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W), Thus f, is I-convergent. Since j may be chosen arbitrary, it tollows
by induction that all sequences belonging to some (r) are I-convergent.
Thus, every VI-convergent sequence is I-convergent.

10. The following diagram shows which implications between the
considered kinds of convergence have been stated, so far:

________ ~—————

| Disgtributional
| eonvergence
| ' {eonvergence in ')

Tempered

|
IV ==3-1V0 : convergence

(convergence in %)

Convergence
I i in, Fourier

| coefticients

_______ I P

II Strong Il Weak I
i convergence l CONVergence I

From this diagram we can immediately read that all possible impli-
~ cations hold between the 12 kinds of convergence, i.e., that all the 12
kinds of convergence are, for sequences of periodic distributions, equivalent.
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Ou symplectic mappings of contraction operators®
by

R. 8. PHILLIPS (Stanford)

Dedicated to
Stanistaw Mosur and Wiadystaw Orlice

One of the more familiar theorems in function theory states thab
every conformal mapping of the unit disk onto itself is a fractional Enear
transformation. In 1943, Sjegel [3] proved that this result holds as well
for syrumetric eomplex matrices. Our purpose is to generalize this theorem
still further and show that it holds both for contraction operators and
for symmetric (as distinguished from Mermitinn symmetric) contraction
operators.

More precisely, let #, denote the set of all strictly contractive linear
operators on a Hilbert space H,

Fy=1[J; ] <13,

and let 2, denote the set of all strictly eontractive symmetrie linear
operators on H,

Zy = [%;12] < 1 and & = 2],
where for a given conjugation ¢,
7 =%¢Z'¢.
We shall econsider the group ¢ [.%] of one-to-one bianalytic mappings
o of #, [Z,] onto itself with the metric
|y @l = sup gy () — ga (J)] over #, [or Z,].

Let ¢, [%,] denote the principal component of ¢ [&]. It will turn ous

that &, = &. The analogous asgertion does not hold for # even in the

ease of matrices; for example @(J) =J’ belongs to # but not to #,.
The trangformation

(1) J — (4J+B)(0J+ D) !

* Spnosored by the National Science Foundation, contract NSF-GP5841.
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with 4, B, 0, D linear bounded operators on H is called general symplectic if

2) A* O\ (T O0\(A B I 0 A B\[I o\/4* ¢*
B* p*/vo —1J\¢ p) Vo —1/ \¢ p/lo —-1/\B* D
and symplectic if in addition 1) = 4 and € = B; here we denote 4.0% hy D.

In terms of fhese concepts our result becomes

THBOREM 1. Hwery mapping in %, [9°] is general symplectic [sym-
plectic).

The proof beging with a few remarks on the symplectic group which
permit us to restrict our considerations to the analytic mappings o for
which ¢(0) = 0. Then by suitably generalizing Siegel’s proof we ghow
that such a ¢ is a linear isometry. Finally we make use of results due to
Kadison [2] and Wigner [5] to show that ¢ iy actually symplectie.

In the finite-dimensional case it is known that a one-to-one analytie
map is necessarily hianalytic. We do not know whether this is true in
the more general case treated in this paper. : ‘

. *1. The symplectic group. We note that J belongs to #1 if@nfi only,
if J*J I << of for some negative ¢ and that this is equivalent by (2) to

(AJ+B)*(AVJ+B)— (CJ+ D) (0T +D) < eI

for some negative ¢ ; it follows that the general symplectic transformation
takes £, onfo #,. The additional conditions imposed on the symplectic
transformation are just enough to show that it takes Z, onto &, It is
adso clear from (1) and (2) that the general symplectic and the symplectic
transformations form transformation groups. Further condition (2) shows
that transformation (1) is general symplectic if and only if

(1.1) AA—00=1=D'D-B*B and A'B— oD.
and
(1.2y AA* BB = [ = DD*— 00" and ACQ" = BD*,

Hence in the symplectic case necessary and sufficient conditions on
A and B are

(1:3) . A"A+BB=AA"—-BB* =I,4*B—=B1 oand AR — BA',

) Finally we remark that (1.1) and (1.2) imply that 4 and D are neces-
sgnly regular and the general symplectic transformation ig analytic
since (OJ+D)™! can be expanded in powers of J. ‘

