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ABSTRACT 

i 

ON SYSTEM IDENTIFICATION USING 

PULSE-FREQUENCY MODULATED SIGNALS 

Nonperiodic time quantization has proved very useful for the 

improvement of measurement and control systems. Very often nonper

iodic time quantization is connected with pulse frequency modu

lation (PFM). In the present report some aspects of continuous 

system identification using PFM signals have been studied. 

Two possibilities for application of PFM signals in system identi

fication are considered. In accordance with these possibilities 

either the system is excited by PFM signals or the system output is 

observed with the help of a pulse-frequency converter. For both 

these cases effective computational schemes for estimation of the 

transfer function and the weighting function have been obtained. 

For the case of the weighting function estimate, the relationship 

with previously obtained estimates has been established. 

The utility of the suggested estimates is illustrated by computer 

simulation. 

For this purpose, several programs are given in the appendix. 
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PREFACE 

This report is an attempt to apply pulse-frequency modulated 

signals when solving a system identification problem. 

The motivation for the study was the very wide use of pulse-fre

quency signals in the practice of measurement and control systems. 

These signals are also used when modelling the transmission inform

ation nervous system. 

Among the other reasons for this study was the fact that most of 

the work in the field ~system identification is related to regular 

sampling from continuous signals. It leads to restrictions due to 

aliasing noise. To avoid this the aperiodic sampling can be 

implemented. There is no need to perform preliminary processing of 

a continuous signal before the aperiodic sampling, so this is more 

suitable in the case of "black-box" system identification. 

This study was done while I was a guest in the Measurement and Con

trol Group of the Eindhoven University of Technology. I would like 

to thank all the members of the group ER for their hospitality and 

for the continuous support. I would especially like to thank prof. 

P. Eykhoff for making it possible to finish this report and for 

the suggestions he made for improving it. Furthermore I am very 

grateful to Dr. A. van den Boom and Dr. A. Damen for their 

attention to this problem and for their suggestions in preparing 

this report. 

For typing, as well for everyday assistance, many thanks to Mrs. 

Barbara Cornelissen and Mrs. Muriel Simon. 

Dr. V.N. Bondarev 

Sevastopol Instrument Making Institute 

335053, Sevastopol 

USSR 
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1. INTRODUCTION 

The problem of system identification has played an important role 

in designing simulation and testing of various technical and biolo

gical systems (Eykhoff, P. (1974), Eykhoff, P. (ed) (1981». 

The large number of existing works on this topic have paid great 

attention to the designing of identification methods using general 

purpose or specialized computers. In the case of identification 

of continuous systems these require the implementation of analog

to-digital (A/D) converters to introduce the measurement signals 

into the computer. As a rule in most studies only methods of sys

tem identification oriented on A/D converters with regular time 

quantization have been considered. 

Apart from the A/D converters with regular time quantization con

verters with non-regular time quantization are also often used in 

modern control and measurements systems. 

In some cases these are caused by peculiarities of control units 

and sensors, in other cases the non-regular time quantization is 

introduced in order to increase the efficiency of systems (Artemiev 

M.V. and A.V. Ivanovsky (1986») 

The wide distribution of information converters with non-regular 

time quantization requires the designing of special methods of 

dynamic system identification which are aimed at the processing of 

the output signals of these converters. 

One of the widely used types of systems with non-regular time quan

tization are systems with pulse-frequency modulated (PFM) signals. 

The time quantization of analog signals in these systems is per

formed with the help of a pulse frequency converter (PFC). The PFC 

transforms a continuous input signal into a series of identical 

pulses with variable frequency. It is well-known that PFM signals 

offer the advantage of converting them into digital form with high 

accuracy, noise protection, simplicity of integral transformations, 

convenience for the transmission over cable communication lines 
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etc. (Novitsky, P.V. (1970), Bombi F. and D. Ciscato (1968». All 

of these have led to the extensive use of PFM signals in technical 

systems (Pavlidis, T. and I.E. Jury (1965), Kuntsevich V.M. and Yu. 

M. Chekhovoi (1970), Broughton, M.B. (1973), Eidens, R.S. (1978), 

Tzafestas, S. and G. Frangatis (1979» and also under modelling of 

biological systems (Bayly, E.J. (1968), Koenderink, J.J. and A. van 

Doorn (1913), Lange, D.G. and P.M. Hartline, (1979), Zeevi, Y.Y. 

and A.M. Bruchstein (1977». 

However, the non-linearity of PFC in conjunction with non-regular 

time quantization creates quite serious difficulties when solving 

problems of system identification using PFM signals. 

Obviously this is the reason for the comparatively small number of 

papers published on this subject (Broughton, M.B. (1973), Knorring, 

V.G. and Ja. R. Jasick (1981». 

The purpose of the present report is to describe some methods of 

continuous open-loop system identification using PFM signals. The 

basis for this is the properties of PFM-signals and the theory of 

generalized functions. 

Several possibilities of using of PFM signals on system identifi

cation are considered. In accordance with these possibilities 

either the output signal of PFC excites the system or the system 

output is observed with the help of PFC. For both of these cases 

the effective computational schemes for estimation of transfer and 

weighting functions were obtained. 

In the report, the most attention is given only to the designing of 

the computational schemes suitable for system identification with 

PFM signal. 

The properties of the obtained estimates are discussed very briefly 

and the discussion carries only an illustrative character. A deep

er investigation of the obtained estimation properties can be the 

subject of further studies. 
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2. SOME EXAMPLES OF SYSTEMS WITH PFM-SIGNALS 

Before we start the discussion of main problem it is useful to give 

some examples of the implementing of PFM signals in different sys

tems. 

