

Ann. Funct. Anal. 7 (2016), no. 1, 17–23 http://dx.doi.org/10.1215/20088752-3158195 ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

ON SYMMETRY OF THE (STRONG) BIRKHOFF–JAMES ORTHOGONALITY IN HILBERT C*-MODULES

LJILJANA ARAMBAŠIĆ^1 and RAJNA RAJIĆ^{2*}

Dedicated to Professor Anthony To-Ming Lau

Communicated by J. Chmieliński

ABSTRACT. In this note, we prove that the Birkhoff–James orthogonality, as well as the strong Birkhoff–James orthogonality, is a symmetric relation in a full Hilbert \mathcal{A} -module V if and only if at least one of the underlying C^* -algebras \mathcal{A} or $\mathbf{K}(V)$ is isomorphic to \mathbb{C} .

1. INTRODUCTION AND PRELIMINARIES

Let V be a Hilbert C^* -module over a C^* -algebra \mathcal{A} , and let $x, y \in V$. The usual way to define the orthogonality in V is by means of the C^* -valued inner product: we say that x is orthogonal to y, and we write $x \perp y$, if $\langle x, y \rangle = 0$. Another concept of orthogonality in a Hilbert C^* -module is the Birkhoff–James orthogonality (see [5], [7]). This concept makes sense in every normed linear space X and, in the case when X is an inner product space, it is equivalent to the usual orthogonality given by the inner product. Recall that, for two elements x and y of a normed linear space X, we say that x is orthogonal to y in the Birkhoff–James sense; in short, $x \perp_B y$, if

$$||x|| \le ||x + \lambda y||, \quad \forall \lambda \in \mathbb{C}.$$

Copyright 2016 by the Tusi Mathematical Research Group.

Received Dec. 2, 2014; Accepted Feb. 16, 2015.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L08; Secondary 46L05, 46B20.

Keywords. Hilbert C^* -modules, inner product orthogonality, Birkhoff–James orthogonality, strong Birkhoff–James orthogonality, symmetry.

Having in mind that in Hilbert C^* -modules the role of scalars is played by the elements of the underlying C^* -algebra, the authors introduced a new concept of orthogonality in [2]; for $x, y \in V$, we say that x is strongly Birkhoff-James orthogonal to y; in short, $x \perp_B^s y$, if

$$||x|| \le ||x + ya||, \quad \forall a \in \mathcal{A}.$$

It was shown in [2] that the strong Birkhoff–James orthogonality is stronger than the Birkhoff–James orthogonality, and weaker than the orthogonality with respect to the inner product, that is, $\langle x, y \rangle = 0 \Rightarrow x \perp_B^s y \Rightarrow x \perp_B y$, while the converses do not hold in general. If V is a full Hilbert \mathcal{A} -module, then the only case when the orthogonalities \perp_B^s and \perp_B coincide is when \mathcal{A} is isomorphic to \mathbb{C} (see [3, Theorem 3.5]), while orthogonalities \perp_B^s and \perp coincide only when \mathcal{A} or $\mathbf{K}(V)$ is isomorphic to \mathbb{C} (see [3, Theorems 4.7, 4.8]).

Obviously, the orthogonality relation \perp is nondegenerate $(x \perp x \text{ if and only if } x = 0)$; homogenous (if $x \perp y$, then $\lambda x \perp \mu y$, $\forall \lambda, \mu \in \mathbb{C}$); symmetric $(x \perp y \text{ if and only if } y \perp x)$; right-additive (if $x \perp y_1$ and $x \perp y_2$, then $x \perp (y_1 + y_2)$); and left-additive (if $x_1 \perp y$ and $x_2 \perp y$, then $(x_1 + x_2) \perp y$).

In general, the orthogonality relations \perp_B and \perp_B^s are nondegenerate and homogenous, but neither symmetric nor additive (see [2, Remark 2.7(b)] for \perp_B^s ; the same examples apply for \perp_B because of [3, Proposition 3.1]). In this note, we describe the class of full Hilbert C^* -modules in which the (strong) Birkhoff–James orthogonality is symmetric.

