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ON SYMMETRIC-TENSOR-VALUED ISOTROPIC
FUNCTIONS OF TWO SYMMETRIC TENSORS*

By G. F. SMITH (Lehigh University)

1. Introduction. We show that any symmetric-tensor-1 valued isotropic polynomial

function T (A, B) of two symmetric tensors A and B is expressible as

T(A, B)

= (h0 + Ai710 + /t2/io)I + (h3 + hJ10)A + (h5 + h6IJ0)B

+ (h7 + A8/10)A2 + (hg + /i10/io)(AB + BA) + (hn + ^12710)B2

+ (hi3 + A14/i0)(A2B + BA2) + (A1S + A16/10)(AB2 + B2A) + A17(A2B2 + B2A2) (1.1)

where h0 , ■ • • , hir are polynomials in the isotropic invariants Ii , • ■ • , Ia defined by

11 , • • • , 79 = tr A, tr B, tr A2, tr AB, tr B2, tr A3, tr A2B, tr AB2, tr B3 (1.2)

and where

I10 = tr A2B2. (1.3)

It has been shown by Rivlin [1] that any symmetric-tensor-valued isotropic poly-

nomial function of the symmetric tensors A and B is expressible as

T(A, B) = 7oI + 7iA + 72B + 73A2 + 74(AB + BA)

+ 75B2 + 76(A2B + BA2) + 7t(AB2 + B2A) + 7s(A2B2 + B2A2) (1.4)

where the yk are polynomials in the isotropic invariants Iy , • • ■ , Iw defined by (1.2)

and (1.3). There are a number of redundant terms in the expression (1.4). In Sec. 2

we outline the procedures employed to generate the matrix identities which enable

us to eliminate these redundant terms and thus to proceed from the expression (1.4)

for T(A, B) to that defined by (1.1), • • • , (1.3). In Sec. 3 we show that there are no

redundant terms in the expression for T(A, B) given by (1.1) and hence no further

simplification of the expression for T(A, B) is possible.

2. Reduction procedure. We may also write the expression (1.1) in the form

T(A, B) = £ (2.1)
i.i.k

where the aiik are constants and where H,,t (k = 1, 2, •••) denote the matrices of

degree i, j in A, B which appear in the expansion of (1.1); for example,

* Received August 8,1972. This work was supported by a grant from the National Science Foundation

to Lehigh University.

1 "Tensor" means three-dimensional second-order tensor.
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Hoc, {11 > | A. Ill AI j (2 9)

H1U = {I tr AB, I tr A tr B, A tr B, B tr A, AB + BA}, • ■ • .

We now outline the procedures used to generate the matrix identities which enable

us to reduce (1.4) to (1.1).

(i) Let a, y denote 3X3 skew-symmetric matrices. Then we have [2] the identity

a(?Y — Y(?a + E?Ya ~~ aY(? ~t~ Ya? — ?°T = 2 I tr aSy- (2-3)

Substitution of

a = A2B - BA2, ^ = B2A — AB2, r = AB - BA (2.4)

into (2.3) will yield, upon application of various of the matrix identities given in [1],

a matrix identity of the form

(tr A2B2)(A2B2 + B2A2) = £ a,H44j> . (2.5)
V

(ii) Let a and 5 denote skew-symmetric 3X3 matrices and let c denote a symmetric

3X3 matrix. Then we have [2] the identity2

age + c(?a aC(5 -f- (3ca + ca(3 + (3ac = (a(J -f- (3a) tr C

+ c tr a(5 + I (2 tr age — tr c tr a(5). (2.6)

We substitute

a = g = (A2B - BA2), c = AB2 + B2A (2.7)

into (2.6). The resulting identity may be reduced, upon application of (2.5) and identities

found in [1], to a matrix identity of the form

(tr A2B2)2A = £ ft,H54p . (2.8)
V

Interchanging A and B in (2.8) yields

(tr A2B2)B = J] 7pH45r . (2.9)
V

(iii) We add the two identities obtained by multiplying the identity resulting from

substitution of (2.7) into (2.6) on the right by A and on the left by A. Upon application

of identities (2.5), (2.8), and identities appearing in [1], we obtain

(tr A2B2)2A2 = £ 5„H64j) . (2.10)
V

Interchanging A and B in (2.10) yields

(tr A2B2)2B2 = epH46p . (2.11)
V

(iv) We add the two identities obtained by multiplying the identity resulting from

substitution of (2.7) into (2.6) on the right by B and on the left by B. The resulting

2 It has been noted by the referee that the identities (2.3) and (2.6) are special eases of an identity

given by Spencer and Rivlin [3 (see equation (4.13) on page 55)].
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identity may be reduced, upon application of (2.5), (2.8), (2.9) and identities appearing

in [1], to a matrix identity of the form

(tr A2B2)2(AB + BA) = £ XpH55p . (2.12)
V

(v) We add the two identities obtained by multiplying the identity resulting from

substitution of (2.7) into (2.6) on the right by B2 and on the left by B2. The resulting

identity may be reduced, upon application of (2.5), (2.8), ■ • • and identities appearing

in [1], to a matrix identity of the form

(tr A2B2)2(AB2 + B2A) = E MpHS6j) . (2.13)
V

Interchanging A and B in (2.13) yields

(tr A2B2)2(A2B + BA2) = £ ^H65p . (2.14)
V

(vi) We multiply the identity obtained by substituting (2.4) into (2.3) on the left

by A2B2 and then take the trace of the resulting identity. This yields, upon application

of identities given in [1],

(tr A2B2)3 = ft, + Pi tr A2B2 + p2 (tr A2B2)2 (2.15)

where p0 , • • • , P2 are polynomials in the invariants 7i , • • • , Z9 defined by (1.2).

