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Abstract— The current interest in coordinating nonlinear
dynamical systems with safety guarantees is driven by emerg-
ing practical applications. One of the primary objectives in
coordination of multiple mechanical systems (agents) is velocity
synchronization with guarantees for collision avoidance among
the agents. However, previous results in this direction assume
point models for the agent, allow only linear dynamics and
neglect delays in communication between the agents. In this pa-
per we demonstrate that velocity synchronization and collision
avoidance are simultaneously achievable in non-point, nonlinear
mechanical systems in the presence of communication delays
and switching interconnection topologies. A numerical example
is presented to justify the proposed results.

I. INTRODUCTION

The problem of synchronization and control of mechanical
systems is important in numerous practical applications, such
as unmanned air vehicles and robot networks. Inspired by
the formulation in [29], [22], recently there has been con-
siderable research devoted to the analysis and coordination
control of such systems. We refer the readers to [21], [20] for
exhaustive surveys on these research efforts. Group coordi-
nation, formation stability and collision avoidance problems
have been recently addressed in [1], [5], [11], [7], [16], [15],
[28], [19], [24], [27] among others. The recent survey [17]
presents a nice overview of the research in coordination of
multi-vehicle systems.

In this paper we address the problem of collision avoid-
ance and velocity synchronization problem for nonlinear,
non-point mechanical systems. The problem of collision
and obstacle avoidance has been studied extensively [13],
[23], [9], [6], [26]. In the multiagent coordination literature,
artificial potential based algorithms for collision avoidance
have been exploited by several authors [18], [27], [19] to
demonstrate emergent behavior in swarm models. Typically,
the unique minima of the potential function is the desired
formation and the potential function goes unbounded as
the relative distance between any pair of agents approaches
zero. The motion of the agents is then controlled using
a gradient-descent strategy that drives them to the desired
formation. However, the aforementioned results have been
developed for point models with simple dynamics, and hence
are not directly applicable in realistic applications where

This research was supported by Boeing Company via the Information
Trust Institute. The first author also acknowledges the support of Mechanical
Engineering Department, Institute for Systems Research and the Clark
School of Engineering via the Faculty Startup Grant.

Nikhil Chopra is with the Department of Mechanical Engineering and
the Institute for Systems Research, University of Maryland, College Park,
MD-20742 (email:nchopra@umd.edu)
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nonlinear agent dynamics, non-point models and unreliable
communications lead to additional challenges that need to be
addressed.

In this paper we use the collision avoidance functions
developed in [26] and the output synchronization results [3],
[4], [2] to address these issues. These functions are used to
address the non-point nature of the agent and guarantee the
existence of non-penetrable regions around every agent. Fur-
thermore, exploiting the Lagrangian dynamics of mechanical
systems and output synchronization results in [4], we demon-
strate that collision avoidance and velocity synchronization
can be guaranteed even if there are delays in communicating
velocity information between the nonlinear agents or for
switching interconnection topologies. Using the notation
of [27], we differentiate between (relative position) sensing
and (velocity) communication networks. In the subsequent
results we require the sensing graph to be undirected and
the communication graph to be balanced, in comparison
to [27] where the communication graph was assumed to be
undirected.

The present paper is organized as follows. In section II we
provide some background on nonlinear mechanical systems,
functions for collision avoidance and graph theory. This is
followed by the main results in Section III where velocity
synchronization and collision avoidance is demonstrated si-
multaneously for nonlinear mechanical systems with possibly
switching interconnection topologies and time delays in the
network. In Section IV, a numerical example is presented
to validate the proposed results and finally the results are
summarized in Section V.

II. BACKGROUND

To set the background and notation for what follows,
consider a control affine nonlinear system of the form

Σ
{
ẋ = f(x, u)
y = h(x) (1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rm. The functions
f(·) ∈ Rn, and h(·) ∈ Rm are assumed to be sufficiently
smooth. The admissible inputs are taken to be piecewise
continuous and locally square integrable and we note that
the dimensions of the input and output are the same. We
assume, for simplicity, that f(0, 0) = 0 and h(0) = 0.