It will permit us to formulate the problem more clearly. 

Some of the vast fields of implementing of PFM signals are the 

automatic control systems. Fig. 1 shows a very simple example of 

a PFM control system. 

-Av r - - - - - - -, I 1111 
I 

I 
r (t) u (t)1 

I 
f(t) y(t) 

L PFC 
I 

G(S) 
+ 

I 
I -

L '£;0.£1 tr~H.e!. _ .J 

fig. 1 PFM feedback control system. 

In this system the pulse output signal of PFC, f(t), is used to 

excite the linear plant with transfer function G(s). The error 

signal u(t) is the difference between requested plant output signal 

r(t) and the actual plant output signal y(t). Generally these sig

nals are continuous. The PFC transforms the error signal u(t) into 

a pulse train f(t) with varying frequency. This pulse train dir

ectly drives the plant. 

Often the plant is a stepper motor (robot control systems, attitude 

control systems of spacecrafts). Then the stepper motor has an 

output shaft velocity that is directly proportional to the input 

pulse train frequency f(t). 

One can see from fig. 1 that the plant is directly excited by the 

output signal of the PFC and the continuous plant output is used as 

feedback. 

It is also possible that the states of plant are used as feedback. 
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Fig. 2 shows a multivariable state feedback PFM control system. 

PFM 

processor 
G(S) 

. . , x 
n 

fig. 2 Multivariable state feedback PFM control system 

In this case the controller consists of PFC's (to convert the ana

log signal to a PFM pulse train) and a PFM processor (to perform 

computations on PFM pulse trains (Tzafestas, S. (1979)). 

Another example of the implementation of PFM signals is given by 

modern measurement systems working on line with a computer (fig. 

3) • 

PROCESS 

COMPUTER 

fig. 3 PFM measurement system 
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Here the PFM sensors convert the plant input and output signals 

into pulse trains, which are transmitted over cable communication 

lines to PFM processors. Then the PFM processor performs first 

stage processing and provides the input of digital signals into 

computers. The concrete examples of this type of systems are num

erous measurement systems with pulse frequency sensors (Novitsky, 

P.V. (1970)). 

Very close to PFM measurement systems are also the multichannel 

measurement systems of nuclear physics (Artemiev V.M. and A.V. 

Ivanovsky (1986)). 

As it follows from fig. 3, in PFM measurement systems the inputs 

and outputs of process are observed with the help of PFM sensors. 

PFM signals have been used to build various models of neurail nets 

(Bayly, E.S. (1968), Koenderink, J.J. and Doorn, A. (1973)). One 

of the possible models for transmission of information in nervous 

systems is shown on fig. 4. 

receptor synapse 

PFC Fl 

\ 
axon to other 

input receivers 
F2 

output 

nerve 

membrane 

PFC Fl 

fig. 4 Model of transmission of information in nervous systems 

This model consists of PFC's (receptors), communication channels 

(axons) and receivers (synapses and nerve membranes) which are rep

resented as low-pass filters F1-F2. 
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In all the above-mentioned systems the implementation of PFM sig

nals is caused either by special features of the process, by requ

irements of small noise influence or by necessity of transmission 

signals over communication lines etc. 

From the given examples it is easy to see that there are three pos

sibilities. First when the process is observed with the help of 

PFC (fig. Sa), second when the process is excited by output signals 

of PFC (fig. Sb) and thirdly when the process is excited by PFM

signals and the output of the process is observed with the help of 

PFC (fig. Sc). 

I Process ' I PFC 

a) 

I Process I I PFC ~ • 
b) 

--··:I_P_F_C_ .... H Process H ..... _P_F_C_:I-c-)~·-
fig. S Positions of PF converters in the system 

Let us consider the problem formulation in detail. 
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3. PROBLEM FORMULATION 

Fig. 6 shows the general set-up of process, model, and PF conver

ters and will be referred to when discussing the various methods. 

11 
r - - --, 

u (t) I PPC I f (t --, 

L ___ J 

Linear 

process 

Model 

n (t) 

I - ..., 
(t) I 

I---"t---+ PPC 

L _____ J 

y (t) 
m 

+ 

fig. 6 General set-up of process, model and PF converters 

In accordance with above mentioned examples of PFM systems the PFC 

may be placed either at the output of the process (fig. 6, I) or at 

the input of the process (fig. 6, II) or simultaneously at both 

these places. As it follows from fig. 6 the discussion will be 

restricted further to 8180 time invariant open loop system. We 

shall also assume that disturbance u{t) can be described as a real

ization of a stationary stochastic process with spectral density 

«l> n (ro) . 

Now the identification problems are formulated in the following 

way: 

a. Generate the signal u{t), which directly excites a linear 

process and observe the output signal of PFC, f1{t). 

Based on these two signals form the estimate of the transfer 

function G
T 

(jro) 

GT{jro) =G{iro; T, u{t), fl (t», (3. 1) 
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where T is the time of observation of the signals u(t) and 

fl (t) 

b. Generate or observe the signal f
2

(t) exciting the linear pro

cess and observe the output signal y(t). 

Based on these observations for the estimate of the weighting 

function gT(t,A) 

gT (t,A) = g (t,A; T, f2 (t), y (t», (3.2) 

where A is a set of constant coefficients. 

c) Generate or observe the signal f 2 (t) and observe the output 

signal of PF converter fl (t). Based on these observations 

form the estimate of the weighting function gT(t,A) 

(3.3) 

It is obvious that the properties of the output signal of the PFC 

will play an important role in this discussion. Therefore we shall 

first consider the models of pulse-frequency (PF) converters and 

give descriptions of PFM signals, suitable for the solving of sys

tem identification and simulation problems. 



