Ann. Funct. Anal. 7 (2016), no. 1, 17-23
http://dx.doi.org/10.1215/20088752-3158195
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

ON SYMMETRY OF THE (STRONG) BIRKHOFF-JAMES ORTHOGONALITY IN HILBERT C^{*}-MODULES

LJILJANA ARAMBAŠIĆ ${ }^{1}$ and RAJNA RAJIĆ ${ }^{2 *}$
Dedicated to Professor Anthony To-Ming Lau

Communicated by J. Chmieliński

Abstract

In this note, we prove that the Birkhoff-James orthogonality, as well as the strong Birkhoff-James orthogonality, is a symmetric relation in a full Hilbert \mathcal{A}-module V if and only if at least one of the underlying C^{*}-algebras \mathcal{A} or $\mathbf{K}(V)$ is isomorphic to \mathbb{C}.

1. Introduction and preliminaries

Let V be a Hilbert C^{*}-module over a C^{*}-algebra \mathcal{A}, and let $x, y \in V$. The usual way to define the orthogonality in V is by means of the C^{*}-valued inner product: we say that x is orthogonal to y, and we write $x \perp y$, if $\langle x, y\rangle=0$. Another concept of orthogonality in a Hilbert C^{*}-module is the Birkhoff-James orthogonality (see [5], [7]). This concept makes sense in every normed linear space X and, in the case when X is an inner product space, it is equivalent to the usual orthogonality given by the inner product. Recall that, for two elements x and y of a normed linear space X, we say that x is orthogonal to y in the Birkhoff-James sense; in short, $x \perp_{B} y$, if

$$
\|x\| \leq\|x+\lambda y\|, \quad \forall \lambda \in \mathbb{C}
$$

[^0]Having in mind that in Hilbert C^{*}-modules the role of scalars is played by the elements of the underlying C^{*}-algebra, the authors introduced a new concept of orthogonality in [2]; for $x, y \in V$, we say that x is strongly Birkhoff-James orthogonal to y; in short, $x \perp_{B}^{s} y$, if

$$
\|x\| \leq\|x+y a\|, \quad \forall a \in \mathcal{A}
$$

It was shown in [2] that the strong Birkhoff-James orthogonality is stronger than the Birkhoff-James orthogonality, and weaker than the orthogonality with respect to the inner product, that is, $\langle x, y\rangle=0 \Rightarrow x \perp_{B}^{s} y \Rightarrow x \perp_{B} y$, while the converses do not hold in general. If V is a full Hilbert \mathcal{A}-module, then the only case when the orthogonalities \perp_{B}^{s} and \perp_{B} coincide is when \mathcal{A} is isomorphic to \mathbb{C} (see [3, Theorem 3.5]), while orthogonalities \perp_{B}^{s} and \perp coincide only when \mathcal{A} or $\mathbf{K}(V)$ is isomorphic to \mathbb{C} (see [3, Theorems 4.7, 4.8]).

Obviously, the orthogonality relation \perp is nondegenerate $(x \perp x$ if and only if $x=0$); homogenous (if $x \perp y$, then $\lambda x \perp \mu y, \forall \lambda, \mu \in \mathbb{C}$); symmetric $(x \perp y$ if and only if $y \perp x$); right-additive (if $x \perp y_{1}$ and $x \perp y_{2}$, then $x \perp\left(y_{1}+y_{2}\right)$); and left-additive (if $x_{1} \perp y$ and $x_{2} \perp y$, then $\left(x_{1}+x_{2}\right) \perp y$).

In general, the orthogonality relations \perp_{B} and \perp_{B}^{s} are nondegenerate and homogenous, but neither symmetric nor additive (see [2, Remark 2.7(b)] for \perp_{B}^{s}; the same examples apply for \perp_{B} because of [3, Proposition 3.1]). In this note, we describe the class of full Hilbert C^{*}-modules in which the (strong) Birkhoff-James orthogonality is symmetric.

Let us also mention that there are numerous papers about orthogonalities in C^{*}-algebras and Hilbert C^{*}-modules, among which considerable attention has been paid to orthogonality preserver problems (see, e.g., [6], [9]).

Before stating our results, let us recall some basic facts about C^{*}-algebras and Hilbert C^{*}-modules and introduce our notation.

