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ON SYMMErRY DEIECTION

Mikhail J. AtaIlah

De~ntofCbmpukrScienres
Purdue University

West Lafayette, Indian.i 1fl'XJl.

A straight line is an axis if symmetry of a planar figure if the figure is invariant to

reDection with respecr ro tha! line. The pwpose of this nok is to dcsctibe an D(nlogn)

rime algorithm for enwneraring all the axes of S)1DlIICtry of a planar figure wbicb is

____----'rnad<_op_oHpossibl~interse!"!i!lg) se~nts"~cin:l",·"",,"e ..s,'-1po,.,..in,,,ts,.~•• .e,,te"""-. _

lode:< Tenm: Analysis of algorithrm, computational geometry, axis of S)1DlIICtry, ren

troid, string pallern matching.
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L lDtroduclioo

A straiglll line is an ads if syrmneJry of a planar figt:re if the figure is invarianl 10

reOeetioD with respect to tha! line. For example, in Figure 1.1, line L is an axis of sym

metry. The ptoblem we consider is relevant 10 both co",,",tationa! geometry and pat_

tern recognition: Given a planar figure which consists of a collection of n p;>ints. seg

ments. ci.rcles, ellipses, ...etc, enumerate all the axes of symmetry of that figure. We

/!i.ve an 0 (n logn) time algorithm for this ptoblem.

The input to the algorithm consists of a description of the planar figure under con

sideration. This description is a collection of linked lists. each of which contains the

occurrences in the figure of one type of geometric pattern (i.e. one list contains the

points, another list contains the segments, ...etc). The contents of each list are nol

/!i.ven in any particular order. The output ptoduoed by the algorithm is a (poooibly

empty) collection of straiglll lines each of wbiob is an axis of _try of the input

figure. Note that there cannot be IOOre than n axes of synmetry. so that the lii2e of the

output is 0 (n).

_______LeLl"p_be_the-'OLoLaxes_oL_try-oLthe subfigllte_wbiob_consists_of_only-lltlee _

puints of the input figure. The sel S, is analogously defined for segments (we .... 'me

for the time being that the figure is made up only of points and segments). Sinoe any

reflection maps p:>ints into points and segments into ~egments. it follows that the output

of the algorithm is the intersection of the sets Sp and Si' This observation implies that

it is sufficienl to show that each of Sp ..,d S, can be found in time o(nlogn).

The following is an outline of the paper. Section 2 shows that Sp can be computed

in time 0 (n logn), Section 3 /!i.ves an analogous result for S,. Section 4 brieOy skelobes

how the lesults can be generalized for figures wbiob include other geometric patterns

(such as circles: ellipses, and others), and Section 5 concludes.

We now briefly introduce some conventions and terminology.

Recall the definition of centroid: Given a set of puints PI• ••• J'm sucll that with

every Pi is as;ociated a weight Wi >0, the centroid of this weighted system of points is
m __ .,

the unique point C suob that ~w,ep, ~ u.
i=l
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Fmally, we should point oul thai we deliberately refrnined from including in our

algorithm. various improvements which would nol i.mprow its wom-case romplexity, but

may improve its perlormonce in practice. We did this to amid unnecessarily cluttering

the exposition. In the conclusion (Section 5) we brielly sketclt some of these possible

practical improvements.

2. Computing s"
Let C be the centroid of the subfigure which rorums of only the points of the

input figure, when every such point is pven a weight equal to unity. O:6erve that any

line in Sp must I""" through C. Note also thai a reftection about any line in Sp must

map a poinl wbose distance from C is d into a point wbose distance from C is also d.

This sur,geslS the following approach for compating Sp:

(i) Partition the points into equivalence classes E I> ••• ,E. sucb thai all the points in

a class Ej are at the sauK:: distance (call it d~) from C ,

(Ii) For eacb c1= Ei , find the set Sp) of lines I"""ing through C and leaving Ei

invariant to reflection about them,

(iii) Set Sp equal to the intersection of the Sp.;'s.