9 

4. MODELS OF PF-CONVERTERS AND DESCRIPTION OF PFM-SIGNALS 

There are several models of PF converters (Kuntsevich, V.M. 

(1970), Pavlidis, T. (1965), Tzafestas, S. (1979». Among them the 

models of integral PFC (IPFC), Sigma PFC (L PFC) and complete reset 

PFC (CR PFC) are more often used. 

Here we shall consider in detail only the model of IPFC with single 

sign output pulses (SS IPFC). This type of PFC is very often used 

in measurement (Novitsky, P.V. (1970» and control systems 

(Kuntsevich, V.M. (1970» and for the modelling of nervous systems 

(Rosen, M. (1972), Zeevi, J.J. (1977». Other types of PF convert

ers will be examined very briefly. 

The block-diagram of SS IPFC is shown in fig. 7. 

reset 

5 (lzl-5) 

I III II 

~ (t) z (t) 
TO 

f (t) 

w(t) t. 

5 

fig. 7 The Model of SS IPFC 

The model consists of an adder, an integrator and threshold devices 

(TD). To the input signal u(t) of the PFC is added a bias uB. This 

bias has been chosen in such way that uB > lu(t) I for any time mom

ent t. Therefore the signal w(t) is always positive. 

The integrator 

than the value 

is integrating signal w(t) while z(t) is smaller 

of threshold s. 

t. 
J 

At time moment tj 

J w(t)dt = s, j-integer (4.1) 
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and the threshold device emits a delta pulse s B(lzl-s). This 

pulse resets the integrator to zero and then all processes are rep

eated. 

Because the signal zIt) has a discontinuity at time tj we shall 

assume further that z(tj-O) = s, and Z(tj+O) = O. 

The output of TD can be described as a sequence of delta pulses 

which are emitted at time moments tj 

f(t) = L B(t-t .), 
j J 

(4.2) 

where B(t) - is a Dirac delta function. 

In case of need a special form of output pulses the model in fig. 7 

is completed by an output-forming element with weighting function 

p(t). Then the output signal of PFC is equal to 

fp(t) = p(t)*f(t) = L p(t-t.) . (4.3) 
j J 

The generalization of the IPFC model to the model of sigma PFC was 

introduced by Pavlidis T. and Jury E.!. (1965) (fig. 8). 

reset 

u 
B 

u(t) 

l:' 
z (t) l tj z (t) f(t) 

TD 
') tj .. , 

t s 

g(z) 
g (. ) 

fig. 8 The model of sigma PFC (L PFC) 

In this model the integrator has a feedback with operator g(.) If 

g(z) = a z, where a is a constant coefficient, then the model in 

fig. 8 corresponds to neural PFC (NPFC), which is used to build 

models of neural systems. 
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For NPFC it is true that 

~ (t) = u (t) - a z (t) + u
B 

- s Ii ( 1 z (t) I-s) , (4.4) 

and 

f(t) = 1i(lz(t) I-s). (4.5) 

On using (4.4) let us obtain the equations suitable for simulation 

of PFC's. 

We shall first determine the time to when pulses are emitted. 
J 

Rewrite equation (4.4). 

(4.6) 

After integrating the expression 

between two output pulses of PFC 

obtain 

(4.6) over the interval [to l' to] 
J- J 

and consider that z(to 1) = 0 we 
J-

t = 1 ln 1 
j a s 

to 

I J [u(t) 
t

j
_

1 

] at 
+ u

B 
e dt. (4.7) 

Let the input signal u(t) be constant over interval [t j _1, tj) 

u (t) = u 0 1 ' t E: [t 0 l' to) . 
J- J- J 

(4.8) 

Then the time interval 9
j 

= to-to 1 between pulses is equal to 
J J-

9
j 

= ~ [In (u
j
_1+uB)- ln (U

j
_

1
+u

B
-as)]. (4.9) 

From (4.9) it follows that for IPFC (a ~ 0) the interval 9
j 

can be 

determined by expression 

9
j 

= s / (u
j

_1 + uB) (4.10) 

The results (4.9) and (4.10) allow us to simulate the PFC in an 

iterative way if we know the input 

threshold s. Further we shall use 

signal u(t) and the value of 

these 

tion of the 

to also use 

intervals 9
j 

the fact that 

between pulses. 

expressions 

Apart from 

for calcula

these we have 
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(4.11) 

All examined models above of the PFC give clear ideas about the 

structure of PFC and can be implemented when simulating the PFC. 

But they are not convenient for the analysis of PFM systems, bec

ause they are not giving us non-iterative solutions. 

Several approaches to design analytic models of PFM signals have 

been proposed. We shall take in account the model which was first 

obtained by Lee H.C. (1965) and then by Zeevi, J.J. (1977). In 

accordance with this model the output pulse train (4.2) of an IPFC 

can be described in the following form 

fit) = W(t)[~ + ~ 
t 

00 2 
L cos ( !tn J 

s 0 
n=l 

(4.12 ) 

Zeevi, J.J. had derived this equation on the basis of the theory of 

generalised functions and Lee, H.C. had modified the model of an 

IFPC in accordance with the fig. 9. 

rB 

U(~ zit) 

w(t) 

~ tj 

1:i-1 

z (t) fit 

TD 

fig. 9 Model of an IPFC with multi threshold device 

In this model the integrator has an unbounded output signal and 

the threshold device emits the new output pulse every time when the 

value of integral zit) is increased above threshold s. (fig. 10). 