Lemma 1.1: The general symplectic group and the symplectic group are
transitive, ‘ |

Coutraction operators 17

Proof. To prove the first assertion of the lemms it guffices to show
that 0 goes into any given J, in #, under some general symplectie trans-
formation. For such a transformation we see by (1) that J, = BD~*'
so that (1.1) requires that D'D--D*J3J,D = I, or equivalently that
(DD*™ = I—dJ5dy > 0. This suggests that we define

(1.4) D =(I-J3J)"" and B =J,D,

where we take the positive square root. Also by (1.1), A*J,D = A*B =
=0*D, which requires

(1.5) 0 =Ji4;

and inserting this in the first relation of (1.1) we see that an appropriate
choice for A is

(1.6) A = (I-JoJ5) 1,

where once again we take the positive square root. It is clear that the
operators 4, B, C, D defined by (1.4)-(1.6) satisty relations (1.1) and
hence define a general symplectic transformation taking 0 into J,. Finally,
if we replace J, by Z, belonging to &, in the above-mentioned formulae,
then the resulting operators also satisty D = 4, 0 = B and (1.3); and
therefore define a symplectic transformation taking 0 into Z,.

Imywa 1.2, The general symplectic group and the symplectic group
are ¢ach connected.

Proof. Suppose the given general symplectic transformation takes 0
into J,. We then construct a one-parameter family of general symplactic
transformation as in Lemma 1.1 for the operators [tJy; 0 < < 1]. The
resulting operators .4, B;, Oy, D; are continuous in ¢ as are the eoefficients
for the inverse transformations, namely, Af, —Cf, —B* Df. Composing
these inverse transformations with the given transformation, we see that
the given transformation is connected within the class of general symplectic
transformations with a general symplectic transformation taking 0 into
0 and hence of the form '

(1.7) K = AJD;

where by (1.1) A and D are each unitary operators. Using the spectral
representations for 4 and D if is easy to see that they can be connected
0 the identity by a one-parameter family of unitary operators, say [4,, D,‘-]_:
In the symplectic case we proceed in the same faghion, In this cage D = 4
in (1.7); we can therefore chooge I = A, and stay within the clasrg pf
gymplectic transformations.

Studia Mathematicn XKXXIL1 2
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2. The medified ¢ is a linear isometry. Given a one-to-one bianalytic
map ¢ of £, [#,] onto itself, we now compose it with a general symplectic
rsymplectic] transformation faking ¢ (0) into 0 so that the resulting mapping
takes 0 into 0. We call this resulting map the modified ¢ and continue
to use the same symbol for it. We congider the ¢ and & eases in turn.

LemMa 2.1, Any one-to-one bionalytic map of &, onto JF, which tales O
into 0 is a lnear isomelry.

The proof of this lomma will be broken up into three steps.

Step 1. Applying Schwarz’s lemma (gee [1], Theorem 3.13.4) in turn
to (&) and ¢ (&I, &< |J1Y, yields
(2.1) lg( ) = 1.

Next we express ¢(J) in a Taylor series (see [1], Chapter 26),
2.2)

where P, is a continuous homogenecus polynomial of degree m on 7,
to #;; the series converges absolutely and uniformly for all J of horm
<7< 1. Thus for J in #, and |{] <X 1 we have

llp (e = 1EI1PL(T)]] = O(1¢%)
and making use of (2.1) we obtain
lF]— Py (D) = O(J2]).
This implies
(28 P, (D] = 1]

) Tﬁe analogous assertion holds for

Now

I =g o) = > QPa));

XS
and comparing the first order terms on each side of this relation shows that
(24) QPa(d) =7
Likéwise

(2.47) (Ql( )) =

cm
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so that P, and ¢, ave linear isometries of #, onto #,. Finally, we note that

(25) 0 \——f[I (I p (e )]0 = T— 213* P(J).

