Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1984

On Symmetry Detection

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Report Number:
84-476

Atallah, Mikhail J., "On Symmetry Detection" (1984). Department of Computer Science Technical Reports.
Paper 396.
https://docs.lib.purdue.edu/cstech/396

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ON SYMMETRY DETECTION
Mikhail J. Atallah

De nt of Computer Sciences
pmm?urdue Ur;.i?elrsity
West Lafayette, Indiana 47907.

TR-47  3-26-1984

Abstract

A straight line is an axis of symmetry of a planar figure if the figure is invariant to
reflection with respect to that line. The purpose of this note is to describe an O (rlogn)
time algorithm for enumerating all the axes of symmetry of a planar figure which is
made up of (possibly intersecting) sepments, circles, points, ..£tc.

Index Tams: Analysis of algorithms, computational geometry, axis of symmetry, cen-
troid, string pattern matching.



L Introduction

A straight line is an axis of synonetry of a planar figure if the figure is invariant to
reflection with respect to that lipe, For example, in Figure 1.1, line L is an axis of sym-
metry. The problem we consider is relevant to both computational geometry and pat-
tern recognition: Given a planar figure which consists of a collection of n points, seg-
ments, circles, ellipses, ..etc, enumerate all the axes of symmetry of that figure. We
give an O (nlogn) time algorithm for this problem.

The input to the algorithm consists of a description of the planar figure under con-
sideration. This description is a collection of linked lists, each of which contains the
occurrences in the figure of one type of geometric pattcrn (ie. one list contains the
points, another list contains the segments, ..etc). The oontents of each list are not
given in any particular order. The output produced by the algorithm is a (possibly
empty) collection of straight lines each of which is an axis of symmetry of the input
figure. Note that there cannot be more than r axes of symmetry, so that the size of the
output is O(n).

Let S, be the set of axes of symmetry of the subfisure which consists of only-the

points of the input figure. The set S, is analogously defined for segments (we assume
for the time being that the figure is made up only of points and segments). Since any
reflection maps points into points and segments into segments, it follows that the output

of the algorithm is the intersection of the sets S, and S;. This observation implies that
it is sufficient to show that each of S, and S, can be fund in time O (rlog).

The following is an outline of the paper. Section 2 shows that S, can be computed
in time O(nlogn), Section 3 gives an analogous result for S;, Section 4 briefly sketches
how the results can be generalized for figures which include other geometric patterns
(such as circles, ellipses, and others), and Section 5 concludes.

We now briefly introduce some conventions and terminology.

Recall the definition of cemtroid: Given a set of points p,, ... p,, such that with

every p; is associated a weight w;>0, the centroid of this weighted system of points is

the unique point C such that iw,-(_i; =T
i=1




Finally, we should point out that we deliberately refrained from including in our
algorithm various improvements which would not improve its worstcase complexity, but
may improve its performance in practice. We did this to avoid unnecessarily cluttering
the exposition. In the conclusion (Section 5) we briefly sketch some of these possible
practical improvements.

2. Computing S,

Let C be the centroid of the subfipure which consists of only the points of the
input figure, when every such point is given a weight equal to unity. Observe that any
line in S, must pass through C. Note also that a reflection about any line in §, must
map a point whose distance from C is 4 into a point whose distance from C is also d.
This suggests the following approach for computing S,

(i) Partition the points into equivalence classes Ey, ... ,E; such that all the points in

a class E; are at the same distance (call it d,) from C,

(ii) For each class E;, find the set S, ; of lines passing through C and leaving E;

invariant to reflection about them,
(iii) Set S, equal to the intersection of the S, ;s.

It is clear that Steps (i) and (iii) can be done in time O(nlogn). To show that Step
(ii) can be done in time O(rlogn), we need only show that every S, ; can be computed
in time O({n;logn;), where m;=1E;|. The algorithm for doing this follows:
Algorithm for computing S;,
Step I: Obtain from E; a string o over the (infinite) alphabet consisting of the real
numbers and the special symbol #, as follows. Start with an empty o and imagine an
axis W revolving counterclockwise about C, starting from a position where it also passes
through some point in E;. As W revolves by 360 degrees about C, we create o as fol-
lows. Whenever W encounters a point in E; we do o - o##, and whenever W sweeps
the angle 9 separating two such encounters we do o « of0. For example, the set E;
showir{: on Figure 2.1 would result in




o = #AH OFH aaH# A oo

Note that o always has even length.

Why we create ¢ in this way becomes clear once the following crucial observation
is made: There is a one to one correspondence between the lines in 5, ; and the crcu-
lar rotations which turn o into a patindrome (a palindrome is a string which is equal to
its reverse). For example, rotating the string o corresponding to Figure 2.1 by three
positions to the left tumns it into the palindrome

045 aoAA Yy aa#FF 0
and this corresponds to a line L in S, ; (see Figure 2.1). This observation implies that

computing S, ; reduces to enumerating all the rotations which tumn o into a palindrome.
This is what the next Step does.
Step 2: Compute S, ; by enumerating all rotations which tum o into a palindrome.
End of algorithm

Correctness of the algorithm follows from the comment following Step 1. Step 1
can clearly be implemented in time O (mlogy) by sorting the points in E; according to

the order in which~Wencounters-them-when-revolving-about-C-—We-now-show-that

Step 2 can be implemented to run in O(%) time. In what follows, Ix! denotes the
| length of a string x, and x® denotes its reverse.