A C^{*}-algebra \mathcal{A} is a Banach $*$-algebra with the norm satisfying the C^{*}-condition $\left\|a^{*} a\right\|=\|a\|^{2}$. A positive element of a C^{*}-algebra \mathcal{A} is a self-adjoint element whose spectrum is contained in $[0, \infty)$. If $a \in \mathcal{A}$ is positive, then we write $a \geq 0$. A partial order may be introduced on the set of self-adjoint elements of a C^{*}-algebra \mathcal{A} : if a and b are self-adjoint elements of \mathcal{A} such that $a-b \geq 0$, then we write $a \geq b$ or $b \leq a$. If $a \geq 0$, then there exists a unique positive $b \in \mathcal{A}$ such that $a=b^{2}$; such an element b, denoted by $a^{\frac{1}{2}}$, is called the positive square root of a. An element $p \in \mathcal{A}$ is called a projection if $p=p^{*}=p^{2}$. A projection p is minimal if there is not a nonzero projection $q \in \mathcal{A}, q \neq p$, such that $q \leq p$. A projection $p \in \mathcal{A}$ for which $p \mathcal{A} p=\mathbb{C} p$ is minimal, but the converse does not hold in general.

A linear functional φ of \mathcal{A} is positive if $\varphi(a) \geq 0$ for every positive element $a \in \mathcal{A}$. A state is a positive linear functional whose norm is equal to one.

A representation of \mathcal{A} in a complex Hilbert space H is a $*$-homomorphism of \mathcal{A} into the C^{*}-algebra $\mathbf{B}(H)$ of all bounded linear operators acting on H. Any C^{*}-algebra has a faithful (i.e., injective) representation.

A (right) Hilbert C^{*}-module V over a C^{*}-algebra \mathcal{A} (or a (right) Hilbert \mathcal{A}-module) is a linear space which is a right \mathcal{A}-module equipped with an \mathcal{A}-valued inner-product $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathcal{A}$ that is sesquilinear, positive definite, and respects the module action; that is,
(1) $\langle x, \alpha y+\beta z\rangle=\alpha\langle x, y\rangle+\beta\langle x, z\rangle$ for $x, y, z \in V, \alpha, \beta \in \mathbb{C}$,
(2) $\langle x, y a\rangle=\langle x, y\rangle a$ for $x, y \in V, a \in \mathcal{A}$,
(3) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for $x, y \in V$,
(4) $\langle x, x\rangle \geq 0$ for $x \in V$; if $\langle x, x\rangle=0$, then $x=0$,
and such that V is complete with respect to the norm defined by $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$, $x \in V$. By $\langle V, V\rangle$ we denote the closure of the span of $\{\langle x, y\rangle: x, y \in V\}$. We say that a Hilbert \mathcal{A}-module V is full if $\langle V, V\rangle=\mathcal{A}$.

Every Hilbert space is a Hilbert \mathbb{C}-module. Also, every C^{*}-algebra \mathcal{A} can be regarded as a Hilbert C^{*}-module over itself with the inner product $\langle a, b\rangle:=a^{*} b$, and the corresponding norm is just the norm on \mathcal{A} because of the C^{*}-condition.

In a Hilbert \mathcal{A}-module V, we have the following version of the Cauchy-Schwarz inequality:

$$
|\varphi(\langle x, y\rangle)|^{2} \leq \varphi(\langle x, x\rangle) \varphi(\langle y, y\rangle), \quad \forall x, y \in V
$$

where φ is a positive linear functional of \mathcal{A}.
A mapping $T: V \rightarrow V$ on a Hilbert \mathcal{A}-module V is called adjointable if there exists a mapping $T^{*}: V \rightarrow V$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x, y \in V$. Every adjointable operator T is a bounded and \mathcal{A}-linear mapping. The set $\mathbf{B}(V)$ of all adjointable mappings acting on V is a C^{*}-algebra.

For every $x, y \in V$ we define $\theta_{x, y}: V \rightarrow V$ by $\theta_{x, y}(z)=x\langle y, z\rangle$. It is easy to see that all $\theta_{x, y}$ are adjointable and that $\theta_{x, y}^{*}=\theta_{y, x}$. By $\mathbf{K}(V)$ we denote the C^{*}-algebra spanned by $\left\{\theta_{x, y}: x, y \in V\right\}$. Every right Hilbert \mathcal{A}-module V may be regarded as a left Hilbert $\mathbf{K}(V)$-module with the inner product $[x, y]:=\theta_{x, y}$ for $x, y \in V$. Thus it holds that $\|[x, x]\|=\left\|\theta_{x, x}\right\|=\|x\|^{2}$ for all $x \in V$. For details about C^{*}-algebras and Hilbert C^{*}-modules we refer the reader to [8] and [10].