Let us also mention that there are numerous papers about orthogonalities in C^* -algebras and Hilbert C^* -modules, among which considerable attention has been paid to orthogonality preserver problems (see, e.g., [6], [9]).

Before stating our results, let us recall some basic facts about C^* -algebras and Hilbert C^* -modules and introduce our notation.

A C^* -algebra \mathcal{A} is a Banach *-algebra with the norm satisfying the C^* -condition $||a^*a|| = ||a||^2$. A positive element of a C^* -algebra \mathcal{A} is a self-adjoint element whose spectrum is contained in $[0, \infty)$. If $a \in \mathcal{A}$ is positive, then we write $a \geq 0$. A partial order may be introduced on the set of self-adjoint elements of a C^* -algebra \mathcal{A} : if a and b are self-adjoint elements of \mathcal{A} such that $a - b \geq 0$, then we write $a \geq b$ or $b \leq a$. If $a \geq 0$, then there exists a unique positive $b \in \mathcal{A}$ such that $a = b^2$; such an element b, denoted by $a^{\frac{1}{2}}$, is called the *positive square root* of a. An element $p \in \mathcal{A}$ is called a *projection* if $p = p^* = p^2$. A projection p is minimal if there is not a nonzero projection $q \in \mathcal{A}$, $q \neq p$, such that $q \leq p$. A projection $p \in \mathcal{A}$ for which $p\mathcal{A}p = \mathbb{C}p$ is minimal, but the converse does not hold in general.

A linear functional φ of \mathcal{A} is *positive* if $\varphi(a) \ge 0$ for every positive element $a \in \mathcal{A}$. A state is a positive linear functional whose norm is equal to one.

A representation of \mathcal{A} in a complex Hilbert space H is a *-homomorphism of \mathcal{A} into the C^* -algebra $\mathbf{B}(H)$ of all bounded linear operators acting on H. Any C^* -algebra has a faithful (i.e., injective) representation.

A (right) Hilbert C^{*}-module V over a C^{*}-algebra \mathcal{A} (or a (right) Hilbert \mathcal{A} -module) is a linear space which is a right \mathcal{A} -module equipped with an \mathcal{A} -valued inner-product $\langle \cdot, \cdot \rangle : V \times V \to \mathcal{A}$ that is sesquilinear, positive definite, and respects the module action; that is,

- (1) $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$ for $x, y, z \in V, \alpha, \beta \in \mathbb{C}$,
- (2) $\langle x, ya \rangle = \langle x, y \rangle a$ for $x, y \in V, a \in \mathcal{A}$,
- (3) $\langle x, y \rangle^* = \langle y, x \rangle$ for $x, y \in V$,
- (4) $\langle x, x \rangle \ge 0$ for $x \in V$; if $\langle x, x \rangle = 0$, then x = 0,

and such that V is complete with respect to the norm defined by $||x|| = ||\langle x, x\rangle||^{\frac{1}{2}}$, $x \in V$. By $\langle V, V \rangle$ we denote the closure of the span of $\{\langle x, y \rangle : x, y \in V\}$. We say that a Hilbert \mathcal{A} -module V is full if $\langle V, V \rangle = \mathcal{A}$.

Every Hilbert space is a Hilbert \mathbb{C} -module. Also, every C^* -algebra \mathcal{A} can be regarded as a Hilbert C^* -module over itself with the inner product $\langle a, b \rangle := a^*b$, and the corresponding norm is just the norm on \mathcal{A} because of the C^* -condition.

In a Hilbert \mathcal{A} -module V, we have the following version of the Cauchy–Schwarz inequality:

$$\left|\varphi\big(\langle x, y\rangle\big)\right|^2 \le \varphi\big(\langle x, x\rangle\big)\varphi\big(\langle y, y\rangle\big), \quad \forall x, y \in V,$$

where φ is a positive linear functional of \mathcal{A} .

A mapping $T: V \to V$ on a Hilbert \mathcal{A} -module V is called *adjointable* if there exists a mapping $T^*: V \to V$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in V$. Every adjointable operator T is a bounded and \mathcal{A} -linear mapping. The set $\mathbf{B}(V)$ of all adjointable mappings acting on V is a C^* -algebra.