Step 2. We set

J) = p(Qu(J )—EP =J+ 3 Ru(J

M=l w2

The results of step 1 also hold for f. Suppose next that U is
a partial isometry and let # lie in the range of ¥ = U*U. Applying (2.5)
to T, |¢1<1, we gee that B, ((T)x =0 for all » > 2 and hence that
6(eT)2 == {Ux. We wordd like to gshow that this holds as well for all «
in H.If B = I, there is nothing more to prove. It B = I but UT* = I,
we seb

(#, 9) = (2, 9)— ]} 0(ET) =, 6(T)3)

for any ¢ of absolute value < 1. By (2.1) this is a positive semi-definite
form and since (2, @), = 0 for z in the range of E, it follows that (z, y), = 0
for such @ and any 4 in H. In particular, for ¢ orthogonal to the range of
B we have

= (6(¢0)w, 6(00)y) = (U=, 6({T)y)

and since the range of U is all of H in this case, we conclude that
0{zU)y = 0. As this holds for all 7] < 1, it follows that E,(U)y =0
for all ». Thus

RAOY =0, nxz2,

when U is & partial isometry and either TU* or U*U equals 1.

Step 3. We now represent an arbitrary J in #, in polar form: J = US,
where U is a partial isometry with either UU* =T or UU =1 and 8
is a positive selfadjoint contraction. Approximating § by a finite linear
combination of projection operators leads to an approximation of J by a
gimple operator of the form

T Ay day ooy ) = D) WU,y

where the U, are mutually orthogonal partial isometries (i.e. UiU; =0
= U, U} for i +#§) and either JT;U; =T or }TU; Uf =1. In either
case step 2 shows that

RyJ) =0, nx2,
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whenever [1;] = 1 for all of the ¢. Since RH(J”MI, Aayen
in the polycylinder
Z =41, i=1,2,..,n],

s 4n)) 18 amalytic

it follows from Cauchy’s formula for & that B, (J") = 0 for all {4;} in Z.
By continuity, B, (J) = P,(@,(J)) = 0 for n > 2 and all J in 7, and, since
the range of ¢, is again £, we can assert that [%,(J) = 0for » = 2 and
all J in #,; in other words, ¢(J) = Py(J), as desired.

Before proving the analogous result for £, we need two preparatory
lemmas.

Lemma 2.2. Fach selfadjoint operator S is unitarily equivalent to o
“peal” selfadjoint operator @), that is a @ satisfying ¢ = @* = {.

Proof. By the usual procedure employed in multiplicity theory
{see [4], Chapter 7) we can represent H as a direct sum of L, (R, m) spaces
(mis a measure on the Borel subsets of the real numbers),

(2.6) H' = I D L,(E, m,)

on which the action of § is multiplication by the real variable 1. We de-

fine -apn auxiliary eonjugation %' on H' as: B
[#'fal(A) = fuld).

It is obvious that 8 = ¢'§¢'. Now the given conjugation € splits H
into “real” and “imaginary” parts:

.

’ H = H, Qil,; Hy=[0;%c = z].
A similar decomposition holds for %'
H = H,®iH,; H, = real-valued function in (2.6).

Let V be any unitary map of H, onto H, extended to H by V(v iy)
= Vo+iVy for all o,y in H, Since V¥ = ¢'V and €V* = V*¢, it is
clear that- Q.= V"8V satisfies all of the -assertions of the lemma.

Lowvs: 2.8, If Z = Z', then there emists a unitary operator U and a
“real” positive operator P (P == P* = P > 0) such that
(2.7)° _ ‘ Z=UPU.

Proof. Let § denote the positive square root of 22" = ZZ. According
o Lemma 2.2 there exists a gelfadjoint operator @ with @ = & and & wnj-
tary operator V' such that § = V*QV; obviously & = V*(*V. Following
Siegel [3] we set -

(2.8) P =YV,
- Then F = F'; moreover, I is normal. In fact,
FF* = VEZ*'V* = @,
PP =VZEV = [VZEV'T =" = .

icm®
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The W*-algebra generated by F and F* is thevefore Abelian and
consists only of {)-symmetric operators. The resolution of the identity
{Z;} for F is contained in this algebra and therefore

F = {8,
C1

where E; = Hy. We write 1 = |A|exp(if(2)) and set
P = [|nam, W = [ exp(i0(2)/2)dH,.
Then P =0, P =P'; W is unitary, W = W’; and
F = WPW.

Setting U = WV 'we obtain (2.7).