Model (4.12) connects the output sequence of pulses fit) with the 

input signal u(t) and considers this signal as a continuous time 

function. It permits us to analyse the PFM-signals and to show the 

important property of PFM-signals (see below). But this model is 

very complex for the design of identification algorithms. 



z (t) 

(j+2) s 

(j+l) 5 

js 

2s 

s 

f (t) 

r----:7~ 

13 

... ---
, I 

t 

1'-........ __ .... - - --
- - I.' _~_~ ___ _ 

, 
, I 

~ ______ -'----LI I~I _; 
fig. 10 The time diagram of IPFC. 

In order to obtain a suitable model of PFM-signals it is useful to 

remember that first of all a PFC converts information. This type 

of converter we call an analog-to-frequency converter, because the 

PFC-output signal frequency F(t) is proportional to the input sig

nal u(t) (here and further we shall consider that u(t) includes u
B

' 

u(t) > 0) 

F(t) = k u(t) , (4.13) 

where k is a constant. Eq. (4.13) is true if we neglect the proper 

dynamic of the PFC. 

There are several definitions of frequency: statistical definition, 

chronometric definition, phase and spectral definition (Knorring 

(1978». In agreement with statistical definition the frequency is 

the ratio of the number of pulses N(t,t) which occurs at interval 

[t, t+t] to the length of this interval t (fig. 11) 

F(t) = N (t, t) 

t 
(4.14) 
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N(t,t) 

r~--------------/'---------------~ 

I III I I 
t t+t 

fig. 11 Statistic definition of frequency 

We formally find the limit of this ratio when 1: tends to zero; we 

obtain 

F (t) = lim N(t,1:) 

M 1:~O 1: 
= L O(t-t .) 

j ] 
(4.15) 

Here index M means model. We shall further use this process, based 

on expression (4.15), to avoid confusion between true processes and 

models. 

The same expression for FM(t) we can obtain starting from the phase 

definition of frequency 

F(t) 1 d !P(t) 
= 21t' dt (4.16) 

If we have a pulse train, then it is obvious that the phase ~(t) 

increases with 2.1t every time a pulse occurs. So we can write 

~M(t) = ~ 
] 

21t l(t-t.) 
] 

(4.17) 

Substitute (4.17) into (4.16) we again obtain the model (4.15). It 

is easy to see that (4.17) corresponds to a piecewise step 

approximation of a continuous phase process ~ (t) (fig. 12). 

If we use linear piecewise approximation of phase process 

~(t) at t
j
_

1 
~ t ~ tj 

(4.18) 
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then the frequency FM(t) is equal to 

=~.,tE. 
J 

2(j+2jTI --------------------------:;;;,(:--

2(j+l)TIt-------------------------~7f---J 

2j TI -- - - - - - - --,.&._ ....... 

2TI ~ 
4TI 

V , 
, 

• 

, ... 
.,. --" ---- -

<P (t) 

<PM (t) 

t . 
I , ----- --,----:----:---------

F(t) 
I 

tl 

fig. 12. 

I 

-__ n_J I , 
t2 tj tj+l tj+2 

t 
I 

Phase definition of frequency 

This gives us the chronometric definition of frequency. 

(4.19) 

Thus we may say that expression (4.15) is in agreement with the 

piecewise step approximation of the integral of input signal bec

ause from (4.13) and (4.16) it follows that 

t 

~(t) = k f u(~)d~ 
o 

(4.20) 

Eq. (4.19) corresponds to a linear piecewise approximation of inte

gral in (4.20). 

So, using the piecewise approximation in the above-mentioned sense 

and taking in account (4.13), we can write the model of signal u(t) 

when this signal is presented with the help of a pulse train frequ

ency 

1 
-LO(t-t.) 
k j J 

(4.21) 

The last equation allows us to design models of output signals of 

continuous systems in the time 

ted by output signal of a PFC. 

domain, when these systems are exci

We shall further use it when solv-

ing system identification problems. 
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However, we need to remember that (4.21) is a mathematical idealiz

ation and we can use it only in integral operators because we never 

talk about the "values" of a Il-function. We talk only about the 

values of integrals involving all-function. 

As an example of the implemention of model (4.21) consider the 

Fourier transformation of signal u(t) over interval [O,T] 

After 

T 

U (00) = 1. f 
T 0 

u(t) 
-ion dt 

e 

substituting u(t) by its 

1 -ioot. 
UM(oo) = __ ~ J 

kT j 

(4.22 ) 

(4.21) we obtain 

(4.23) 

Let us define the conditions under which we can use formula (4.23), 

which allows us to compute the Fourier transformation of signal 

u (t) . 

From (4.12) it follows that 

u(t) = s ~ Il(t-t .) - u,.,(t) , 
j J 

(4.24) 

where 

t 
co 

21tn 
u,., (t) = 2 u(t) ~ cos f u (~) d~) 

n=l s 0 
(4.25) 

and u(t) > 0 . 

Because s = 11k (see 4.10) we rewrite (4.24) in this way 

(4.26) 

Substitute (4.26) into (4.22), then 

(4.27) 

Thus we can use model (4.21) and formula (4.23) for computation of 

the Fourier transformation of signal u(t) if 



T 

1. 
co 

u~(ro) = J 2 u(t) L T 
0 n=l 

Rewrite (4.28) in the following 

where 

co 

L L 
n=l ltn 

t 

p(t) = 2ltn J 
s 0 

Consider the integral 

T 

T 

J 
o 

J 
. -irot 
cos p(t) .e dp(t) 

o 

Here we assumed that 

T = L 6 .. 
j J 

For small ro(t.-t. 1) = ro 6
J
. 