For every $x, y \in V$ we define $\theta_{x,y} : V \to V$ by $\theta_{x,y}(z) = x \langle y, z \rangle$. It is easy to see that all $\theta_{x,y}$ are adjointable and that $\theta^*_{x,y} = \theta_{y,x}$. By $\mathbf{K}(V)$ we denote the C^* -algebra spanned by $\{\theta_{x,y} : x, y \in V\}$. Every right Hilbert \mathcal{A} -module V may be regarded as a left Hilbert $\mathbf{K}(V)$ -module with the inner product $[x, y] := \theta_{x,y}$ for $x, y \in V$. Thus it holds that $\|[x, x]\| = \|\theta_{x,x}\| = \|x\|^2$ for all $x \in V$. For details about C^* -algebras and Hilbert C^* -modules we refer the reader to [8] and [10].

2. Results

Let us first state some known results from [1], [2], [3], and [4] that we shall use in our proofs. (Observe that in [2], instead of the symbols \perp_B^s and \perp_B we used \perp_* and \perp , respectively.)

Lemma 2.1. Let V be a Hilbert A-module. Then the following statements hold for every $x, y \in V$:

- (1) $x \perp_B y$ if and only if there is a state φ of \mathcal{A} such that $\varphi(\langle x, x \rangle) = ||x||^2$ and $\varphi(\langle x, y \rangle) = 0$;
- (2) $x \perp_B^s y$ if and only if $x \perp_B ya$ for all $a \in \mathcal{A}$, that is, if and only if $x \perp_B^s ya$ for all $a \in \mathcal{A}$;
- (3) $x \perp_B^s y$ if and only if $x \perp_B y \langle y, x \rangle$;
- (4) $x \perp_B^s y$ if and only if there is a state φ of \mathcal{A} such that $\varphi(\langle x, x \rangle) = ||x||^2$ and $\varphi(\langle x, y \rangle \langle y, x \rangle) = 0$;
- (5) $x \perp_B y$ if and only if $\langle x, x \rangle \perp_B \langle x, y \rangle$ if and only if $\langle x, x \rangle \perp_B \langle y, x \rangle$;
- (6) $x \perp_B^s y$ if and only if $\langle x, x \rangle \perp_B^s \langle x, y \rangle$;
- (7) if $\langle x, y \rangle \ge 0$ then $x \perp_B y \Leftrightarrow x \perp_B^s y$;
- (8) $x \perp_B^s (||x||^2 x x \langle x, x \rangle).$

In the first result we obtain a necessary condition on an element $x \in V$ which has the symmetry property. **Theorem 2.2.** Let V be a Hilbert A-module, and let $x \in V \setminus \{0\}$ be such that one of the following conditions holds:

- (a) for every $y \in V$ such that $x \perp_B^s y$, it holds that $y \perp_B^s x$;
- (b) for every $y \in V$ such that $x \perp_B y$, it holds that $y \perp_B x$.

Then $\langle x, x \rangle$ is a scalar multiple of a minimal projection in \mathcal{A} .

Proof. Without loss of generality we may assume that ||x|| = 1.

Suppose that (a) holds. By Lemma 2.1(8), for every $x \in V$, it holds that $x \perp_B^s (x - x\langle x, x \rangle)$, and, by Lemma 2.1(2), $x \perp_B^s (x\langle x, x \rangle - x\langle x, x \rangle^2)$; that is, $x \perp_B^s x(\langle x, x \rangle - \langle x, x \rangle^2)$. By symmetry, $x(\langle x, x \rangle - \langle x, x \rangle^2) \perp_B^s x$, and again by Lemma 2.1(2), $x(\langle x, x \rangle - \langle x, x \rangle^2) \perp_B^s x(\langle x, x \rangle - \langle x, x \rangle^2)$. From the nondegeneracy of \perp_B^s , it follows that $x(\langle x, x \rangle - \langle x, x \rangle^2) = 0$, from which $\langle x, x \rangle = \langle x, x \rangle^2$; that is, $\langle x, x \rangle$ is a projection.