A. Lagrangian Systems

Following [25], (in the absence of friction and gravita-
tional forces) the Euler-Lagrange equations of motion for N
mechanical systems are given as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i = ui i = 1, . . . , N (2)

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrA03.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3713



r

R

Fig. 1. The circular regions with radius r and R denote the avoidance and
sensing regions respectively.

where q ∈ Rn is the vector of generalized configuration
coordinates, u ∈ Rn is the vector of generalized forces
acting on the system, M(q) ∈ Rn×n is a symmetric, positive
definite inertia matrix, C(q, q̇)q̇ ∈ Rn is the vector of
centrifugal and Coriolis forces. Although the above equations
of motion are coupled and nonlinear, they exhibit certain
fundamental properties due to their Lagrangian dynamic
structure.
• Property 1: The matrix M(q) is symmetric positive

definite and there exists a positive constant m such that
mI ≤M(q).

• Property 2: Under an appropriate definition of the
matrix C, the matrix Ṁ - 2C is skew symmetric

For each pair of agents, define the following avoidance
function [26]

Vij(qi, qj) =
(

min
{

0,
||qi − qj ||2 −R2

||qi − qj ||2 − r2

})2

, i 6= j (3)

where R > r > 0, R denotes the sensing radius of each
agent in which it can detect the position of other agents and
r denotes the avoidance region which is the smallest safe
distance between the agents (see Figure 1).

The gradient decent based strategy to avoid collision
among the agents is then given as

∇qi
Vij =

0, ||qi − qj || ≥ R

4
(R2−r2)(||qi−qj ||2−R2)

(||qi−qj ||2−r2)3
(qi−qj)

T R > ||qi − qj || > r

not defined, ||qi − qj || = r
0 ||qi − qj || < r

(4)

Let q = [q1 . . . qN ]T , q̇ = [q̇1 . . . q̇N ]T and x = [q q̇]T

represent the position, velocity and state vectors respectively
for the multiagent system (2). Following [26], let the avoid-
ance sets for each pair of agents be given as

Ωij = {q : q ∈ RnN , ||qi − qj || ≤ r} (5)

and define the sensing or detection region by defining the
pairwise sensing regions as

Dij = {q : q ∈ RnN , ||qi − qj || ≤ R} (6)

Therefore, the overall avoidance and detection regions are
given as as Ω = ∪i,jΩij and D = ∪i,jDij ∀i, j respectively.

The goal then is to guarantee that the trajectory of the
dynamical system avoids the set Ω. This condition can be
formalized as follows [14].

Definition The dynamical system (2) avoids Ω if and only if
for each solution x(t, x0), t ∈ T = [0 +∞), x0 /∈ Ω implies
x(t) /∈ Ω,∀t ∈ T.

Information exchange between agents can be represented
as a graph. We give here some basic terminology and
definitions from graph theory [8] sufficient to follow the
subsequent development.

Definition By a graph G we mean a finite set V(G) =
{vi, . . . , vN}, whose elements are called nodes or vertices,
together with set E(G) ⊂ V × V , whose elements are called
edges. An edge is therefore an ordered pair of distinct
vertices.

If, for all (vi, vj) ∈ E(G), the edge (vj , vi) ∈ E(G) then
the graph is said to be undirected. Otherwise, it is called a
directed graph.

An edge (vi, vj) is said to be incoming with respect to
vj and outgoing with respect to vi and can be represented
as an arrow with vertex vi as its tail and vertex vj as its
head.

The in-degree of a vertex v ∈ G is the number of edges
that have this vertex as a head. Similarly, the out-degree of
a vertex v ∈ G is the number of edges that have this vertex
as the tail.

If the in-degree equals the out-degree for all vertices v ∈
V(G), then the graph is said to be balanced.

