s,β

. (A.11)

Here we have used the relation (µ∂µ+J ∂J −β∂β)` = 0 since ` is a function of dimensionless
parameters `(βµ̂,J β, s). Integrating (A.11), we obtain

`(σ, γ) =
tanh γ̃ log q

σ

q

(
q

2 − 1 + 1
tanh γ tanh γ̃ + log sinh γ

cosh γ̃ + s+ σ

tanh γ̃

)
+ σ

q
, (A.12)

which is the result in (4.26). Interestingly, the effect of the incomplete correlation J 6= J̃
is included only in γ̃ and the partition function takes the same form with the completely
correlated random couplings J = J̃ .

B Relation between ground state of Hint and eigenstates of H
(a)
SYK

In this section we display the explicit relation between |I〉, the ground state of Hint (2.2),
and the eigenstates of H(L)

SYK + H
(R)
SYK for J (L)

i1···iq = J
(R)
i1···iq . For q = 4 the results are also

written in [34].

B.1 Gamma matrices and charge conjugation matrix

Let us first fix the convention for the gamma matrices, and also introduce the charge
conjugation operator C for single side, which plays a crucial role in fixing the ambiguities
of the overall phases of the eigenstates of H(L)

SYK +H
(R)
SYK.

We choose the representation of the single-side gamma matrices γi and single-side
fermion number parity matrix γc as

γ1 = X ⊗ 1⊗ 1⊗ 1⊗ · · · ⊗ 1⊗ 1,
γ2 = Y ⊗ 1⊗ 1⊗ 1⊗ · · · ⊗ 1⊗ 1,
γ3 = Z ⊗X ⊗ 1⊗ 1⊗ · · · ⊗ 1⊗ 1,
γ4 = Z ⊗ Y ⊗ 1⊗ 1⊗ · · · ⊗ 1⊗ 1,
γ5 = Z ⊗ Z ⊗X ⊗ 1⊗ · · · ⊗ 1⊗ 1,

...
γN = Z ⊗ Z ⊗ Z ⊗ Z ⊗ · · · ⊗ Z ⊗ Y,

γc = (−i)
N
2 γ1γ2 · · · γN = Z⊗

N
2 , (B.1)

where

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (B.2)
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With these γi and γc, we define the gamma matrices for the two-coupled system Γ(a)
i =√

2ψ(a)
i (a = L,R) as

Γ(L)
i = γi ⊗ 1, Γ(R)

i = γc ⊗ γi, (B.3)

and define the fermion number parity matrix Γc for the two-coupled system as7

Γc = (−i)NΓ(L)
1 Γ(L)

2 · · ·Γ(L)
N Γ(R)

1 Γ(R)
2 · · ·Γ(R)

N = γc ⊗ γc. (B.4)

Since |I〉, the ground state of Hint (2.2), satisfies iΓ(L)
i Γ(R)

i |I〉 = −|I〉 for all i = 1, 2, · · · , N ,
we find that the fermion number parity of |I〉 is Γc = (−1)

N(N−1)
2 .

The charge conjugation operator C of single side can be defined as

C = γ2γ4 · · · γNK, (B.5)

where K is the complex conjugation in the basis which define the matrix element of X,Y, Z
as (B.2). Note that CK = γ2γ4 · · · γN is a unitary operator but C is not a unitary operator.
Let us list several important properties of C:

Cγi = (−1)
N
2 γiC, Cγc = (−1)

N
2 γcC, C2 =

1 (N = 0, 6 mod 8)
−1 (N = 2, 4 mod 8)

, (B.6)

〈φ|γi|ψ〉 = (−1)
N
2 (C|ψ〉)†γiC|φ〉, (B.7)

which we use in the rest of this section.