Let us show that the projection $p = \langle x, x \rangle$ is minimal. Let $q \in \mathcal{A}$ be a projection such that $0 \leq q \leq p, q \neq p$. Let $\pi : \mathcal{A} \to \mathbf{B}(H)$ be a faithful representation of \mathcal{A} in a Hilbert space H. Then $\pi(p)$ and $\pi(q)$ are projections such that $0 \leq \pi(q) \leq \pi(p)$ and $\pi(q) \neq \pi(p)$. Therefore, there is a unit vector $\xi \in H$ such that $\pi(p)\xi = \xi$ and $\pi(q)\xi = 0$. Then

$$\|\pi(p) + \lambda \pi(q)\| \ge \|(\pi(p) + \lambda \pi(q))\xi\| = \|\xi\| = 1 = \|\pi(p)\|$$

for all $\lambda \in \mathbb{C}$. Since π is isometric, we have $||p + \lambda q|| \geq ||p||$ for all $\lambda \in \mathbb{C}$; that is, $p \perp_B q$, which can be written as $p \perp_B q \langle q, p \rangle$ and then, by Lemma 2.1(3), $p \perp_B^s q$. Since $q = pq = \langle x, xq \rangle$, we have $\langle x, x \rangle \perp_B^s \langle x, xq \rangle$, and so Lemma 2.1(6) implies $x \perp_B^s xq$. By the symmetry assumption, we have $xq \perp_B^s x$; this implies $xq \perp_B^s xq$, and so xq = 0. Then $q = \langle x, xq \rangle = 0$. This proves that p is minimal.

Suppose that (b) holds. Again, $x \perp_B^s (x - x \langle x, x \rangle)$, and therefore $x \perp_B^s (x \langle x, x \rangle - x \langle x, x \rangle^2)$. Then we have $x \perp_B (x \langle x, x \rangle - x \langle x, x \rangle^2)$, and by the symmetry assumption, $(x \langle x, x \rangle - x \langle x, x \rangle^2) \perp_B x$. Since $\langle x \langle x, x \rangle - x \langle x, x \rangle^2, x \rangle = \langle x, x \rangle^2 - \langle x, x \rangle^3 \ge 0$, by Lemma 2.1(7), it follows that $(x \langle x, x \rangle - x \langle x, x \rangle^2) \perp_B^s x$. Then, as before, it follows that $p := \langle x, x \rangle$ is a projection.

To show that p is minimal, suppose that $q \in \mathcal{A}$ is a projection such that $0 \leq q \leq p, q \neq p$. As before, we conclude that $x \perp_B^s xq$. Then $x \perp_B xq$ and, by the symmetry assumption, we have $xq \perp_B x$. Since $\langle xq, x \rangle = qp = q \geq 0$, we conclude that $xq \perp_B^s x$, from which, as before, q = 0.

The converse of the previous theorem does not hold, as the following example shows.

Example 2.3. Let $V = \mathcal{A} = C([0, 1] \cup [2, 3])$ be the C*-algebra of all continuous complex-valued functions on $[0, 1] \cup [2, 3]$ regarded as a Hilbert C*-module over itself. Let $x \in \mathcal{A}$ be defined as

$$x(t) = \begin{cases} 1 & \text{if } x \in [0,1], \\ 0 & \text{if } x \in [2,3]. \end{cases}$$

Then $\langle x, x \rangle = x$, and this is a minimal projection in \mathcal{A} . Let

$$y(t) = \begin{cases} t & \text{if } x \in [0, 1] \\ 0 & \text{if } x \in [2, 3] \end{cases}$$

Then $x \perp_B^s y$, since, for every $a \in \mathcal{A}$, it holds that

$$||x + ya|| \ge |x(0) + y(0)a(0)| = 1 = ||x||.$$

However, $y \not\perp_B^s x$, since $y \perp_B^s x$ would imply $y \perp_B^s xy = y$, and then y = 0. Since $\langle x, y \rangle \ge 0$, by Lemma 2.1(7), we deduce that $x \perp_B y$, but $y \not\perp_B x$.

The following result is a kind of converse of Theorem 2.2.

Proposition 2.4. Let V be a Hilbert A-module, and let $x \in V$ be such that $\langle x, x \rangle \mathcal{A} \langle x, x \rangle = \mathbb{C} \langle x, x \rangle$.