LEMMA 2.4. Any one-to-ons bianalytic map of &, onte &, which takes 0
into 0 is a linear isometry,

Proof. The proot of this lemma follows that of Lemma 2.1. In fact,
Step 1 carries over ag stated while the argument in Step 2 holds in partic-
wiar for all unitary U such that U’ = U. Using the result of Lemma 2.3
and noting that the resolution of the identity for P iz (')-symmetric,
we see that any Z in 2, can be approximated (') in norm by a simple
operator of the form

B Dy oy oo dn) = D) T
i=1

and

where the I7; ave mutually orthogonal partial isometries such that Ui = T;
and YU, Ui =1 = }UiU; Hence Step 3 with J” replaced by 2" can
be used to complete the proof of Lemma 2.4.

We note that the above linear isometries can obviously be extended
to the set of all bounded linear operators # and the seb of all bounded
linear (’)-symmetric operators &, respectively. ‘

3. A characterization of linear isometries. Affer normalizing ¢ so
that it takes I into I, we shall show that it preserves the Jordan structure
of # [amd Z7]. In essence the proofs of these facts can be found in Kadison
[2]; however, since Kadison’s paper assumes a ring structure whereas =¥
has only & Jordan stracture, some of Kadison's arguments will have to
he slightly modified. For notational convenience we shall in this section
denote the closed unit balls in # and & by #, and #,, respectively.

{1 As pointed out by Ebbe Thue Poulsen, this approximation can also be obtaiu-
od by making use of a generalized spectral representation, due to A. Ghika, Revue

oo
Math, Pures et Appl. 2 (1957), p. 61-108, in.which Z = uf 24U, where- U3 is an

increasing family of parbial isometries; that U, = U; follows from the uniqueness

of this representation.
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LenMA 3.1 (Eadison [2], Lemma 2). The identity is an exlreme poin
of both #, and Z,.

Tmmma 3.2 (Kadison [2], Theorem 1). The extreme points of J, consist
of the maeximal partial isomelries, that is partial isomelries U such that

either TUU* =1 or U'U =1.
LEMMA 3.3, The extreme poinis of &, consist of the {')-symmetric unitary
operators.

Proof. Let U be a unitary operator in %, and suppose that thero
exist operators 4, B in &, and positive numbers a, b with a-b =1
sueh that

U = ad-}bB.

The W*-algebra generated by U and U” is contained in 2 and con-
tains a unitary square root of U, which we denote by U~. Hence

I = ¢d,+bB,,
where

Ay = T VAU and B, = U"VBU

both belong to Z,. According to Lemma 3.1, 4, = I = B;, from which
it follows that 4 = U = B, so that U is an extreme point of &,

Suppose next that W iy an extreme point of 2',. As in the preof of
Lemma 2.3 we can find a unitary operator ¥V such that I = VWV’ iy
(’)-symmetric and normal. Obvicusly # and W will be extreme points
of %, together. However, since &' is normal, it is clear from the function
space representation of F that it can be extreme only if it is wnitary in
which case W = V*FV is also unitary.

A linear isometry will of course take exireme points into extreme
points. Tn particular, the modified ¢ acting on 2 will then take T into
& unitary operator. Kadigon [2], Theorem 7, hag shown that this is also
true of ¢ acting on £.

We now set

(3.1) W) = o(D)'e(d), J in g2,
and
(3.2) ¥(Z) = oIy PeZ)p(D)", Z in Z;

here, a8 in the proof of Lemma 3.3, ¢(I)~" is a square root of ¢(I)* be-
longing to 2. Then % [»] is a linear isometry of # onto £ [ onto &)
taking T into T.

Kadison [2] hag proved that # preserves the Jordan structure of 7.
Actually his arguwments apply equally well to » since they use only the
Jordan structure of Z. Thus his Lemma 8 shows that »(2*) == »(Z)* and
it follows from this (see Kadison’s proof of [2], Theorem 7) that » iy

icm
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order preserving. If we denote the positive operators in &, by 2, then
the argument used by Kadison in [2], Theorem 4, shows that the extreme
points of Z'F are the set of orthogonal projections in . As a consequence,
» maps the projections in onto themselves. Finally, Kadison’s alternative
ending to [2], Theorem 7, shows that » preserves the Jordan structure
of &, We shall also need the following

LEvma 3.4 (Kadisoun [2], Lemma 8). If o preserves the Jordan siruc-
ture, then

(3.3) e(BAB) = ¢(B)o(d)n(B).