It is clear thai Step' (i) and (Iii) can be done in time O(nlogn). To show thai Step

(ii) can be done in time 0 (n logn), we need only show thai every Sp) can be compated

in time O(ni1ogn;), wbere 11;= IE, I. The algorithm for doing this follows:

Step I: Obtain from E, a string a over the (infinite) a!pbabet consisting of the rea!

numbers and the specia! symbol #, as follo..... Start v.ith an empty a and imagine an

axis W revolving counterclockwise about C, starting from a po9.tion where it also pmes

through. some point in Ej • As W revolves by 360 degrees about C, we create a as fol

lows. Whenever W encounters a point in Ej we do a - a##, and whenever W sweep:;

the angle e separating two such enoounters we do a - 000. For example, the set Ej

-'i.'
shown on Figure 21 would result in
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a ~ ##OO##aa##yy##aa .

Note thai a always bas even length.

Why we create a in this way becomes clear once the following crucial obseIV31ion

is made: There is a one to one oorrespondence between the lines in SpJ and the circu

lar rotalions which tum a into a palindrome (a palindrome is a string which is equal to

its reve",,). For example, rotating the string a corresponding to FIgure 21 by three

p:>:sitions to the left turns it into the palindrome

6##aa##yy##aa##O

and this correSJX>nds to a line L in Sp,i (see Figure 21). 1bis observation implies that

computi."lg Sp,i reduces to enumerating all the rotations which tum a into a palindrome.

This is what the next Step does.

Step 2: Compute Sp,i by enumerating all rotations which tum a into a palindrmre.

Correctne... of the algorithm follows from the comment following Step I. Step 1

can clearly be implemented in time 0(,,;10S"i) by sorting the points in E, according to

------tlie oriJecin-which-W-encounters"1hem>Vhen-revolving-abouI-G-c-We-now-show-thal------

Step 2 can be implemented to run in 0(,,;) time. In what follows, 1% I denotes the

length of a string x, and xR denotes its reveIse.

Given a string x =a 1 ••. a2m. rotating.% by i positions to the . left turns it into a

palindrome if and only if x=uuRwwR where lu l=i. Therefore, enumerating all the

rotations which turn x into a palindrome is equivalent to enumerating all j such that

each of the two strings at ... a2j and D2j+1 .•• D1m is a palindrome. lbis last problem is

equivalent to finding all occurrences of x at even positions in y~RxRJ, which can be

done in time 0(1. I) using well-known techniques [AHU]. This shows thai Step 2 can

be done in time 0(,,;). and therefore computing SpJ can be done in time 0(,,;10S"i).

As previously mentioned. this implies thai Sp can be computed in time O(nlogn).

The next Section considers the somewha1: trickier problem of computing Rs in time

O(nlogn).
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3. OxqIutiogs,

Let C be the centroid of the set of midpoints of the segments when every such

midpoint is given a weight equal 10 the length of the corresponding segment. <lJserve

that any line in S, must pass through {; .

If C=Fe , where C is ~ defined in Section 2, then there is no need to colJllX1te S:

because in this case the problem is practically solved: The only possible axis of symmetIy

of the planar figure is the line joining C to {; and therefore we need only check

whether that line is indeed an axis of symmetry of the input figure. However, in the

worst case, C will coincide with C. Therefore, for the rest of this section, we assume

that Ccoincides with C and therefore there is a need to compute Ss-

Let the triple of a segmenl of the figure be (I,d ,,diJ, d ,"'<12, whele 1 is the

length of the segmenl and where d, and d 2 are the distmces between C and the

se~nt's two endpo~ts. (b;erve tb.a1: a reflection about any line in 8, maps a segment

whose triple is (I,d "d iJ into a segmenl whose triple is also (I ,d"d iJ. This suggests the

following approach for computing S,:

-------(i)-P"l1ition-the-segments-into-equivalence-cl.....-F-,p.~,F.-such-that-all-th"-""g.,-----

ments in a class Fj have the same triple.

(ti) For eadI ern.. Fi , find the sel S, J of lines passing through C and leaving F;

invariant to reflection about them,

(iii) Set Ss equal to the intersection of the S:s,;'s.