2. Results

Let us first state some known results from [1], [2], [3], and [4] that we shall use in our proofs. (Observe that in [2], instead of the symbols \perp_{B}^{s} and \perp_{B} we used \perp_{*} and \perp, respectively.)

Lemma 2.1. Let V be a Hilbert \mathcal{A}-module. Then the following statements hold for every $x, y \in V$:
(1) $x \perp_{B} y$ if and only if there is a state φ of \mathcal{A} such that $\varphi(\langle x, x\rangle)=\|x\|^{2}$ and $\varphi(\langle x, y\rangle)=0$;
(2) $x \perp_{B}^{s} y$ if and only if $x \perp_{B}$ ya for all $a \in \mathcal{A}$, that is, if and only if $x \perp_{B}^{s}$ ya for all $a \in \mathcal{A}$;
(3) $x \perp_{B}^{s} y$ if and only if $x \perp_{B} y\langle y, x\rangle$;
(4) $x \perp_{B}^{s} y$ if and only if there is a state φ of \mathcal{A} such that $\varphi(\langle x, x\rangle)=\|x\|^{2}$ and $\varphi(\langle x, y\rangle\langle y, x\rangle)=0$;
(5) $x \perp_{B} y$ if and only if $\langle x, x\rangle \perp_{B}\langle x, y\rangle$ if and only if $\langle x, x\rangle \perp_{B}\langle y, x\rangle$;
(6) $x \perp_{B}^{s} y$ if and only if $\langle x, x\rangle \perp_{B}^{s}\langle x, y\rangle$;
(7) if $\langle x, y\rangle \geq 0$ then $x \perp_{B} y \Leftrightarrow x \perp_{B}^{s} y$;
(8) $x \perp_{B}^{s}\left(\|x\|^{2} x-x\langle x, x\rangle\right)$.

In the first result we obtain a necessary condition on an element $x \in V$ which has the symmetry property.

Theorem 2.2. Let V be a Hilbert \mathcal{A}-module, and let $x \in V \backslash\{0\}$ be such that one of the following conditions holds:
(a) for every $y \in V$ such that $x \perp_{B}^{s} y$, it holds that $y \perp_{B}^{s} x$;
(b) for every $y \in V$ such that $x \perp_{B} y$, it holds that $y \perp_{B} x$.

Then $\langle x, x\rangle$ is a scalar multiple of a minimal projection in \mathcal{A}.
Proof. Without loss of generality we may assume that $\|x\|=1$.
Suppose that (a) holds. By Lemma 2.1(8), for every $x \in V$, it holds that $x \perp_{B}^{s}(x-x\langle x, x\rangle)$, and, by Lemma 2.1(2), $x \perp_{B}^{s}\left(x\langle x, x\rangle-x\langle x, x\rangle^{2}\right)$; that is, $x \perp_{B}^{s} x\left(\langle x, x\rangle-\langle x, x\rangle^{2}\right)$. By symmetry, $x\left(\langle x, x\rangle-\langle x, x\rangle^{2}\right) \perp_{B}^{s} x$, and again by Lemma 2.1(2), $x\left(\langle x, x\rangle-\langle x, x\rangle^{2}\right) \perp_{B}^{s} x\left(\langle x, x\rangle-\langle x, x\rangle^{2}\right)$. From the nondegeneracy of \perp_{B}^{s}, it follows that $x\left(\langle x, x\rangle-\langle x, x\rangle^{2}\right)=0$, from which $\langle x, x\rangle=\langle x, x\rangle^{2}$; that is, $\langle x, x\rangle$ is a projection.