J J-

T 

17 

t 
(2ltn d~) e -irotdt cos J u (~) ~ 0 

s 
0 

(4.28) 

form 

-irot 
cos p(t) e dp(t) (4.29) 

(4.30) 

-irot cos p(t) e dp(t) (4.31) 

(4.32 ) 

tj 

J cos p(t) .e-irotdP(t) ~ 
-irot. 1 

L e J- J 
tj-1 

cos p(t)dp(t) = 
o j 

-irot. 1 
t. 

= L e J- sin 
2ltn J J 

j 
s t

j
_

l 

(4.33 ) 

Because 

(4 . 34) 



18 

Consequently the transition from (4.23) to (4.22) is possible only 

for small ro9
j 

and when T ~ L
j
9

j
. For these conditions 

From this example one can see that in spite of the idealization the 

model (4.21) gives a suitable result in integral transformation. 

Sometimes, when one needs an instant value of signal model uM(t
j
), 

expression (4.19) can be useful. It occurs when one has to deal 

with a system which has a transfer function with equal orders of 

numerator and denominator. 
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5. THE ESTIMATION OF THE TRANSFER FUNCTION 

Let us consider the problems of estimation of a transfer function 

(3.1), when the process is excited by a sinusoidal test signal from 

the generator (fig. 13), and the output y(t) is observed with the 

help of a PF converter 

n (t) 

sin(wt) x(t) y (t) 

Generato Process E PFC 

Fig. 13 Estimation of the transfer function 

A commonly applied method is then to correlate the output y(t) with 

sin rot and cos rot respectively (Ljung, L. (1985 and 1987); Rake, H. 

(1980». 

So, if we would generate the input signal u(t) and observe only the 

output signal y(t) we would use the block-diagram of fig. 14 and 

could write 

IGT(tro)I 
2 

~ R2 + R2 = yu (0) (n/2ro) , 
u2 yu (5.1) 

. 
arg G

T 
( tro) arctan [RYU(2~)/Ryu(0)] , (5.2) 

where 

T 

Ryu (0) 
1 I y(t) sin rot dt , = T 0 

(5.3) 

T 

Ryu 
n .1 I y(t) (2ro) = cos rot dt 

T . 
0 

(5.4) 
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u sin (wt) 
Process 

y(t) 

sin (wt) ~ 
R (0) 

yu 

... 
a 
+' 

'" ... 
(]) 

" 
~ 

R ('Ji /2w) (]) cos (wt) 
l? X 

__ yu 

Fig. 14 Determination of the transfer function by correlation 

method 

In our case the output process y(t) is represented by means of 

pulse-frequency train 

1 
YM(t) = - L B(t-t .) 

k j J 
(5.5) 

Substitute (5.5) in (5.3) and (5.4), then 

T 

RM 1 J 1 sin 1 L sin yu (0) = - L B(t-t .) (cot)dt = kT 
cot

j 
, 

T 
0 k j J j 

(5.6) 

T 

RM 1t 1. J 1 1 
yu (2CO) = - r. Ii (t-t .) cos (cot)dt = kT ~ cos COS T 0 k j J 

J 

(5.7) 

IGM( iro) I = ~T ~ (L sin cot .) 2 + (L cos cot.)2 (5.8) T 
j J j J 
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The block diagram which is in accordance with the equations 

(5.6-5.7) is shown on fig. 15. 

r-------~Process PFC 

sin (wt) 1 -@- R (0) 
yu 

'" 0 
+' 

'" '" w 
c 
w 

cos (wt) r R ('Ii /2w) 

" .... yu 

fig. 15 Block-diagram for PFM estimation of the 

transfer function 

This block diagram for the estimation of a transfer function can be 

used when solving the testing problem. 

Fig. 16 shows the simulation results of equations (5.6-5.8) in the 

case when there is no noise disturbance and process is described as 

a first order low pass filter with the transfer function G(ioo) = 

1/(ioo+l). These results were obtained with the help of program IND 

1 (Appendix I). 

The simulation was implemented for 10 periods of the input signal 

and for different values of average frequency Fa of the PFC. The 

maximum deviation ~F of the frequency of the PFC output signal cor-

responded to 60% from average 

the modulation ~F/Fa was 0.6. 

There are three lines in fig. 

frequency Fa' so the maximum depth of 

16. 

response of the true process, line 

Line number 1 is the frequency 

2 corresponds to Fa = 50 Hz and 

difference between these lines line 3 corresponds Fa = 5 Hz. The 
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o 5 
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o 3 

o 2· 

o 1 

0 
10- 1 

IG(iW) I 

10 0 

ilF_ va.r . . 
F,,- . 

: w, r,j,d/s. 

Fig.16. PFM estimation of the transfer function (program IN01) 
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is explained by the approximation property of model (4.21). Below 

we shall consider the approximation error. Apart from this the 

errors of calculation have played a certain role in the high frequ

encies of the input harmonic signal. At high frequencies the out

put signal of process becomes small and, consequently the input 

signal of the PFC is also small (fig. 15). 

It leads to a decrease of the ratio ~F/Fa and to an increase of the 

calculation error at high frequencies. In order to reduce this neg

ative effect the program INDI has been transformed into program 

IND4. In the last program the amplitude of input signal u(t) is 

increased at high frequencies in order to keep the ratio ~F/Fa at 

the same level. 

The results which were obtained in this way are shown in fig. 17. 

To show the difference between the true frequency response (line 1) 

and the PFN of the frequency response (lines 1 and 2) fig. 18 was 

obtained with logarithm scales in both axes. It is easy to see 

that the more Fa the better the estimate of the frequency and the 

phase response (see fig. 16, 17, 18 and 19). This is in agreement 

with (4.33). 