Given a string x=dj ... Gz, rotating x by i positions to the left tums it into a
palindrome if and only if x=w®ww?® where lu|=i. Therefore, enumerating all the
rotations which turn x into a palindrome is equivalent to enumerating all j such that
each of the two strings a; ... @y; and @341 - A2y is 2 palindrome. This last problem is
equivalent to finding all occurrences of x at even positions in y=x"x®, which can be
done in time O(!x |) using well-known techniques [AHU]. This shows that Step 2 can
be done in time O(r;), and therefore computing S, ; can be done in time O (n;logr;).
As previously mentioned, this irplies that §, can be computed in time O(nlogn).

The next Section considers the somewhat trickier problem of computing R; in time
O (nlogn).



3. Computing S,

Let ¢ be the centroid of the set of midpoints of the segments when every such
midpoint is given a weight equal to the length of the corresponding segment. Observe
that any line in S, must pass through C.

If C#C, where C is as defined in Section 2, then there is no need to compute S,
because in this case the problem is practically solved: The only possible axis of synmetry
of the planar figure is the line joining C to C and therefore we need only check
whether that line is indeed an axis of symmetry of the input figure. However, in the
WOrst case, ¢ will coincide with C. Therefore, for the rest of this section, we assume
that ¢ coincides with C and therefore there is a need to compute 5.

Let the triple of a sepment of the figure be (!,d,,d5), d,=d,, where ! is the
length of the sepment and where d, and 4, are the distances between C and the
segment’s two endpoints. Observe that a reflection about any line in S, maps a segment
whose triple is (¢ ,;:I 1d7) into a segment whose triple is also ({,d,d;). This suggests the
following approach for computing S, :

(1)-Partition-the segments-into-equivalence classes Fy, ... ,F,such that all the seg-

ments in a class F; have the same triple,

(ii) For each class F;, find the set S, ; of lires passing through C and leaving F;

invariant to reflection about them,

(iii) Set S; equal to the intersection of the §; ;’s.

It is clear that Steps (i) and (iii) can be done in time O(nlogn). To show that Step
(ii) can also be done in time O(nlogr), we need only show that every S, ; can be com-
puted in time O{n;logn;), where r;=1F;i. The algorithm for doing this follows:
Algorithm for computing S,

Let the triple of the segments in F; be ({ ,d,d5). We distinguish three cases:
Case I: d#d, and I >d yd, (see Figure 3.1).

If 1F;! is an odd number then set S. ; - J and Stop, otherwise compute S, ; in

the following way.



First, obtain from F; a string o over the (infinjte) alphabet consisting of the real
numbers and the special symbols # and &. Before describing how o is created, we
introduce some terminology. Let the represemtative of a segment in F; be its endpoint
whose distance to C is d,. In Figure 3.1, the represenlatives are the six endpoints on
the smaller circle. If x is a string, we use X to denote the string obtained by replacing
in x every & symbol by #, and every # symbol by & (for example, #&# =d#&). A
string x is a pseudo-palindrome if x=t". For example, ds#&# is a pseudo-palindrome.

Start with an empty o and imagine an axis W revolving counterclockwise about C,
starting from a position where it also passes through the representative of some segment
in F;. As W revolves by 360 degrees about C, we create ¢ as follows. Whenever W

encounters a representative of a segment in F;, we do
(i) o - o# if the segment is to the left of W at the time of the encounter,
(i) ¢ «~ od if the segment is to the right of W at the time of the encounter.

Whenever W sweeps the angle 8 separating two such encounters we do o - off.
For example, the situation depicted in Figure 3.1 would result in

o = &on# PRATYA SOH TT# BB

Note that the resulting o always has even length, since |F;| is even.

The crucial observation to be made here is that there is a one to one correspon-
dence between the lines in S, ; and the circular rotations which tumn o into a pseudo-
- palindrome. For example, rotating the string o corresponding to Figure 3.1 by two posi-
tions to the left turns it into the pseudo-palindrome |

o PRk vy& 004 yy# PPda,
and this corresponds to a line L in S, ; (see Figure 3.1). This observation implies that
computing S, ; reduces to enumerating all the rotations which turn o into a pseudo-
palindrome, which is equivalent to finding all occurences of o at even positions in
il
Case Il: d,=d, (see Figure 32).

Let FP; denote the set of midpoints of the segments in F;. Now, observe that in
this case S, ; is precisely the set of lines passing through C' and leaving FP; invariant to




reflection about them. Therefore the techniques of Section 2 can be used for comput-
ing S; ;-
Case [II: d,#d,and | =d,d, (see Figure 33).