Let us show that the projection $p=\langle x, x\rangle$ is minimal. Let $q \in \mathcal{A}$ be a projection such that $0 \leq q \leq p, q \neq p$. Let $\pi: \mathcal{A} \rightarrow \mathbf{B}(H)$ be a faithful representation of \mathcal{A} in a Hilbert space H. Then $\pi(p)$ and $\pi(q)$ are projections such that $0 \leq \pi(q) \leq \pi(p)$ and $\pi(q) \neq \pi(p)$. Therefore, there is a unit vector $\xi \in H$ such that $\pi(p) \xi=\xi$ and $\pi(q) \xi=0$. Then

$$
\|\pi(p)+\lambda \pi(q)\| \geq\|(\pi(p)+\lambda \pi(q)) \xi\|=\|\xi\|=1=\|\pi(p)\|
$$

for all $\lambda \in \mathbb{C}$. Since π is isometric, we have $\|p+\lambda q\| \geq\|p\|$ for all $\lambda \in \mathbb{C}$; that is, $p \perp_{B} q$, which can be written as $p \perp_{B} q\langle q, p\rangle$ and then, by Lemma 2.1(3), $p \perp_{B}^{s} q$. Since $q=p q=\langle x, x q\rangle$, we have $\langle x, x\rangle \perp_{B}^{s}\langle x, x q\rangle$, and so Lemma 2.1(6) implies $x \perp_{B}^{s} x q$. By the symmetry assumption, we have $x q \perp_{B}^{s} x$; this implies $x q \perp_{B}^{s} x q$, and so $x q=0$. Then $q=\langle x, x q\rangle=0$. This proves that p is minimal.

Suppose that (b) holds. Again, $x \perp_{B}^{s}(x-x\langle x, x\rangle)$, and therefore $x \perp_{B}^{s}(x\langle x, x\rangle-$ $\left.x\langle x, x\rangle^{2}\right)$. Then we have $x \perp_{B}\left(x\langle x, x\rangle-x\langle x, x\rangle^{2}\right)$, and by the symmetry assumption, $\left(x\langle x, x\rangle-x\langle x, x\rangle^{2}\right) \perp_{B} x$. Since $\left\langle x\langle x, x\rangle-x\langle x, x\rangle^{2}, x\right\rangle=\langle x, x\rangle^{2}-\langle x, x\rangle^{3} \geq 0$, by Lemma 2.1(7), it follows that $\left(x\langle x, x\rangle-x\langle x, x\rangle^{2}\right) \perp_{B}^{s} x$. Then, as before, it follows that $p:=\langle x, x\rangle$ is a projection.

To show that p is minimal, suppose that $q \in \mathcal{A}$ is a projection such that $0 \leq q \leq p, q \neq p$. As before, we conclude that $x \perp_{B}^{s} x q$. Then $x \perp_{B} x q$ and, by the symmetry assumption, we have $x q \perp_{B} x$. Since $\langle x q, x\rangle=q p=q \geq 0$, we conclude that $x q \perp_{B}^{s} x$, from which, as before, $q=0$.

The converse of the previous theorem does not hold, as the following example shows.

Example 2.3. Let $V=\mathcal{A}=C([0,1] \cup[2,3])$ be the C^{*}-algebra of all continuous complex-valued functions on $[0,1] \cup[2,3]$ regarded as a Hilbert C^{*}-module over itself. Let $x \in \mathcal{A}$ be defined as

$$
x(t)= \begin{cases}1 & \text { if } x \in[0,1] \\ 0 & \text { if } x \in[2,3]\end{cases}
$$

Then $\langle x, x\rangle=x$, and this is a minimal projection in \mathcal{A}. Let

$$
y(t)= \begin{cases}t & \text { if } x \in[0,1] \\ 0 & \text { if } x \in[2,3]\end{cases}
$$

Then $x \perp_{B}^{s} y$, since, for every $a \in \mathcal{A}$, it holds that

$$
\|x+y a\| \geq|x(0)+y(0) a(0)|=1=\|x\| .
$$

However, $y \not \chi_{B}^{s} x$, since $y \perp_{B}^{s} x$ would imply $y \perp_{B}^{s} x y=y$, and then $y=0$. Since $\langle x, y\rangle \geq 0$, by Lemma 2.1(7), we deduce that $x \perp_{B} y$, but $y \not \perp_{B} x$.

The following result is a kind of converse of Theorem 2.2.
Proposition 2.4. Let V be a Hilbert \mathcal{A}-module, and let $x \in V$ be such that $\langle x, x\rangle \mathcal{A}\langle x, x\rangle=\mathbb{C}\langle x, x\rangle$.
(a) For every $y \in V$ such that $x \perp_{B}^{s} y$, it holds that $\langle x, y\rangle=0$.
(b) For every $y \in V$ such that $x \perp_{B} y$, it holds that $\langle x, x\rangle\langle y, x\rangle=0$.