- (a) For every $y \in V$ such that $x \perp_B^s y$, it holds that $\langle x, y \rangle = 0$.
- (b) For every $y \in V$ such that $x \perp_B y$, it holds that $\langle x, x \rangle \langle y, x \rangle = 0$.

Proof. If x = 0, then the statements are trivial, so suppose that $x \neq 0$. Without loss of generality we may assume that ||x|| = 1. Denote $p = \langle x, x \rangle$. Since $\langle x, x \rangle$ is a projection, we have $x = x \langle x, x \rangle$.

(a) If $x \perp_B^s y$, then, by Lemma 2.1(6) and (2), $\langle x, x \rangle \perp_B^s \langle x, y \rangle$, and therefore $\langle x, x \rangle \perp_B^s \langle x, y \rangle \langle y, x \rangle$. Since

$$\langle x, y \rangle \langle y, x \rangle = \langle x, x \rangle \langle x, y \rangle \langle y, x \rangle \langle x, x \rangle = \lambda \langle x, x \rangle,$$

for some $\lambda \in \mathbb{C}$, we have $\langle x, x \rangle \perp_B^s \lambda \langle x, x \rangle$, from which it follows that $\lambda = 0$ and then $\langle x, y \rangle = 0$.

(b) Suppose $x \perp_B y$. By Lemma 2.1(5), it follows that $\langle x, x \rangle \perp_B \langle y, x \rangle$ and then $\langle x, x \rangle^2 \perp_B \langle x, x \rangle \langle y, x \rangle$; that is, $\langle x, x \rangle \perp_B \langle x, x \rangle \langle y, x \rangle$. Since

$$\langle x, x \rangle \langle y, x \rangle = \langle x, x \rangle \langle y, x \rangle \langle x, x \rangle = \lambda \langle x, x \rangle,$$

for some $\lambda \in \mathbb{C}$, we conclude that $\lambda = 0$ and $\langle x, x \rangle \langle y, x \rangle = 0$.

Remark 2.5. Let \mathcal{A} be a C^* -algebra such that there is $p \in \mathcal{A} \setminus \{0\}$ satisfying $p\mathcal{A}p = \mathbb{C}p$. (As an example, one can take a C^* -algebra \mathcal{A} of all compact operators on some Hilbert space and any one-dimensional projection $p \in \mathcal{A}$.) Let V be a full Hilbert \mathcal{A} -module. Let $y \in V$ be such that $yp \neq 0$ (such an element exists since V is a full Hilbert \mathcal{A} -module). Let x = yp. Then it holds that

$$\langle x, x \rangle = \langle yp, yp \rangle = p \langle y, y \rangle p \in p \mathcal{A} p,$$

and so $\langle x, x \rangle = \lambda p$ for some $\lambda > 0$. Thus we have

$$\langle x, x \rangle \mathcal{A} \langle x, x \rangle = \lambda^2 (p \mathcal{A} p) = \lambda^2 (\mathbb{C} p) = \mathbb{C} \langle x, x \rangle,$$

and so x satisfies the assumption of Proposition 2.4.

Let us now state our main result.

Theorem 2.6. Let V be a full Hilbert A-module. The following statements are equivalent:

(a) \perp_B is a symmetric relation;

- (b) \perp_B^s is a symmetric relation;
- (c) \perp_B^{s} coincides with the inner product orthogonality;
- (d) \mathcal{A} or $\mathbf{K}(V)$ is isomorphic to \mathbb{C} .

Proof. By [3, Theorems 4.7, 4.8], we know that $(c) \Leftrightarrow (d)$.

It is obvious that $(c) \Rightarrow (b)$.

If (d) holds, then V is an inner product space with the norm $||x|| = \langle x, x \rangle^{\frac{1}{2}}$ or $||x|| = [x, x]^{\frac{1}{2}}$, depending on whether \mathcal{A} or $\mathbf{K}(V)$ is isomorphic to \mathbb{C} . If \mathcal{A} is isomorphic to \mathbb{C} , then it holds that $x \perp_B y$ precisely when $\langle x, y \rangle = 0$, while in the case when $\mathbf{K}(V)$ is isomorphic to \mathbb{C} , we have $x \perp_B y$ if and only if [x, y] = 0. Note that, in both cases, \perp_B is a symmetric relation; that is, (a) holds.