As it is clear 

Ryu (0) 

and 

from (5.3) and 

+ i R (!Ll
yu 20) -

R M (0) + i R M (lL) 
yu yu 20) 

The closer y T
M

(iO) to YT(iO) 

G
T 

(jO) . 

(5.4) 

YT(iO) (5.9) 

(5.10) 

" M 
the closer the estimate G

T 
(jro) to 

That is the problem of estimation of transfer function can be 

transformed into the problem of estimation of YT(iro) with the help 

of formula (4.23). 

General conditions of equality YT(iro) = y
T

M(iro) are determined if 

expression (4.29) is equal to zero. 

Because there is no analytical solution for expression (4.29) we 

shall give here only the results of computer simulation (program 
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o 3 

0 .. 2 
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.AF = 06 
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Fig.!7. PFM estimation of the tranfer function (program IND4) 
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Fig.19. PFM estimation of the transfer function (program IND41 
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IND2). Fig. 20 shows the relative approximation error 

Y = 
ly T

M(iCO) I _ 1YT(iCO) I 

Iy T (ico) I 
. 100% (5.11) 

as the function of the PFC average frequency when the input signal 

of PFC is y(t) = sin cot, CO = 1. The relative error y is smaller 

than 0.1% if the average frequency Fa is more than 10 Hz or conse

quently the multiplication co 9a= CO/Fa is smaller than 0.1. There 

exist optimal values of the depth of modulation ~/Fa (fig. 21). 

They range from 0.2 to 0.4. 

Fig. 22 shows the results of computer simulation when the depth of 

the modulation 8F/Fa is equal to 0.3. In this case the signal y(t) 

included a noise disturbance u(t) (fig. 23). The signal to noise 

ratio was equal to 13.86 dB (program IND3). 

Concluding, we notice that among the advantages of PFM estimation 

of the transfer function is the absence of multiplication opera

tions in (5.6) and (5.7). 

This permits us to realize it on digital devices in a very easy 

way. 

It is also possible to see (fig. 17, line 3, point co=10) that the 

estimate (5.8) gives suitable results when only about 3 samples 

occur on period of the harmonic signal. For the purpose of compar

ison fig. 24 shows the frequency response of the first order system 

when using PFM estimation (line 1) and the estimation with regular 

time quantization (line 2). The sampling frequency and the average 

frequency of PFC output signal were equal to 50 Hz. To draw fig. 

24 the program IND4 and RTC were used. Line 3 on fig. 24 corres

ponds to the true process. 

For the same conditions the PFM estimate has an error which is 

smaller than ordinary estimate based on regular time quantization. 

Thus in practice we can use PFM estimation of the transfer function 

in all cases when estimation with regular time quantization is 

used. 

Apart from this, when testing the dynamic behaviour of PF-conver

ters only the PFM estimation is possible. 
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6. ESTIMATION OF THE WEIGHTING FUNCTION 

According to chapter 3 we have two problems (3.2) and (3.3). 

Firstly, consider the problem (3.2) when the linear process is 

excited by a pulse frequency signal (fig. 24). 

u (t) f (t) --- PFC Process ~
(t) 

x(t) y(t) 1: I-~ __ _ 

+ 
e (t) 

'-.- Model 

fig. 24 Estimation of the weighting function 

The additive noise is assumed to be a stationary zero mean stochas

tic process with a spectral density ~n(t) (ro) • 

The aim here is to estimate the weighting function of the linear 

process observing signals f(t) and y(t). 

Let the model of the linear process have the weighting function 

g(t), which is represented over the interval [O,T] by equation 

00 

g(t) = I. 
n=-oo 

where ~n(t) are orthogonal functions. 

Usually, orthogonal functions are determined by equations 

T 

J 
o 

m = -n 

, m =I: -n 

(6.1) 

(6.2) 



and 

A = 
n 

g(t) .Ijln(t)dt 
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(6.3) 

Now the problem of the weighting function estimation can be trans

formed into the problem of the estimation of coefficients An. 

Theorem 6.1: Let the model of a linear process have the weighting 

function (6.1) and excited by signal 

1 
uM(t) = k ~ B(t-t j ) , 

J 

then the estimate of coefficients An satisfy the criterion 

T 

J = I [y(t) - YM(t)]2 dt -+ min, L = 1,2 ... 
o 

is equal to 

T 

I y (t) ~ cn (t-t.)dt . T-n J 

1 I 
k 0 

T 
o 

where tj €: [O,T] , if 

T 

J 

~ Ijln(t-t l ) ·Ijlm(t-tp)dt 

for any time moments tl and tp . 

Proof 

o , m * -n 

For a linear process with weighting function (6.1) we have 

T 

y (t) = I g ('t) u (t-'t) d't 

o 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

substituting (6.4) in the convolution integral (6.8) we obtain the 

output signal of the model 

= 1. ~ g(t-t.) = 1 
k j J k 

00 

j n=-oo 
(6.9) 



where tj e[O,T] . 

Now, 

T 

J = I 
o 

[y(t) - 1. L 
k j 

35 

00 

(6.10) 
n;;:;:-oo 

To estimate the coefficients An in such way that criterion (6.10) 

will have a minimum l let us find the derivative OJIOA_d 
T 

[Y (t) An !Pn (t-t j )] [; !P_d(t-tj)]dt 
oJ - .£. _ 1. 00 

= I L L 
dA_d k k 

0 j n:;;;::-oo 

and equate it to zero. Then 

T 

J y(t) ~ !P_d(t-tj)dt = 
o J 

L 
k 

(6.11) 

(6.12) 

Rewrite the right part of equation (6.12) 

1 
k 

n=-oo 

T 

L L I 
l p 0 

In accordance with (6.7) the internal integral is equal to zero for 

any n, apart from n=d. 