The pure states of both # and 2 are 1-dimensional projections of
the form

(3.4) Br = (2, )f,

where |f| = 1. If E' = F as when F lies in #, then since EF* = F, we
also have K = E, in other words,

(3.5) B = (@, €f)¥].

Now f is determined only up to a facter a of absolute value 1 and
sinee (3.4) and (3.5) imply #f = ¢f for some |e| = 1, there are two ways
and only two ways of chooging & so that ¥(af) = af, namely ¢ = 4 "%

If ¢ is a linear isometry of # onto # [£ onto £7 taking I into I,
then-as we have seen above-it maps the projections onto the projections
and is order preserving. It follows that it maps the pure states onto the
pure states, We can therefore write

(3.6) o(Ba = (z, gy,

where |g] = 1. In this way we can correspond to f a vector ag, where |gf = 1,
and in the case of 2 the choice of & can be limited to 41 by requiring
that €f =f and %g =g

Tinally, we note for # of the form (3.4) and Eio = (2, f,)f, that

B BB, = I(fyfﬂszl-

Applying Lemma 3.4 with ¢ (#) of the form (3.6) and o(F)@ = (@, 8,)§2
we see thab
(8.7 (g, g1* = I(F, F)i%;
that is ¢ preserves the iransition probabilities between states.

LuMma 3.5 (Wigner [B], p. 233-236). If ¢ is o mapping of the pure
states of F [%] onlo themselves which preserves the tramsition probabilities

between stales, then there ewists either a wnitary or an anti-unilary operator
U such thot

(3.8) o(B) = URU*
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for all of the pure states in F [Z). In the case of & it is possible to choose
U to be wwitary with U = U.

Strictly speaking, Wigner considers only the case F. We now sketch
his argument and indicate how it can be modified so as to yield Fhe _”i’
agsertion. First choose a complete orthonormal set {f,} for & which in
the ease of Z consists entirely of vectors in H,. As shown above, g deter-
mines a correspondence between vectors up to a factor of absolute value
one,

f 2" Juy
where in the 2 case we choose the ¢'s in H,. We single out a particular
member of thiy set, say f,, and fix gy, leaving the other g's arbitrary to
within a factor of abgolute value 1 in the case of # and to within a factor
41 1in the case of &. The set {g.} i8 a complete orthonormal set by (3.7)
and the onto property of the mapping. Now we also have the correspon-

dence
fo+fa - gnu

and it is easy to see that gy, is of the form
. Joo = %u(go + aaga)'
We choose @y = 1 and adjust g, so that

Joa = Yot Yo-
Finally, any vector & == Y ¢.fa, ¢ 5= 0, will correspond in this way fo

B Y == a(E";ga)i

where |a|== 1 and || = |¢,|; in the case of 2 we limit the ¢'s to be real.
We now. determine o so that a¢, = ¢, in which case |g |6, == |- €l
In particular, fo+4f.— g+ €efe; Where e, =: 4-4. This imposes a sec-
ond condition on the ¢’s, namely, je,—i8, == |6+ 8,¢5). As Wigner shows,
there are only two possibilities: if s, = 4, then ¢, = ¢, for all vectors,
whereas if s, — — 4, then ¢ = 7,¢,[5, for all vectors (assuoning that o, == 0).
In the cage of &, where both # and y Ue in H,, the ¢, and the ¢, are neces-
sarily real so that ¢, = ¢, It is clear by continuity that the above-men-
tioned correspondenee also holds for states for which ¢, = 0. Finally we
note that e, = & since otherwise we would have both fo--fs— gu-t-gp
and {(fu+fs) — ea(ga~¢gs) which does not preserve tramsition probabil-
ities. We now define the operator

U:Zo,,f.,@ Za,’,_ga,‘

where ¢, == ¢, or &, for #, and ¢, = ¢, for #. Thus U may be anti-unitary
for #, bub because we need only consider real vectors in describing the
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pure states of &, U can be chosen to be unitary on #'; note that in the
cage of 2 the resulting operator satisfies T = U. Finally, we see that in
either case (3.8) is satisfied.