Let us prove (b) \Rightarrow (c). First, observe that it follows from Theorem 2.2 that $\langle v, v \rangle$ is a scalar multiple of a minimal projection for every $v \in V$, and so

$$v\langle v, v \rangle = \|v\|^2 v, \quad \forall v \in V.$$
(2.1)

Let $x, y \in V$ be such that $x \perp_B^s y$. If y = 0, then $\langle x, y \rangle = 0$. Suppose that $y \neq 0$. Without loss of generality we may assume that ||y|| = 1. Then $x \perp_B^s y \langle y, x \rangle$, and so, by symmetry, $y \langle y, x \rangle \perp_B^s x$. Then, by Lemma 2.1(6), it holds that $\langle y \langle y, x \rangle, y \langle y, x \rangle \perp_B^s \langle y \langle y, x \rangle, x \rangle$. By using (2.1) we get

$$\left\langle y\langle y,x\rangle,y\langle y,x\rangle\right\rangle = \langle x,y\rangle\langle y,y\rangle\langle y,x\rangle = \left\langle x,y\langle y,y\rangle\right\rangle\langle y,x\rangle = \langle x,y\rangle\langle y,x\rangle,$$

and so $\langle x, y \rangle \langle y, x \rangle \perp_B^s \langle x, y \rangle \langle y, x \rangle$. Therefore, $\langle x, y \rangle \langle y, x \rangle = 0$, and so $\langle x, y \rangle = 0$. This proves our statement.

The implication (a) \Rightarrow (c) is proved in a similar way. First, Theorem 2.2 implies (2.1). Let $x, y \in V \setminus \{0\}$ be such that $x \perp_B^s y$. Again assume that ||y|| = 1. Then $x \perp_B y \langle y, x \rangle$, and so, by symmetry, $y \langle y, x \rangle \perp_B x$. Then, by Lemma 2.1(5), it holds that $\langle y \langle y, x \rangle, y \langle y, x \rangle \rangle \perp_B \langle y \langle y, x \rangle, x \rangle$. As before, by using (2.1), we get

$$\langle y\langle y,x\rangle,y\langle y,x\rangle\rangle = \langle x,y\rangle\langle y,x\rangle,$$

and so we have $\langle x, y \rangle \langle y, x \rangle \perp_B \langle x, y \rangle \langle y, x \rangle$. It follows that $\langle x, y \rangle = 0$.

Corollary 2.7. The relation \perp_B^s (resp., \perp_B) is symmetric in a C^{*}-algebra \mathcal{A} if and only if $\mathcal{A} \simeq \mathbb{C}$.

Remark 2.8. It would also be interesting to describe Hilbert C^* -modules in which relations \perp_B or \perp_B^s are left- or right-additive.

This problem is easy to solve in the case of a unital C^* -algebra \mathcal{A} (with the unit e), regarded as a Hilbert C^* -module over itself. Namely, suppose that $a \in \mathcal{A}$ is noninvertible. Then aa^* or a^*a is noninvertible. Assume that $b := aa^*$ is noninvertible. By [2, Remark 2.7(a)], $e \perp_B b$ and $e \perp_B (||b||e - b)$, and so, if \perp_B is right-additive, then $e \perp_B ||b||e$, from which b = 0 and then a = 0. The same conclusion is obtained in the case when a^*a is noninvertible. This proves that every nonzero element of \mathcal{A} is invertible, and so $\mathcal{A} \simeq \mathbb{C}$.

The same proof works for right-additivity of \perp_B^s , since $b \ge 0$ and $||b||e-b \ge 0$, and therefore, by Lemma 2.1(7), $e \perp_B b \Leftrightarrow e \perp_B^s b$ and $e \perp_B (||b||e-b) \Leftrightarrow e \perp_B^s (||b||e-b)$.

Suppose that \perp_B is left-additive. Let $a \in \mathcal{A}$ be positive and noninvertible. Let φ be a state of \mathcal{A} such that $\varphi(a) = 0$. Then $\varphi(||a||e - a) = ||a|| = |||a||e - a||$.