A path of length r in a directed graph is a sequence
v0, . . . , vr of r + 1 distinct vertices such that for every
i ∈ {0, . . . , r − 1}, (vi, vi+1) is an edge.

A weak path is a sequence v0, . . . , vr of r + 1 distinct
vertices such that for each i ∈ {0, . . . , r−1} either (vi, vi+1)
or (vi+1, vi) is an edge.

A directed graph is strongly connected if any two vertices
can be joined by a path and is weakly connected if any two
vertices can be joined by a weak path.

III. VELOCITY SYNCHRONIZATION WITH COLLISION
AVOIDANCE

We assume that each agent is equipped with a sensing
and a communication device. The sensing device estimates
the relative position between an agent and other agents in
its sensing radius. On the other hand, the communication
device is used to communicate velocity information between
the agents. We denote the information graph underlying the
sensing and the communication processes as the sensing and
communication graphs respectively. It is to be noted that
an agent may have different sets of neighbors in its sensing
and communication graph.

The position dependent sensing graph, Gs = {V, Es} is
assumed to be undirected. On the other hand, the directed
communication graph Gv = {V, Ev} for the velocity infor-
mation exchange is assumed to be balanced. Furthermore
noting (3), the sensing graph Gs implicitly assumes all-to-
all communication in the sense that a zero value is assigned
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to the function (3) beyond the sensing radius R. Therefore,
in the subsequent analysis, the sensing graph is a (pseudo)
complete graph.

The agents are said to velocity synchronize if

lim
t→∞

||q̇i(t)− q̇j(t)|| = 0 ∀i, j

Let the control for each agent be given as

ui(x) = K
∑

j∈Ni(Gv)

(q̇j − q̇i)−
N∑
j=1

∇qiVij (7)

for some K > 0. Therefore, using (2) the closed loop system
for the ith agent is given as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i = K
∑

j∈Ni(Gv)

(q̇j − q̇i)−
N∑
j=1

∇qi
Vij (8)

Our first result demonstrates that the coupling control (7)
synchronizes the agents’ velocities while simultaneously
ensuring collision avoidance with other agents.

Theorem 3.1: Consider the dynamical system (8) together
with (3) and (4). If the communication graph is balanced,
time-invariant and strongly connected, the sensing graph is
undirected, and x0 /∈ Ω, then the set Ω is avoidable by (2)
and the agents velocity synchronize.

Proof: Define a positive semi-definite function for the
multi-agent system as

V (x) =
N∑
i=1

1
2
q̇Ti Mi(qi)q̇i +

N∑
i=1

∑
j>i

Vij(qi, qj)

The derivative along trajectories of the system is given as

V̇ (x) =
N∑
i=1

(q̇Ti (−Ci(qi, q̇i)q̇i+K
∑

j∈Ni(Gv)

(q̇j − q̇i)−
N∑
j=1

∇qiVij)

+
1
2
q̇Ti Ṁi(qi)q̇i) +

N∑
i=1

∑
j>i

{
(∇qi

Vij)T q̇i + (∇qj
Vij)T q̇j

}
(9)

As the sensing graph is undirected and ∇qi
Vij = −∇qj

Vij ,

−
N∑
i=1

N∑
j=1

q̇Ti ∇qiVij +
N∑
i=1

∑
j>i

{
(∇qiVij)

T q̇i + (∇qjVij)
T q̇j
}

= 0 (10)

Furthermore, the balanced nature of the communication
graph implies that,

K

N∑
i=1

∑
j∈Ni(Gv)

q̇Ti q̇i = K

N∑
i=1

∑
j∈Ni(Gv)

q̇Tj q̇j (11)

Thus, using (10), (11) and Property 3 in (9) yields

V̇ (x) = −K
2

N∑
i=1

∑
j∈Ni(Gv)

||q̇j − q̇i||2 ≤ 0

Consequently, V (x) ≤ V (x0) ∀t and noting that

lim
||qi−qj ||→r+

Vij(qi, qj) =∞ ∀, i, j

we conclude that the trajectory x(t) will never enter Ω and
hence collisions are avoided.