B.2 q = 0 mod 4

For q = 0 mod 4, H(L)
SYK and H(R)

SYK with J (L)
i1···iq = J

(R)
i1···iq are written in the basis (B.3) as

H
(L)
SYK = HSYK ⊗ 1, H

(R)
SYK = 1⊗HSYK, (B.8)

with

HSYK = 1
2
q
2
i
q
2

∑
i1<···<iq

J
(L)
i1···iqγi1 · · · γiq . (B.9)

Since HSYK commutes with γc, we can choose the eigenstates of HSYK as simultaneous
eigenstates of γc. Also, since HSYK commutes with C, we can classify these eigenstates
by using C. As the relations (B.6) suggest, the classification, as well as the consequent
expression of |I〉, depends on N mod 8.

7We have chosen the convention of Γc so that the fermion number of the two-coupled system always
coincides with the sum of the fermion numbers of each side for any N ∈ 2N. Note that our choice is
different from the one Γ(another)

c = (−4) N
2 ψ

(L)
1 ψ

(R)
1 ψ

(L)
2 ψ

(R)
2 · · ·ψ(L)

N ψ
(R)
N with which the fermion parity of

|I〉 is independent of N : Γ(another)
c |I〉 = |I〉.
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B.2.1 q = 0 mod 4, N = 0 mod 8
First let us consider the case q = 0 mod 4 andN = 0 mod 8. In this case γc and C commute
with each other. Therefore, if |n, σ〉 is an eigenstate of HSYK with HSYK = En,σ and γc = σ,
C|n, σ〉 is also an eigenstate of HSYK, γc with HSYK = En,σ and γc = σ. Moreover, since
C2 = 1, we can choose the eigenstates |n, σ〉 such that C|n, σ〉 = |n, σ〉: if C|n, σ〉 6= |n, σ〉
we can redefine (|n, σ〉+C|n, σ〉)×(real number) and/or i(|n, σ〉−C|n, σ〉)×(real number) as
|n, σ〉. It turns out that there are no degeneracies with generic J (L)

i1···iq , hence the eigenstates
of HSYK are summarized as

eigenstates of HSYK γc HSYK
|n,+〉 (C|n,+〉 = |n,+〉; n = 1, 2, · · · , 2N/2−1) +1 En,+
|n,−〉 (C|n,+〉 = |n,−〉; n = 1, 2, · · · , 2N/2−1) −1 En,−

, (B.10)

where En,+ 6= En,−.
Since |I〉 satisfies Γ(R)

i |I〉 = iΓ(L)
i |I〉, we have H

(L)
SYK|I〉 = H

(R)
SYK|I〉, which suggests that

|I〉 is expanded as

|I〉 =
2N/2−1∑
n=1

∑
σ=±1

an,σ|n, σ〉 ⊗ |n, σ〉. (B.11)

Since the ground state ofHint is non-degenerate, an,σ can be determined uniquely by solving
〈I|Hint|I〉 = −N

2 . By using the explicit expressions of Γ(L)
i ,Γ(R)

i (B.3) and the properties
of |n, σ〉 under C, γc we can rewrite 〈I|Hint|I〉 as

〈I|Hint|I〉 = i

2

N∑
i=1

∑
m,n

∑
σ

a∗m,σan,−σ〈m,σ|γiγc|n,−σ〉〈m,σ|γi|n,−σ〉

= i

2

N∑
i=1

∑
m,n

∑
σ

(−σ)a∗m,σan,−σ〈m,σ|γi|n,−σ〉〈m,σ|γi|n,−σ〉

= i

2

N∑
i=1

∑
m,n

∑
σ

(−σ)a∗m,σan,−σ〈m,σ|γi|n,−σ〉〈n,−σ|γi|m,σ〉, (B.12)

where in the first line we have used the fact that γi flip the fermion number parity γc and in
the third line we have used the formula (B.7). If we assume an,σ = aσ is independent of n,
we can use the fact that {|n, σ〉} is a complete orthonormal basis, i.e., ∑n,σ′ |n, σ′〉〈n, σ′| =
1, to further simplify the right-hand side of (B.12):

〈I|Hint|I〉 = i

2

N∑
i=1

∑
m

∑
σ

(−σ)a∗σa−σ〈m,σ|γiγi|m,σ〉 = −2N/2−2iN
∑
σ=±1

σa∗σa−σ. (B.13)