II is clear that Step; (i) and (Iii) can be done in time 0 (n logn). To show that Step

(ti) can also be done in time 0 (n logn), we need only show that every S, J can be com

puted in time O(n;logn,), where n;=IF/1. The algorithm for doing this follows:

Algorithm foc computing 8.J

LeI the triple of the segments in F/ be (I,d "d iJ. We distinguish three cases:

Case I: d 1¢d2 and 1>d:z-d, (see Figure 3.1).

If IFj I is an odd nwnber then set Ss,J - 0' and Stop, otherwise compute Ss,J in

the following way.
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FlISl, obtain from F; a string " over the (mlinite) a!pb:lbet consisting of the rea!

numbers and the special symbols # and &:. Before describing how a is created. we

introduce some tenninology. Let the representalive of a segment in F1 be its endpoint

whose distance to C is d I" In Figure 3.1, the represenlatives are the six endpoints on

the smaller circle. If x is a string, we use x to denote the string obtained by replacing

in x every <1< symbol by #, and every # symbol by <1< (for example,#&#~). A

string x is a pseudo-palindrome if x=x-R. For example, &#&:# is a pseudo-palindrome.

Start with an empty " and imagine an axis W revolving rowtterclockwil:e about C ,

starting from a position where it also pmes through the represe,.tative of some segment

in Fjo As W re'YOlves by 300 degrees about C, we create a as follows. Whenever W

encounters a representative of a segment in F,. we do

(i) a - crt/- if the segment is to the left of W at the time of the encounter,

(n) 0'''' a&: if the segment is to the right of W at the time of the encounter.

Whenever W sweep;, the angle 8 separating two such encounters we do a ... 000.

For ellllI11ple, the situation depicted in Figure 3.1 would result in

-------------"--=-<1<aa#llll&yy&lI8#n#PP'-c·------------

Note that the resulting a always has even length. Wice IFj I is even.

The crucial observation to be made here is that there is a one to one correspon

dence between the lines in Ss.,i and the circular rotations which tum (J into a pseudo

palindrcrne. For ellllI11ple, rotating the string" corresponding to Figure 3.1 by two posi

tions to the left turns it into the pseudo-palindrorm:

all' pp<!<yy<1<OO#Wpp&a,
and this corresp::mds to a line L in Ss.,i (see Figure 3.1). 1bis observation implies that

comp,lti.ng Ss.,i reduces to enumerating all the rotations which tum (J into a pseudo

palindrorm:, which is equivalent to finding all oa::urences of (J at even positions i"\'l.

,hi'.

Care II: d'~2 (see Figure 32).

Let FPj denote the set of midpoints of the segments in Fj _ Now, observe that in

this case Ss.,i is precisely the set of lines~ through C and leaving FPj invariant to
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re6ection about them.. Therefore the techniques of Section 2 can be used for oomput

ingS.r j"

Case Ill: d 1*'1 2 and I =d z-<l1 (see Figure 33).

The same remarks as in Case n hold.

&d (J{ aIgoritbm

Correctness of Cases II and ill is obvious. while correctness of Case I follows from

the observation following it. That Cases n and ill can be done in time D(,,;logn;) was

shown in Section 2. Therefore we need only show thai: Case I can also be done in time

D(,,;!ogn;). Creating a in Case I can clearly be done in time D(,,;!ogn;). Once we have

a we can find S" in time D(,,;), because finding all occurrences of a aI even positions

in ,/'if can be done in time D(,,;).

This shows thai every S" can be oomputed in time D(,,;!ogn;). As previously

mentioned, this implies that S.r can be romputed in time O(nlogn).

_____4._CJtbaoGelidric-l'allfrns _

In this section we briefly sketch how the techniques of the last two sections can be

generalized to figures that include other geometric patterns in addition to points and

segments.