Proof. If $x=0$, then the statements are trivial, so suppose that $x \neq 0$. Without loss of generality we may assume that $\|x\|=1$. Denote $p=\langle x, x\rangle$. Since $\langle x, x\rangle$ is a projection, we have $x=x\langle x, x\rangle$.
(a) If $x \perp_{B}^{s} y$, then, by Lemma 2.1(6) and (2), $\langle x, x\rangle \perp_{B}^{s}\langle x, y\rangle$, and therefore $\langle x, x\rangle \perp_{B}^{s}\langle x, y\rangle\langle y, x\rangle$. Since

$$
\langle x, y\rangle\langle y, x\rangle=\langle x, x\rangle\langle x, y\rangle\langle y, x\rangle\langle x, x\rangle=\lambda\langle x, x\rangle,
$$

for some $\lambda \in \mathbb{C}$, we have $\langle x, x\rangle \perp_{B}^{s} \lambda\langle x, x\rangle$, from which it follows that $\lambda=0$ and then $\langle x, y\rangle=0$.
(b) Suppose $x \perp_{B} y$. By Lemma 2.1(5), it follows that $\langle x, x\rangle \perp_{B}\langle y, x\rangle$ and then $\langle x, x\rangle^{2} \perp_{B}\langle x, x\rangle\langle y, x\rangle$; that is, $\langle x, x\rangle \perp_{B}\langle x, x\rangle\langle y, x\rangle$. Since

$$
\langle x, x\rangle\langle y, x\rangle=\langle x, x\rangle\langle y, x\rangle\langle x, x\rangle=\lambda\langle x, x\rangle,
$$

for some $\lambda \in \mathbb{C}$, we conclude that $\lambda=0$ and $\langle x, x\rangle\langle y, x\rangle=0$.
Remark 2.5. Let \mathcal{A} be a C^{*}-algebra such that there is $p \in \mathcal{A} \backslash\{0\}$ satisfying $p \mathcal{A} p=\mathbb{C} p$. (As an example, one can take a C^{*}-algebra \mathcal{A} of all compact operators on some Hilbert space and any one-dimensional projection $p \in \mathcal{A}$.) Let V be a full Hilbert \mathcal{A}-module. Let $y \in V$ be such that $y p \neq 0$ (such an element exists since V is a full Hilbert \mathcal{A}-module). Let $x=y p$. Then it holds that

$$
\langle x, x\rangle=\langle y p, y p\rangle=p\langle y, y\rangle p \in p \mathcal{A} p
$$

and so $\langle x, x\rangle=\lambda p$ for some $\lambda>0$. Thus we have

$$
\langle x, x\rangle \mathcal{A}\langle x, x\rangle=\lambda^{2}(p \mathcal{A} p)=\lambda^{2}(\mathbb{C} p)=\mathbb{C}\langle x, x\rangle,
$$

and so x satisfies the assumption of Proposition 2.4.
Let us now state our main result.
Theorem 2.6. Let V be a full Hilbert \mathcal{A}-module. The following statements are equivalent:
(a) \perp_{B} is a symmetric relation;
(b) \perp_{B}^{s} is a symmetric relation;
(c) \perp_{B}^{s} coincides with the inner product orthogonality;
(d) \mathcal{A} or $\mathbf{K}(V)$ is isomorphic to \mathbb{C}.

Proof. By [3, Theorems 4.7, 4.8], we know that $(\mathrm{c}) \Leftrightarrow(\mathrm{d})$.
It is obvious that $(\mathrm{c}) \Rightarrow(\mathrm{b})$.
If (d) holds, then V is an inner product space with the norm $\|x\|=\langle x, x\rangle^{\frac{1}{2}}$ or $\|x\|=[x, x]^{\frac{1}{2}}$, depending on whether \mathcal{A} or $\mathbf{K}(V)$ is isomorphic to \mathbb{C}. If \mathcal{A} is isomorphic to \mathbb{C}, then it holds that $x \perp_{B} y$ precisely when $\langle x, y\rangle=0$, while in the case when $\mathbf{K}(V)$ is isomorphic to \mathbb{C}, we have $x \perp_{B} y$ if and only if $[x, y]=0$. Note that, in both cases, \perp_{B} is a symmetric relation; that is, (a) holds.