Hence from 〈I|Hint|I〉 = −N
2 we obtain the condition 2N/2−1∑

σ σa
∗
σa−σ = −i. Combining

this with the normalization condition 〈I|I〉 = 2N/2−1∑
σ |aσ|2 = 1, we can determine aσ

as (a+, a−) = (2−N/4,−2−N/4i) up to an overall phase. After all, we obtain the following
expression for |I〉:

|I〉q=0 mod 4,N=0 mod 8 = 2−
N
4

2
N
2 −1∑
n=1

(|n,+〉 ⊗ |n,+〉 − i|n,−〉 ⊗ |n,−〉). (B.14)
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B.2.2 q = 0 mod 4, N = 2, 6 mod 8

In this case γc anti-commutes with C. Hence if |n,+〉 is an eigenstate of HSYK with
HSYK = En and γc = +1, C|n,+〉 is another eigenstate of HSYK with HSYK = En and
γc = −1, i.e., the spectrum is degenerate between γc = ±1 sectors and summarized as
follows

eigenstates of HSYK γc HSYK
|n,+〉 (n = 1, 2, · · · , 2N/2−1) +1 En

C|n,+〉 (n = 1, 2, · · · , 2N/2−1) −1 En

. (B.15)

Taking into account the fact that H(L)
SYK|I〉 = H

(R)
SYK|I〉 together with Γc|I〉 = −|I〉, we pose

the following ansatz:

|I〉 =
2N/2−1∑
n=1

(an,+|n,+〉 ⊗ C|n,+〉+ an,−C|n,+〉 ⊗ |n,+〉), (B.16)

where we have defined |n,−〉 = C|n,+〉. By imposing 〈I|Hint|I〉 = −N
2 and 〈I|I〉 = 1 we

can determine an,σ and obtain the following expressions:

|I〉q=0 mod 4,N=2 mod 8 = 2−
N
4

2
N
2 −1∑
n=1

(|n,+〉 ⊗ C|n,+〉 − iC|n,+〉 ⊗ |n,+〉),

|I〉q=0 mod 4,N=6 mod 8 = 2−
N
4

2
N
2 −1∑
n=1

(|n,+〉 ⊗ C|n,+〉+ iC|n,+〉 ⊗ |n,+〉). (B.17)

B.2.3 q = 0 mod 4, N = 4 mod 8

In this case γc commutes with C, hence |n, σ〉 and C|n, σ〉 have the same eigenvalues both
for HSYK and γc. In contrast to the case N = 0 mod 8, since C2 = −1 it is impossible to
have a state |φ〉 as C|φ〉 = |φ〉. This implies that there are two-fold degeneracy within each
of γc = ±1 sector. In summary,

eigenstates of HSYK γc HSYK
|n,+〉 (n = 1, 2, · · · , 2N/2−2) +1 En,+
C|n,+〉 (n = 1, 2, · · · , 2N/2−2) +1 En,+
|n,−〉 (n = 1, 2, · · · , 2N/2−2) −1 En,−

C|n,−〉 (n = 1, 2, · · · , 2N/2−2) −1 En,−

. (B.18)

Taking into account H(L)
SYK|I〉 = H

(R)
SYK|I〉 and Γc|I〉 = |I〉, we pose the following ansatz

for |I〉:

|I〉 =
2N/2−2∑
n=1

∑
σ=±

(an,σ|n, σ〉 ⊗ |n, σ〉+ bn,σ|n, σ〉 ⊗ C|n, σ〉

+ cn,σC|n, σ〉 ⊗ |n, σ〉+ dn,σC|n, σ〉 ⊗ C|n, σ〉). (B.19)
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By imposing 〈I|Hint|I〉 = −N
2 and 〈I|I〉 = 1 we can determine an,σ, bn,σ, cn,σ, dn,σ and

obtain the following expression:

|I〉q=0 mod 4,N=4 mod 8

= 2−
N
4

2
N
2 −2∑
n=1

(
|n,+〉⊗ C|n,+〉− C|n,+〉⊗ |n,+〉− i(|n,−〉⊗ C|n,−〉 − C|n,−〉⊗ |n,−〉)

)
.