Then 

T 

I 
a 

y(t) L !P_d(t-tj)dt 
j 

and hence (6.6) has been proved. C 

T 

I L 'P d (t-t
J
,) ~ 'P-d (t-YJ') dt 

a j J 

(6.13) 

In expression (6.6) the sum of the orthogonal function L!P (t-t,) 
j n J 

can be treated as the output yn(t) of the very narrow band-pass 

filter which is excited by output signal of the PFC, i.e. 
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Yn(t) = L ~ (t-t.) , 
j n J 

(6.14 ) 

In this way the estimate (6.6) is in agreement with the block-dia

gram on fig. 25. 

u (t) f (t) x(t) y~) 

PFC Process z:. • .,. 

>:n 
(t) 

Filter 

Y n (t) t 
X )( 

I 

I S ~ I 

~ 
• t-

A 
n 

fig. 25 Estimation of the coefficients An 

Fig. 25 reminds us of the estimating of the weighting function with 

the help of orthogonal filters, when the process is excited direct

ly by signal u(t) (without using the PFC) (see Eykhoff, P. (1974) 

and Deich, A.M. (1979». 

The approach based on the use of orthogonal filters requires double 

orthogonality. It means that it is not enough only the orthogonal

ity of functions (~n(t», these functions should be orthogonal with 

the weight of ~u(ro), which is the spectral density of input signal. 

Because often the spectral density ~u(ro) is unknown it leads to 

difficulties when implementing this approach. 
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In our case we used only one special condition, (6.7). This condi

tion holds true for the trigonometrical and Radermacher functions 

and does not require the apriori knowledge of the ~u(ro). This is 

one of the advantages of the proposed estimate (6.6). To find 

other orthogonal functions which are in line with (6.7) the auxili

ary investigations should be performed. 

We can obtain a simpler procedure for the estimation of the An if 

we lay further restriction on functions (~n(t)}. 

Lemma 6.1: If the orthogonal functions satisfy the condition 

(6.15) 

for any time moment t. and assumptions (6.1), (6.4 - 6.5) hold 
J 

true, then the estimate of coefficient An is equal to 

Proof 

T 

; J y(t) '~_n(t)dt 
n 0 

An = ~~~1---------------

k ~ ~-n (tj) 
J 

From (6.15) and (6.2) it follows that 

T 

J 
o 

(6.16) 

m * -n 

-no 

(6.17) 

Hence the condition (6.15) gives a stronger restriction than (6.7) 

and includes the latter. 

The estimate (6.6) had been obtained by using the upper part of the 

condition (6.17). Let us take into account the second part of the 

condition (6.17), when m = -no 

Then the denominator of the estimate (6.6) is equal to 

T 

1. J 
k 0 

T 

= f ~ ~n(-tj)'~ ~_n(-tj) J ~n(t) '~_n(t)dt 
J J 0 
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c
n = - I. lP (-t,) 

k j n J 

Rewrite (6.6) using (6.18) and(6.15) 

T 

Corro11ary 6.1: In a particular case when 

icoont 
IlP

n 
(t)} = Ie } , COo = 21tfT 

the estimate (6.16) can be written in the form 

T 

1. J 
T 0 

-icoont 
y(t).e dt 

1 -icoo nt J' 
-I.e 
k j 

(6.18) 

(6.19) 

(6.20) 

The next lemma shows the conditions under which the estimates (6.6) 

and (6.16) are unbiased. 

Lemma 6.2: If the additive noise nIt) is a stochastic stationary 

process with zero mean value E[n(t)] = 0 and the linear process 

excited by the signal (6.4) is in the model set (6.1), then the 

estimates (6.6) and (6.16) are unbiased. 

Proof 

Describe y(t) as the sum 

y(t) = x(t) + nIt) (6.21) 

Then (6.6) is equal to 

T 

J x(t) ~lP_d(t-tj)dt 
= __ ~~O ________ JL-____________ __ 

T 
+ (6.22) 

f ~ ! lP_d(t-t j ) I. lPd (t-t ,) dt 
j J 
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T 

f nIt) L cP (t-t,)dt 
,-n J + __ =-__ ~O ______ J~ __________ ___ 

T 

.if 
k 0 

Due to the linear process is in the model set we can write 

1 00 

x(t) = y (t) = - L L 
M k , 

J n=-oo 
(6.23) 

After substituting (6.23) in (6.22) and using (6.7) we obtain 

(6.24) 

From this it immediately follows that E[Ad ] = Ad ' if E[n(t)] = O. 

Therefore the estimate (6.6) is unbiased. 

Using (6.23), (6.15) and (6.2) to prove this for the estimate 

(6.16) we obtain in the same way 

T 

~ f nIt) CP_d(tjldt 
d 0 

1 
-k L cP (t .) 

. -n J 
J 

Corrollary 6.2: Consider the estimate (6.20). 

(6.25) 

The numerator of this estimate is the Fourier transformation 

YT(iro
n

) of signal y(t) over the interval [O,T]. The denominator is 

also the Fourier transformation U~(iron)' of the model of input sig

nal uM(t). 