Let us prove $(\mathrm{b}) \Rightarrow(\mathrm{c})$. First, observe that it follows from Theorem 2.2 that $\langle v, v\rangle$ is a scalar multiple of a minimal projection for every $v \in V$, and so

$$
\begin{equation*}
v\langle v, v\rangle=\|v\|^{2} v, \quad \forall v \in V \tag{2.1}
\end{equation*}
$$

Let $x, y \in V$ be such that $x \perp_{B}^{s} y$. If $y=0$, then $\langle x, y\rangle=0$. Suppose that $y \neq 0$. Without loss of generality we may assume that $\|y\|=1$. Then $x \perp_{B}^{s}$ $y\langle y, x\rangle$, and so, by symmetry, $y\langle y, x\rangle \perp_{B}^{s} x$. Then, by Lemma 2.1(6), it holds that $\langle y\langle y, x\rangle, y\langle y, x\rangle\rangle \perp_{B}^{s}\langle y\langle y, x\rangle, x\rangle$. By using (2.1) we get

$$
\langle y\langle y, x\rangle, y\langle y, x\rangle\rangle=\langle x, y\rangle\langle y, y\rangle\langle y, x\rangle=\langle x, y\langle y, y\rangle\rangle\langle y, x\rangle=\langle x, y\rangle\langle y, x\rangle,
$$

and so $\langle x, y\rangle\langle y, x\rangle \perp_{B}^{s}\langle x, y\rangle\langle y, x\rangle$. Therefore, $\langle x, y\rangle\langle y, x\rangle=0$, and so $\langle x, y\rangle=0$. This proves our statement.

The implication $(\mathrm{a}) \Rightarrow(\mathrm{c})$ is proved in a similar way. First, Theorem 2.2 implies (2.1). Let $x, y \in V \backslash\{0\}$ be such that $x \perp_{B}^{s} y$. Again assume that $\|y\|=1$. Then $x \perp_{B} y\langle y, x\rangle$, and so, by symmetry, $y\langle y, x\rangle \perp_{B} x$. Then, by Lemma 2.1(5), it holds that $\langle y\langle y, x\rangle, y\langle y, x\rangle\rangle \perp_{B}\langle y\langle y, x\rangle, x\rangle$. As before, by using (2.1), we get

$$
\langle y\langle y, x\rangle, y\langle y, x\rangle\rangle=\langle x, y\rangle\langle y, x\rangle,
$$

and so we have $\langle x, y\rangle\langle y, x\rangle \perp_{B}\langle x, y\rangle\langle y, x\rangle$. It follows that $\langle x, y\rangle=0$.
Corollary 2.7. The relation \perp_{B}^{s} (resp., \perp_{B}) is symmetric in a C^{*}-algebra \mathcal{A} if and only if $\mathcal{A} \simeq \mathbb{C}$.
Remark 2.8. It would also be interesting to describe Hilbert C^{*}-modules in which relations \perp_{B} or \perp_{B}^{s} are left- or right-additive.

This problem is easy to solve in the case of a unital C^{*}-algebra \mathcal{A} (with the unit e), regarded as a Hilbert C^{*}-module over itself. Namely, suppose that $a \in$ \mathcal{A} is noninvertible. Then $a a^{*}$ or $a^{*} a$ is noninvertible. Assume that $b:=a a^{*}$ is noninvertible. By [2, Remark 2.7(a)], $e \perp_{B} b$ and $e \perp_{B}(\|b\| e-b)$, and so, if \perp_{B} is right-additive, then $e \perp_{B}\|b\| e$, from which $b=0$ and then $a=0$. The same conclusion is obtained in the case when $a^{*} a$ is noninvertible. This proves that every nonzero element of \mathcal{A} is invertible, and so $\mathcal{A} \simeq \mathbb{C}$.

The same proof works for right-additivity of \perp_{B}^{s}, since $b \geq 0$ and $\|b\| e-b \geq 0$, and therefore, by Lemma 2.1(7), $e \perp_{B} b \Leftrightarrow e \perp_{B}^{s} b$ and $e \perp_{B}(\|b\| e-b) \Leftrightarrow e \perp_{B}^{s}$ $(\|b\| e-b)$.