(B.20)

B.3 q = 2 mod 4

For q = 2 mod 4, H(L)
SYK and H(R)

SYK with J (L)
i1···iq = J

(R)
i1···iq are written in the basis (B.3) as

H
(L)
SYK = HSYK ⊗ 1, H

(R)
SYK = −1⊗HSYK, (B.21)

with

HSYK = 1
2
q
2
i
q
2

∑
i1<···<iq

J
(L)
i1···iqγi1 · · · γiq . (B.22)

For q = 2 mod 4, HSYK does not commute with C due to the factor i
q
2 . Nevertheless,

since HSYK anti-commutes with C, an eigenstate of HSYK with eigenvalue En transforms
to another eigenstate of HSYK with eigenvalue −En and C is still useful to classify the
eigenstates of HSYK.

B.3.1 q = 2 mod 4, N = 0, 4 mod 8

Since γc and C commute, we obtain the following classification of the spectrum of sin-
gle HSYK:

eigenstates of HSYK γc HSYK
|n,+〉 (n = 1, 2, · · · , 2N/2−2) +1 En,+
C|n,+〉 (n = 1, 2, · · · , 2N/2−2) +1 −En,+
|n,−〉 (n = 1, 2, · · · , 2N/2−2) −1 En,−

C|n,−〉 (n = 1, 2, · · · , 2N/2−2) −1 −En,−

. (B.23)

There are no degeneracy for generic J (L)
i1···iq .

To write down an ansatz for |I〉 notice that iΓ(L)
i Γ(R)

i |I〉 = |I〉 implies (HSYK⊗1)|I〉 =
−(1 ⊗ HSYK)|I〉 for q = 2 mod 4. Hence we need to pair an energy eigenstate of single
side with HSYK = E and a different energy eigenstate with HSYK = −E. Taking this into
account together with the classification (B.23) we pose the following ansatz:

|I〉 =
2
N
2 −2∑
n=1

∑
σ

(an,σ|n, σ〉 ⊗ C|n, σ〉+ bn,σC|n, σ〉 ⊗ |n, σ〉). (B.24)
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Now we can determine the coefficients am,σ, bm,σ by completely the same strategy as we
have used for q = 4, and we obtain

|I〉q=2 mod 4,N=0 mod 8

= 2−
N
4

2
N
2 −2∑
n=1

(
|n,+〉⊗ C|n,+〉+ C|n,+〉⊗ |n,+〉− i(|n,−〉⊗ C|n,−〉+ C|n,−〉⊗ |n,−〉)

)
,

|I〉q=2 mod 4,N=4 mod 8

= 2−
N
4

2
N
2 −2∑
n=1

(
|n,+〉⊗ C|n,+〉 − C|n,+〉⊗ |n,+〉 − i(|n,−〉⊗ C|n,−〉 − C|n,−〉⊗ |n,−〉)

)
.

(B.25)

B.3.2 q = 2 mod 4, N = 2, 6 mod 8
Since γc and C anti-commute, we obtain the following classification of the spectrum of
single HSYK:

eigenstates of HSYK γc HSYK
|n,+〉 (n = 1, 2, · · · , 2N/2−1) +1 En

C|n,+〉 (n = 1, 2, · · · , 2N/2−1) −1 −En
. (B.26)

There are no degeneracy for generic J (L)
i1···iq .

By posing the following ansatz

|I〉 =
2
N
2 −1∑
n=1

(an,+|n,+〉 ⊗ C|n,+〉+ an,−C|n,+〉 ⊗ |n,+〉), (B.27)

we obtain |I〉 as

|I〉q=2 mod 4,N=2 mod 8 = 2−
N
4

2
N
2 −1∑
n=1

(|n,+〉 ⊗ C|n,+〉 − iC|n,+〉 ⊗ |n,+〉),

|I〉q=2 mod 4,N=6 mod 8 = 2−
N
4

2
N
2 −1∑
n=1

(|n,+〉 ⊗ C|n,+〉+ iC|n,+〉 ⊗ |n,+〉). (B.28)
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