As V (x(t)) ≥ 0, V̇ (x(t)) ≤ 0, limt→∞ V (x(t)) exists
and is finite, the agent velocities and the control input
for every agent is ultimately bounded. Using this fact in
the system dynamics (8), we conclude that q̈i(t) is also
bounded. Thus, V̈ (x(t)) is bounded and the function V̇ (x(t))
is uniformly continuous. Using Barbalat’s Lemma [12],
limt→∞ V̇ (x(t)) = 0 and hence the agents’ velocities
synchronize asymptotically to that of their neighbors. Strong
connectivity of the communication graph then implies veloc-
ity synchronization for all agents.

We next consider the case when the graph topology is not
constant, such as in nearest neighbor scenarios. In this case
the communication graph Gv(t) is not decided a priori, but is
time varying. Consequently, we have a switched system with
the continuous state x(t) and the discrete state Gv(t) ∈ GN
where GN is the finite collection of possible directed graphs
among the N agents.

The switching signal σ : [0,∞) → P is the right
continuous switching signal and P = {1, 2, . . . , r}; r ∈
N is the finite index set associated with the elements of
GN = {G1, . . . ,Gr}. We assume that the switching signal
is piecewise continuous and denote by tw, w = 1, 2, . . . the
consecutive discontinuities of the switching signal σ(t).

Dwell Time Assumption We impose the restriction that
there exists d > 0 such that for every Td > 0 we can find a
positive integer w for which tw+1 − d ≥ tw ≥ Td.

Let the control for each agent be given as

uσi(x, t) = K
∑

j∈Ni(Gv(t))

(q̇j − q̇i)−
N∑
j=1

∇qiVij (12)

Using (2), the closed loop system for the ith agent transforms
to

Mi(qi)q̈i + Ci(qi, q̇i)q̇i = K
∑

j∈Ni(Gv(t))

(q̇j − q̇i)−
N∑
j=1

∇qi
Vij (13)

The next result demonstrates that even when the communica-
tion graph is time-varying, the agents velocities synchronize
while simultaneously avoiding collision with other agents.

Theorem 3.2: Consider the dynamical system (13) to-
gether with (3), (4) and the dwell time assumption. If the
communication graph is balanced and strongly connected,
the sensing graph is undirected, and x0 /∈ Ω, then the set Ω
is avoidable by (13) and the agents velocity synchronize.

Proof: Consider a common storage function for the
multi-agent system as

V (x) =
N∑
i=1

1
2
q̇Ti Mi(qi)q̇i +

N∑
i=1

∑
j>i

Vij(qi, qj)

Even though the communication graph is switching, the
function V (x) is independent of the interconnection (com-
munication and sensing) graphs and hence is continuously
differentiable. Following the proof of Theorem 3.1, the
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derivative of V (x) along trajectories of (13) is given as

V̇ (x) = −K
2

N∑
i=1

∑
j∈Ni(Gv(t))

||q̇j − q̇i||2 ≤ 0 (14)

Thus, as was the case in Theorem 3.1, V (x) ≤ V (x0) ∀t
and noting that

lim
||qi−qj ||→r+

Vij(qi, qj) =∞ ∀, i, j

we conclude that the trajectory x(t) will never enter Ω, and
hence collisions are avoided.

Due to the switching communication graph and the dwell
time assumption, the function V̇ (x) is piecewise continu-
ous. Therefore Barbalat’s Lemma cannot be directly used
to establish velocity synchronization of the switched sys-
tem (13). The results in [10] provide a Barbalat-like lemma
for addressing switched systems and we adapt their result for
demonstrating velocity synchronization (this approach was
also suggested by [27] as an alternative to prove a weaker
version of their results).