Proof of Theorem 1 for 2. Given v in &, we can find a symplectic
transformation § by Lemma 1.1 such that ¢ == Sow belongs to & and

takes 0 into 0. According to Lemma 2.4, ¢ is a linear isometry and as
shown above ‘

2(Z) = o(I) Po(Z)p(I)~*

preserves the Jordan structure of 2, Further, Lemma 3.5 shows that one
can find a unitary operator U with U = U/ such that

v(B) = UBU'
tor all of the pure states in . Applying Lemma 3.4 we see that for arbi-
trary Z in &
v(BZE) = v(E)v(Z)v(E).
Taking B of the form (3.4), EZE = (%f, f) ¥ and hence by linearity
(Zf, /N UBU' = UBU'»(Z)URU';
cancelling out the extreme U’s gives
(Zf,)BE = BIU»(Z2)U1E = (U »Z)Uf, f|E,

so that we finally obtain

(8.9) (f, ) = (U»(2) f, f)

for all fin H. If Z is selfadjoint and (')-symmetric, then so is #(Z) (and
hence U'»(Z)U) and in this case (3.9) impliey by polarization that
Z = U'vw(Z) U, that is

(3.10) v(Z) = UZT .

Since any Z can be written as a linear combination of selfadjoint
operators in 2, it follows that (3.10) holds for all Z in £. Thus

p(2) = [pM"* U12[pI)"* UY
and since @(I)"" is (')-symmetric, we see that ¢ is symplectic and there-
fore so is ¢ = 8 fop.
Proof of Theorem 1 for #. Let %, denote the general symplectic
group. We wish to prove that %, is the principal component of #. Since %
i3 connected by Lemma 1.2, it suffices to prove that there exists an & > 0

such that the s-neighborhood of %, in ¢ is just &,.
Suppose for a given y in ¢ and G in %, that

(3.11)

L2

]1{)—0| < E.
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Qetting o = poG ' we see thatb

(3.12)

here : denotes the identity transformation. Next let J, = e(0); then
[l < & and if we construct fhe general symplectic trayn&{form&tion @,
taking 0 into J, as described in the proof of Lemma 1.1, it is easy to see
that [T—4A| < &, |Bl<e |0j<<e and [I-—-D|<é As bofore

jw—t| < &5

A"
Gyt~ ( P *)
—B* D
and a crnde estimate shows that
(3.13) GT' — | < 3¢

for & sufficiently small. Finally, we seb ¢ = G'ow and conclude from
(3.12) and (3.13)

(8.14)

Hince ¢ takes 0 inte 0, it follows from Temma 2.1 that ¢ is & linear
isometry and from previous material in this section that

() = o) o)

preserves the Jordan structure of #. According to Lemma 3.5 there
exists an operator U either unitary or anti-unitary such that

‘ n(E) = UET*

for all pure states . Combining this with (3.14) we get
lp() TEU* — B| < 4s

and setting V =o(I)U and W = U* we finally obtain

(3.15) |VEW— B < 4¢

for all pure states B in F.
Noxt suppose that T is anti-unitary; then so are V and W. Taking I
of the form (3.4) with ' » = f, inequality (3.13) implies

(3.16) I(f, W) V—F] < ds.

Since W is anti-unitary, we can adjust f by a factor of absolute val-
ue 1-so that (f, Wf) = 0. We can likewise choose g with |g| =1 erthogonal
to f so that (g, Wg) > 0. We then obtain from (3.16)

[f—Vfl< 8 and
and consequently, if h‘z(f—l—ig),’l@, we -gek
[h—(Vf-+iVg) V2| < 16e.

lop— o] < ds.

lg—Vgl < 8e,

cm
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On the other hand, (3.16) applied to h gives
|h—(h, Wh) TH| < 4e.

However, this is impossible if & < 1/32, since then & is a distance of
less than 1/2 from two orthogonal vectors, namely (Vf+iVg)/V% and
(k, Wh)(Vf—ng)/‘v@, one of which is of unit length.

It follows that with &< 1/32, U must be unitary. By an argument
analogous to that used in the proof of Theorem 1 for & we can show that

y(Jy = TJU*
for all J in #. Hence
o) = pl)y(Jd) = [pI) T1JU"

is a general symplectic transformation and so is ¢ = Gr'opo@. This
concludes the proof of Theorem 1 for 7.
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