The same remarks as in Case II hold.
End of algorithm

Correctness of Cases 11 and III is obvious, while correctness of Case I follows from
the observation following it. That Cases II and X can be done in time O (rlogr) was
shown in Section 2. Therefore we need only show that Case I can also be done in time
" O(mlogr;). Creating o in Case I can clearly be done in time O(m;logn). Once we have
o we can find S ; in time O(r;), because finding all occurrences of o at even positions
in 8*&® can be done in time O ().

This shows that every S;; can be computed in time O(mlogr). As previously
mentioned, this implies that S, can be computed in time O(nlogn).

4. Other Geometric Pattexns

In this section we briefly sketch how the techniques of the last two sections can be
generalized to figures that include other geometric patterns in addition to points ard
segments.

If the input figure includes circles, then we replace every circle by its center and
give that center a weight equal to the radius of the circle. If the centroid of the
weighted set of centers does not coincide with C then we need only check whether the
line joining it to C is an axis of symmetry of the figure. Otherwise (i.e. if the centroid
coincides with C) we must compute the set S, of lines which pass through C and which
leave the set of weighted centers invariant fo reflection about them. The alporithm of
Section 2 can be modified to work for weighted sets of points, and therefore it can be
used on the weighted set of centers in order to compute S. .in time O(nlogn) (the
details of these modifications are left to the reader).

If the input figure includes (non-degenerate) ellipses, then, as in the case of cir-



cles, the problem can be shown to boil down to computing the set S, of lines passing
through C and which are axes of symmetry of the subfigure which consists of only the
ellipses. S, is computed as follows. First, the ellipses are partitioned into sets H 4, ...
H; where all the ellipses in a set H; have same major avis length and same rninor axis
length. Let m;=IH;|. As in Section 3, the problem becomes that of computing, in time
O{n;logn;), the set S, ; of lines passing through C and leaving H; invariant to refiection
about them. If we replace every ellipse in H; by a segment coinciding with its major
axis, then we can use the algorithm of Section 3 on these segments to compute S, ; in
time O(m;logn;).

Similar techniques can be used when the input figure includes other geometric pat-
temns as well (e.g. portions of circles, or of ellipses, or of parabolas ..etc). We omit the

details of these since they involve no new ideas.

5. Conclusion

We gave an O(nlogn) time algorithm for computing the (possibly empty) set of

axes of symmetry-of-a-planar-figure-made-up-of-a - {possibly intersecting) segments; cir-
cles, ellipses, points ...etc.

As previously stated, there are improvements to the algorithm which, although they
do not change its worst-case time complexity, may in practice improve its speed. All
these improvements are attempts to find a point distinct from C through which any axis
of symmetry of the input figure must pass. If we succeed in finding such a point € then
we need only check whether the unique line throuph C and € is an axis of symmetry.
Such verification still takes time O (rzlogr), but the constant factor hiding behind the ’0°
would then be smaller than that of the algorithms of Sections 2, 3 and 4. We give below
a few examples ((i) to (iv)) of possible attempts at finding such a point ¢. The reader
should convince himself that, for each of (i)}{(iv) below, any axis of symmetry of the
input fipure must pass through ¢:

(i) C is the centroid of the system of points consisting of the midpoints of the segments
of the input figute when every such midpoint has a weight equal to unity.



(ii) C is the centroid of the weighted system of points consisting of the centers of the
circles of the input figure when every such center has a weight equal to unity.

(iii) Same as (i) with the weight equal to the square of the segment length.

(iv) Same as (ii) with the weight equal to the square of the radius.

The reader can probably think of many more additional examples of such points C
through which any axis of symmetry of the figure must pass.

Of course, in the worst case, it is possible that none of examples (i) to (iv) above
succeeds in producing a point ¢ which is distinct from C, in which case we would have
to use the alporithms of Sections 2,3 and 4. One such ™worst case” is when the input
figure is made up of only one type of geometric pattern, e.g. only points. However,
when the figure is made up of more than one geometric pattern, then it is quite likely
that one of the points ¢ mentioned above will be distinct from C.

Acknowledgement: The author sincerely thanks S.R. Kosaraju for many helpful com-

ments.

References

[AHU] AV. Aho, JE. Hopcroft and JD. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, Mass.



______________________________ -——-1

Figure 1.1: Line L is an axis of symmetry.

Figure 2.1: The points of E,are on a circle centered at C. W rotates counterclockwise
about C.




Figure 3.I: Dlustrating Case 1. The endpoints of the segments in E lie on two circles
centered at C. W rotates counterclockwise about C.

@ _

Figure 32: INustrating Case II, when the two endpoints of segments in E are equidis-

tant from C.

Figure 33: Nustrating Case III, when 1=d,- dt.




	On Symmetry Detection
	Report Number:
	

	tmp.1307986960.pdf.KJTvf