As V (x) ≤ V (x0) ∀t, q̇i(t), q̈i(t) are bounded. The
Barbalat-like result (see the proof of asymptotic convergence
in Theorem 7 of [10]) is now used to complete the proof.
Using the dwell time assumption and finiteness of the index
set P , there exists an infinite subsequence of switching times
tw1 , tw2 , . . . such that the time intervals twk∗+1 − twk∗ ≥
d, k∗ = 1, 2, . . . and σ(t) = h on these time intervals.

Denote the union of these time intervals by H and con-
struct the auxiliary function

yH(t) =
{
−V̇ (x(t)), if t ∈ H

0 otherwise

Using (14), ∀t ≥ 0∫ t

0

yH(s)ds ≤ V (x(t))(t=tw1 ) − V (x(t))(t=t)

≤ V (x(t))(t=tw1 ) (15)

As yH(t) is positive semi-definite, using (15) and letting
t→∞, yH(t) ∈ L1. To show that limt→∞ V̇ (x(t)) = 0 we
need to prove that limt→∞ yH(t) = 0. Let us suppose that
this is not true. Then ∃ε > 0 and an infinite sequence of
times sk, k = 1, 2, . . . ∈ H such that yH(sk) ≥ ε ∀k. As
q̈1(t), . . . , q̈N (t) are bounded, yH is uniformly continuous
on H. Consequently, ∃δ > 0 such that sk belongs to time
interval of length δ on which yH(t) ≥ ε

2 . This results in a
contradiction as yH(t) ∈ L1. Thus, limt→∞ yH(t) = 0, and
hence limt→∞ V̇ (x(t)) = 0. As the communication graph is
strongly connected at all times, the agents output synchronize
asymptotically.

We next address the practically important case of unknown
delays in velocity communication between the agents. The
delays are assumed to be constant and bounded. As there can
be multiple paths between two agents, T kij denotes the delay
along the kth path from the ith agent to the jth agent, and
we henceforth denote it as the path delay. We only impose
the restriction that delays along all paths of length one are

unique, i.e. the one-hop transmission delay from one agent
to the other is uniquely defined.

Definition In the presence of delays, the agents are said to
delay-velocity synchronize if

lim
t→∞

||q̇i(t− T kij)− q̇j(t)|| = 0 ∀i, j ∀k (16)

The delays in the velocity communication process may be
due to the multi-hop wireless communication between the
agents, while the sensing process, for example using infra-
red or sonar sensors, is assumed to be immediate and hence
there are no sensing delays.

Let the control for each agent be given as

ui(x) = K
∑

j∈Ni(Gv)

(q̇j(t− Tji)− q̇i)−
N∑
j=1

∇qi
Vij (17)

The closed loop system for the ith agent can then be written
as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i = K
∑

j∈Ni(Gv)

(
q̇j(t− Tji)− q̇i

)

−
N∑
j=1

∇qiVij (18)

Our final result follows
Theorem 3.3: Consider the dynamical system (18) to-

gether with (3) and (4). If the communication graph is
balanced, time-invariant and strongly connected, the sensing
graph is undirected, and x0 /∈ Ω, then the set Ω is avoidable
by (2) and the agents delay-velocity synchronize in the sense
of (16).

Proof: Define a positive semi-definite function for the
multi-agent system as

V (x) =
N∑
i=1

1
2
q̇Ti Mi(qi)q̇i+

K

2

N∑
i=1

∑
j∈Ni(Gv)

∫ t

t−Tji

q̇Tj (s)q̇j(s)ds

+
N∑
i=1

∑
j>i

Vij(qi, qj)

The derivative along the solution of (18) is given as

V̇ (x) =
N∑
i=1

q̇Ti (−Ci(qi, q̇i)q̇i +K
∑

j∈Ni(Gv)

(q̇j(t− Tji)− q̇i)

−
N∑
j=1

∇qiVij) +
1
2
q̇Ti Ṁi(qi)q̇i +

K

2

N∑
i=1

∑
j∈Ni(Gv)