Suppose that \perp_{B} is left-additive. Let $a \in \mathcal{A}$ be positive and noninvertible. Let φ be a state of \mathcal{A} such that $\varphi(a)=0$. Then $\varphi(\|a\| e-a)=\|a\|=\| \| a\|e-a\|$.
(Indeed, since a is positive and noninvertible, $\|a\|$ belongs to the spectrum of $\|a\| e-a \geq 0$, and so $\|a\| \leq\| \| a\|e-a\|$. On the other hand, $0 \leq\|a\| e-a \leq\|a\| e$, and so $\|\|a\| e-a\| \leq\|a\|$; hence $\|a\|=\| \| a\|e-a\|$.) Further, by [3, Lemma 4.1], $\varphi\left((\|a\| e-a)^{2}\right)=\| \| a\|e-a\|^{2}$. By the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
|\varphi((\|a\| e-a) a)|^{2} & =\left|\varphi\left(\left(\|a\| a^{\frac{1}{2}}-a^{\frac{3}{2}}\right) a^{\frac{1}{2}}\right)\right|^{2} \\
& \leq\left|\varphi\left(\left(\|a\| a^{\frac{1}{2}}-a^{\frac{3}{2}}\right)^{2}\right)\right||\varphi(a)|=0
\end{aligned}
$$

and so $\varphi((\|a\| e-a) a)=0$. By Lemma 2.1(1), this gives $(\|a\| e-a) \perp_{B} a$, which, together with $\|a\| e \perp_{B} a$, by left-additivity gives $a \perp_{B} a$; that is, $a=0$. So, $\mathcal{A} \simeq \mathbb{C}$. Since $(\|a\| e-a) a \geq 0$, by Lemma 2.1(7), we have $(\|a\| e-a) \perp_{B} a \Leftrightarrow$ $(\|a\| e-a) \perp_{B}^{s} a$, and so the same proof works for left-additivity of \perp_{B}^{s}.

Acknowledgment. We would like to thank the referees for their careful reading of the manuscript and useful comments.

References

1. L. Arambašić and R. Rajić, The Birkhoff-James orthogonality in Hilbert C*-modules, Linear Algebra Appl. 437 (2012), no. 7, 1913-1929. MR2946368. DOI 10.1016/j.laa.2012.05.011. 19
2. L. Arambašić and R. Rajić, A strong version of the Birkhoff-James orthogonality in Hilbert C^{*}-modules, Ann. Funct. Anal. 5 (2014), no. 1, 109-120. Zbl 1296.46050. MR3119118. DOI 10.15352/afa/1391614575. 18, 19, 22
3. L. Arambašić and R. Rajić, On three concepts of orthogonality in Hilbert C^{*}-modules, Linear Multilinear Algebra 63 (2015), no. 7, 1485-1500. MR3299336. DOI 10.1080/03081087.2014.947983. 18, 19, 22, 23
4. T. Bhattacharyya and P. Grover, Characterization of Birkhoff-James orthogonality, J. Math. Anal. Appl. 407 (2013), no. 2, 350-358. Zbl pre06408413. MR3071106. DOI 10.1016/j.jmaa.2013.05.022. 19
5. G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), no. 2, 169-172. MR1545873. DOI 10.1215/S0012-7094-35-00115-6. 17
6. A. Blanco and A. Turnšek, On maps that preserve orthogonality in normed spaces, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 4, 709-716. Zbl 1115.46016. MR2250441. DOI 10.1017/S0308210500004674. 18
7. R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292. MR0021241. 17
8. C. Lance, Hilbert C^{*}-Modules, London Math. Soc. Lecture Note Ser. 210, Cambridge Univ. Press, Cambridge, 1995. MR1325694. DOI 10.1017/CBO9780511526206. 19
9. A. T.-M. Lau and N.-C. Wong, Orthogonality and disjointness preserving linear maps between Fourier and Fourier-Stieltjes algebras of locally compact groups, J. Funct. Anal. 265 (2013), no. 4, 562-593. Zbl 1283.43003. MR3062537. DOI 10.1016/j.jfa.2013.04.010. 18
10. N. E. Wegge-Olsen, K-Theory and C^{*}-Algebras, Oxford Univ. Press, Oxford, 1993. Zbl 0780.46038. MR1222415. 19
${ }^{1}$ Department of Mathematics, University of Zagreb, Zagreb, Croatia.
E-mail address: arambas@math.hr
${ }^{2}$ Faculty of Mining, Geology, and Petroleum Engineering, University of Zagreb, Zagreb, Croatia.

E-mail address: rajna.rajic@zg.t-com.hr

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Dec. 2, 2014; Accepted Feb. 16, 2015.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 46L08; Secondary 46L05, 46B20.
 Keywords. Hilbert C^{*}-modules, inner product orthogonality, Birkhoff-James orthogonality, strong Birkhoff-James orthogonality, symmetry.