(Indeed, since a is positive and noninvertible, ||a|| belongs to the spectrum of $||a||e - a \ge 0$, and so $||a|| \le |||a||e - a||$. On the other hand, $0 \le ||a||e - a \le ||a||e$, and so $|||a||e - a|| \le ||a||$; hence ||a|| = ||||a||e - a||.) Further, by [3, Lemma 4.1], $\varphi((||a||e - a|)^2) = |||a||e - a||^2$. By the Cauchy–Schwarz inequality, we have

$$\begin{aligned} \left|\varphi\big(\big(\|a\|e-a\big)a\big)\right|^2 &= \left|\varphi\big(\big(\|a\|a^{\frac{1}{2}}-a^{\frac{3}{2}}\big)a^{\frac{1}{2}}\big)\right|^2 \\ &\leq \left|\varphi\big(\big(\|a\|a^{\frac{1}{2}}-a^{\frac{3}{2}}\big)^2\big)\right| \left|\varphi(a)\right| = 0, \end{aligned}$$

and so $\varphi((||a||e-a)a) = 0$. By Lemma 2.1(1), this gives $(||a||e-a) \perp_B a$, which, together with $||a||e \perp_B a$, by left-additivity gives $a \perp_B a$; that is, a = 0. So, $\mathcal{A} \simeq \mathbb{C}$. Since $(||a||e-a)a \ge 0$, by Lemma 2.1(7), we have $(||a||e-a) \perp_B a \Leftrightarrow (||a||e-a) \perp_B^s a$, and so the same proof works for left-additivity of \perp_B^s .

Acknowledgment. We would like to thank the referees for their careful reading of the manuscript and useful comments.

References

- L. Arambašić and R. Rajić, The Birkhoff–James orthogonality in Hilbert C*-modules, Linear Algebra Appl. 437 (2012), no. 7, 1913–1929. MR2946368. DOI 10.1016/j.laa.2012.05.011.
- L. Arambašić and R. Rajić, A strong version of the Birkhoff-James orthogonality in Hilbert C^{*}-modules, Ann. Funct. Anal. 5 (2014), no. 1, 109–120. Zbl 1296.46050. MR3119118. DOI 10.15352/afa/1391614575. 18, 19, 22
- L. Arambašić and R. Rajić, On three concepts of orthogonality in Hilbert C^{*}-modules, Linear Multilinear Algebra 63 (2015), no. 7, 1485–1500. MR3299336. DOI 10.1080/03081087.2014.947983. 18, 19, 22, 23
- T. Bhattacharyya and P. Grover, Characterization of Birkhoff-James orthogonality, J. Math. Anal. Appl. 407 (2013), no. 2, 350–358. Zbl pre06408413. MR3071106. DOI 10.1016/j.jmaa.2013.05.022. 19
- G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), no. 2, 169–172. MR1545873. DOI 10.1215/S0012-7094-35-00115-6. 17
- A. Blanco and A. Turnšek, On maps that preserve orthogonality in normed spaces, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 4, 709–716. Zbl 1115.46016. MR2250441. DOI 10.1017/S0308210500004674. 18
- R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265–292. MR0021241. 17
- C. Lance, *Hilbert C*-Modules*, London Math. Soc. Lecture Note Ser. 210, Cambridge Univ. Press, Cambridge, 1995. MR1325694. DOI 10.1017/CBO9780511526206. 19
- A. T.-M. Lau and N.-C. Wong, Orthogonality and disjointness preserving linear maps between Fourier and Fourier-Stieltjes algebras of locally compact groups, J. Funct. Anal. 265 (2013), no. 4, 562–593. Zbl 1283.43003. MR3062537. DOI 10.1016/j.jfa.2013.04.010. 18
- N. E. Wegge-Olsen, K-Theory and C*-Algebras, Oxford Univ. Press, Oxford, 1993. Zbl 0780.46038. MR1222415. 19

¹DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZAGREB, ZAGREB, CROATIA. *E-mail address*: arambas@math.hr

²Faculty of Mining, Geology, and Petroleum Engineering, University of Zagreb, Zagreb, Croatia.

E-mail address: rajna.rajic@zg.t-com.hr