(q̇Tj q̇j

−q̇j(t− Tji)T q̇j(t− Tji)) +
N∑
i=1

∑
j>i

((∇qi
Vij)T q̇i

+(∇qj
Vij)T q̇j) (19)

Again noting that the sensing graph is undirected, and
∇qi

Vij = −∇qj
Vij , we have

−
N∑
i=1

N∑
j=1

q̇Ti ∇qiVij +
N∑
i=1

∑
j>i

{
(∇qiVij)

T q̇i + (∇qjVij)
T q̇j
}

= 0
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As the communication graph is balanced

K

N∑
i=1

∑
j∈Ni(Gv)

q̇Tj q̇j = K

N∑
i=1

∑
j∈Ni(Gv)

q̇Ti q̇i

Therefore using these facts along with Property 3 in (19)
yields

V̇ (x) = −K
2

N∑
i=1

∑
j∈Ni

||q̇j(t− Tji)− q̇i)||2 ≤ 0

Consequently, V (x) ≤ V (x0) ∀t and noting that

lim
||qi−qj ||→r+

Vij(qi, qj) =∞ ∀, i, j

we conclude that the trajectory x(t) will never enter Ω.
Following the proof of Theorem 3.1 it is evident that
limt→∞ V̇ (x(t)) = 0 and hence the agents delay-velocity
synchronize in the sense of (16).

IV. NUMERICAL EXAMPLE

Consider a system constituted by four agents whose equa-
tions are given as

miq̈i = τi ∀i

where qi ∈ R2. Let the systems be coupled together using
the control (7) and hence the closed loop system is given as

miq̈i = K
∑

j∈Ni(Gv)

(q̇j − q̇i)−
4∑
j=1

∇qi
Vij ∀i

As the communication graph is balanced and the sensing
graph undirected,

∑4
i=1miq̈i = 0 and therefore the momen-

tum of the system psys =
∑4
i=1miq̇i is conserved.

Let the communication graph among the agents be repre-
sented by a ring topology as shown in Figure 2. A numerical

1

2 3

4

Fig. 2. The agents communicate velocities in a ring topology

simulation was done assuming mi = 1,K = 1 ∀i. The
radii of the avoidance and sensing regions were chosen to

be r = 20 and R = 40 units respectively. Thus, the closed
system is represented as

q̈1 = (q̇2 − q̇1)−
4∑
j=1

∇q1V1j ; q̈2 = (q̇3 − q̇2)−
4∑
j=1

∇q2V2j

q̈3 = (q̇4 − q̇3)−
4∑
j=1

∇q3V3j ; q̈4 = (q̇1 − q̇4)−
4∑
j=1

∇q4V4j

As seen in Figure 3, the agents velocity synchronize.
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Fig. 3. The planar position components become parallel asymptotically
and hence the velocities synchronize.

The figures 3, 4, 5, and 6 demonstrate that the interagent
distances are a function of both the collision avoidance
and the synchronizing control. Furthermore, the interagent
distances do not enter the avoidance region (5) as confirmed
in Figures 4, 5, and 6 and hence collisions are avoided
between the agents.

V. CONCLUSIONS

In this paper control laws were developed to achieve veloc-
ity synchronization and collision avoidance simultaneously
for nonlinear mechanical systems with a non-point model.
Under the assumption of balanced communication graphs
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Fig. 4. Relative distances between agent 1 and the other agents do not
enter the avoidance region.

3717



0 2 4 6 8 10
20

30

40

50

60

70

80

90

Time

Re
lat

ive
 D

ist
an

ce
s

Fig. 5. Relative distances between agent 2 and the other agents do not
enter the avoidance region.
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Fig. 6. Relative distances between agent 3 and the other agents do not
enter the avoidance region.

and undirected sensing graphs, using avoidance functions
developed in [26] and the output synchronization results
in [4], velocity synchronization and collision avoidance was
demonstrated under time delays and switching interconnec-
tion topologies. Future work entails extension to nonholo-
nomic mechanical systems and experimental verification of
the proposed results.
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