With the aid of the identities (2.5), (2.8), • • • , (2.15), we readily see that the expres-

sion (1.4) for T(A, B) reduces to the expression for T(A, B) defined by (1.1), (1.2) and

(1.3). We note that in (2.5), (2.8), • • • , (2.14), the ap , ■ ■ ■ , vp are constants and the

H are matrices defined as in (2.1) and (2.2).

3. Irreducibility of (1.1). Let gmn denote the number of linearly independent sym-

metric-tensor-valued isotropic polynomial functions of degree in, n in A, B. Let pmn

denote the number of monomial terms of degree m, n in A, B appearing in the expression

(1.1). We shall see below that pmn = gmn for all m, n. Suppose that there are still redundant

terms of degree m, n in A, B present in the expression (1.1). If we were to eliminate

these, the resulting expression T(A, B) would contain pmn < gmn monomial terms of

degree in, n in A, B. This would mean that not every svmmetric-tensor-valued isotropic

polynomial function of degree m, n in A, B would be expressible in the form T(A, B)

and hence would also not be expressible in the form (1.1). However, we have shown

above that every symmetric-tensor-valued isotropic polynomial function of A, B is

expressible in the form (1.1). We conclude that by showing pmn = gmn for all m and n

we have verified that there are no redundant terms in the expression (1.1). Hence no

further simplification of the expression for T(A, B) is possible. We now proceed to show

that Pmn — gmn •

It may be shown from group-theoretic considerations that the number g„n of linearly

independent symmetric-tensor-valued isotropic polynomial functions of degree m and

n respectively in the symmetric tensors A and B is given by the coefficient of ambn in

the expansion of the function

G(a, b) = (2tr)"1 (e2<e + eiS + 2 + e~" + e~2i°)F(a, 9)F(b, 6)( 1 - cos 6) dO (3.1)
•'0

where
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F(a, 6) = [(1 - ae2i>)( 1 - aei6)( 1 - a)\ 1 - ae-'6)( 1 - ae"2''9)]"1. (3.2)

The integral (3.1) may be converted into a contour integral by setting e" = z and

evaluated by the method of residues. We obtain, after a lengthy computation,

G(a, b) = II(a, b)/K(a, b) (3.3)

where

H(fl, b) = l + a+ fr + a2 + ab -f- b2 a2b -}- ab2 -|- 2a2b2 a3b2 -f- ab3

+ a4b2 + a3b3 + a264 + aAb3 + a3b4 + ab\

K(a, b) = (1 - o)(l - a2)(l - a3)(l - 6)(1 - b2)( 1 - 63)(1 - ab)( 1 - a2b)( 1 - ab2).

(3.4)

The coefficients /t, appearing in (1.1) are polynomials in 7j , • • • , Ig and are expres-

sible as

hi = ••• # (3.5)

where the are constants. We note that

(1 + A + + • • 0(1 + Z2 + /2 + • • 0 ■ ■ ' (1 + Ig + It + • ■ 0 (3.6)

is equal to the sum of all of the monomial terms appearing in the expression (3.5) for

hi . The number of monomial terms of degree m, n in A, B in the expression (3.6) and

hence also in (3.5) is given by the coefficient of ambn in the expression obtained from

(3.6) by replacing , /2 , I3 , Z4 , Z5 , /6 , I7 , Is , Z9 by a, b, a2, ab, b2, a3, ab, ab2, 63

respectively. This yields

(1 + a + a2 + • • 0(1 + b + b2 + ■ • ■) • ■ ■ (1 + b3 + 6" + ■ • ■)

= [(1 - a)(l - 6)(1 - a2)(l - ab)( 1 - b2)( 1 - a3)(l - a26)(l - ab2)( 1 - b3)]'1

= [K(a, b)]"J (3.7)

where we have employed formal expansions such as (1 — o)-1 = 1 + a + a2 + a3 + • • • .

We then see that the number of monomial terms of degree m, n in A, B appearing in

the terms

hj, A>(tr A2B2)I, h2(tr A2B2)2I, h3A, hA(tr A2B2)A, • • ■ (3.8)

is given by the coefficient of ambn in the expansions of

1 27 2 4 7 4 3t,2
1 a b a o a a b

K(a, b) ' K(a, b) ' K(a, b) ' K(a, b) ' K(a, b) ' (3.9)

respectively. From (1.1) and (3.9), we see that the number pmn of monomial terms of

degree m, n in A, B contained in the expression (1.1) for T(A, B) is given by the co-

efficient of ambn in the expansion of G(a, b) defined by (3.3) and (3.4). Since this also

gives the number of linearly independent symmetric-tensor-valued isotropic poly-

nomial functions of degree m, n in A, B, we have verified that pmn = (]mn •
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