H the input figure includes circles, then we replace every circle by its center and

give that center a weight equal to the radius of the circle. If the centroid of the

weighted set of centers does not coincide with C then we need only check whether the

line joining it to C is an axis of symmetry of the figure. OtherNise (i.e. if the centroid

coincides with C) we must colfll"Jte the set Sc of lines which pass througll C and which

leave the set of weighted centers invariant to reflection about them. The algorithm. of

Section 2 can be modified to 'WOrk for weighted sets of points, and therefore it can be

used on the weighted set of centers in order to compute Sr; in time O(nlogn) (the

details of these modifications are left to the reader).

H the input figure includes (non-degeneme) ellipses. then. as in the case of ci.r-
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des, the problem can be shown to boil down to oomputing the set S~ of lines~

through C and which are axes of symmetry of the subfigure which consists of only the

ellipses. St is computed as follows. Fust, the ellipses are partitioned into sets H b ...

Pt where all the ellipses in a set Hi have same major aris length and same minor axis

length. Let 1Jj = IHi I. As in Section 3, the problem becomes that of computing, in~

O(1ljlow;-), the set Se,i of lines passing through C and leaving Hi invariant to reflection

about them. If we replace every ellip;e in Hi by a segment coinciding with its major

axis. then we can use the algorithm of Section 3 on these segments to compute Sf:,i in

time O(n,logn,).

Similar techniques can be used when the input figure includes other geometric pat_

terns as well (e.g. portions of circles, or of ellipses, or of parabolas ...etc). We omit the

details of these since they inrolve no new ideas.

5. Cooclusioo

We g<M: an 0 (n logn) time algorithm for computing the (p=ibly empty) set of

-----axes-of-.ymmetry·of-a·planar-figure-made-up-of-a-n-(p=ibIy-interseeting)-segments;-cir~-------

des. ellipses, points ...etc.

As previously stated, there are improveIlEnts to the algorithm which, although they

do not change its worst-case time complexity, may in practice improve its speed. All

these improvements are attempts to find a point distinct from C through which any axis

of symmetry of the input figure must pass. If we succeed in finding such a point C then

we need only check whether the unique line through C and C is an axis of symmetry.

Such verification sti11 takes time 0 (n logn), but the constant factor biding bebind the '0'

would then be smaller than that of the algoritlum of Sections 2, 3 and 4. We give below

a few examples «i) to (iv)) of possible attempts at finding such a point C. The reader

should convince bim;elf that, for each of (i}{iv) below, any axis of symmetry of the

input figure must poss through C :

(i) C is the centroid of the system of points consisting of the midpoints of the segments

of the input figure when every such midpoint has a weight equal to unity.
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(ii) C is the centroid of the weighted system of points consisting of the center.; of the

circles of the inpol figure when every such center has a weight equal to unity.

(iii) Same as (i) with the weight equal to the square of the sell""'ntlength.

(iv) Same as (ii) with the weight equal to the square of the radius.

The reader can probably think of many 100£0 additional examples of such points C

through which any axis of symmetry of the figure must P"S'-

Of coun;e, in the worst case, it is pc:Bible that none of examp1es (i) to (iv) abJve

succeeds in producing a point C which is distinct from C, in which case we would have

to use the algorithm; of Sections 2,3 and 4. One such "woIlil case" is when the inpot

figure is made up of only one type of georretric pattern, e.g. only points. However,

when the figure is made up of more than one geometric pattern, then it is quite likely

that one of the points C mentioned above will be distinct from C .

Admowledganmt: The author sincerely thanks S.R Kosaraju for many 6eljJfiil com-

ments.

[AHU] A.V. Abo, I.E. Hopcroft and ID. Ullman, The [)es;gn and Analyris if Conputer Algo

rithms, Addison-Wesley, Reading, Mass.
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Figure 1.1: Line L is an axis of symmetry.
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Figure 2.1:
about C.

The p:>ints of E. are on a circle centered at C. W rotates counterclockwise
L
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Figure 3.1: Dlustrating Cmie I. The endpoints of the segments in E lie on two circles
centered at C. W rotates counterclockwise about C. ..

Figure 32: lliustrating Case II. when the two endpoints of segments in ~ are equidis
tant from C.

Figure 33: illustrating Case m, when l=d..- d•.
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