In agreement with L. Ljung (1985) let us determine the Fourier 

transformation as 

y (iro ) = _1 __ 
T n -fT' 

T 

f 
o 

-iroont 
y(t).e dt. (6.26) 

Then (6.20) is equal to 
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(6.27) 

using these designations we can rewrite equation (6.25) 

(6.28) 

From (6.28) it follows that the variance of the estimate (6.20) is 

equal to 

EE (A -A ) 2] = E T n 
• [( N (iro ) 

n n T U~(iron) 

T21 U M (iro ) 12 
Tn' 

(6.29) 

where ~n(t) (ron) is the spectral density of the noise disturbance 

n(t). Thus the higher the signal-to-noise ratio the less the vari

ance of the estimate (6.20). So the estimates obtained above are 

not in contradiction with common knowledge. 

In practice the output signal of a PFC cannot have the shape of 

delta-pulses. The real output pulses have certain amplitude and 

time length. It means that, in practice, estimates (6.6), (6.16) 

and (6.20) will give the values of coefficients An of the linear 

process which includes the pulse forming element. These coeffici

ents can be recalculated if one knows the shape of pulses. 

For the estimates obtained above we had not adopted any assumption 

about signal y(t), apart from that it is the output of a linear 

process with additive noise. Therefore, to obtain estimates (6.6), 

(6.16) and (6.20) there is no need to excite the process with the 

PFC output signal. It is enough to excite only the model (fig. 

25) . 

In this case we deal with pulse-frequency modelling. It is inter

esting to establish the properties of the above obtained estimates 

for this case. 
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__ J 

fig. 26 Pulse-frequency modelling 

For the sake of simplicity and in order to find the relationships 

between pulse-frequency modelling and previous approaches consider 

only estimates (6.16) and (6.20). 

Lemma 6.3: If the linear process is in the model set (6.1), and 

n(t) is a stochastic stationary process with zero mean value 

E[n(t)J=O, then for the case of pulse frequency modelling the math

ematical expectation of the estimate (6.16) is equal to 

Proof 

T 

J u(t) <i>_n(t)dt 
o (6.30 ) 

The output of the linear process with weighting function (6.1) 

T 

x (t) = J 
o 

00 

n=-oo 
An 'Pn (t-t) u (t) dt 

Then the estimate (6.16) can be rewritten 

(6.31) 



T 

J 
+ 0 

00 

d=-oo 
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T 

Add <j)d (t-'t) ·<j)-n (t) dt} 
o 

n(t) . <j)_n(t)dt 

1 
k ~ <j)_n(t j ) 

J 

Because (6.15) gives 

T 

J 
o 

u('t)d't 

and E[n(t)J = 0 then from (6.32) it follows (6.30). 

+ 

(6.32) 

(6.33) 

Corrollary 6.3: For the estimate (6.20) under above mentioned con

ditions 

T 

J 
o 

-iCOo nt 
u(t).e dt 

1. L e-icoontj 
k j 

(6.34) 

As it had been shown in chapter 4 for sufficiently small values of 

the multiplication co 9
J
. and for T L 9. we can write 

j J 

T 

J u(t) e-jCOont dt = f L e-icoontj 
o j 

(6.35) 

Consequently, as it appears from (6.27), estimate (6.20) is approx

imately equal to 

(6.36) 
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and if 6 j ~ 0, then (6.34) tends to An. 

If we rewrite (6.36) in the next form 

YT(iOln ) 

U
T 

(iOl
n

) (6.37) 

we obtain the estimate of the transfer function at frequency Oln' 

because when no noise disturbance n(t) and T ~ ~, then 

(6.38) 

According to L. Ljung (1985 and 1987) we shall call (6.37) as the 

empirical transfer function estimate (ETFE). So under certain con

ditions the estimate (6.20) leads to ETFE. It gives us an easier 

way to verify our conclusions and permits us to spread some proper

ties of ETFE on the estimate (6.20). 

In particular if UT(Oln) ; 0, then we simply consider that estimate 

(6.20) is undefined at the frequency Oln. When input signal u(t) is 

periodic with period LT, then the variance of the estimate 

LT 

J 
o 

A .T = ~------~--~------
L e-iOlontj n 
j 

(6.39) 

decay as l/L. When the input is a stochastic stationary process 

then the variance of the estimate (6.39) does not decrease as 

interval T increases. It remains equal to the noise-to-signal 

ratio at corresponding frequency. To improve the estimate (6.20) 

when noise occurs the smoothing ETFE spectral analysis can be 

implemented (L. Ljung (1985». 

In order to illustrate the PFM estimation of the ETFE the simula

tion of eq. (6.37) has been performed. 

Fig. 27 shows how the PFM estimate of the ETFE depends on PFC aver

age frequency. The line 1 corresponds to the true frequency res

ponse of the linear process, the lines 2 and 3 correspond to the 
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estimate of frequency response at average frequencies 20 Hz and 5 

Hz. The higher the PFC average frequency, the closer the estimate 

to the true frequency response. This is in agreement with (6.35). 

Fig. 27 was obtained when there was no noise disturbance and the 

input signal u(t) had the rectangular shape (program IDNWFl). The 

integral in the formula (6.30) has been calculated in an analytical 

way. 

In practice, one has to calculate this integral using numerical 

methods. For the digital hardware realization case we should con

sider that signal y(t) is constant during the time between two pul

ses of PFC. Then the integral in (6.20) is approximately equal to 

T 

J 
o 

-iro t 
y(t) e n dt ~ -e 

-iro 
n (6.40) 

Fig. 28 shows the simulation results (program WF1N) for this. Here 

line 1 corresponds to the true frequency response 

process, line 2 corresponds to the PFM estimation 

response (Fa = 20 Hz). The signal-to-noise ratio 

iods of the rectangular input signal were used to 

of the 

of the 

was 20 

obtain 

linear 

frequency 

dB,lO per-

this esti-

mate. For the aim of comparison fig. 29 shows the estimate of the 

ETFE under regular time quantization (program RClN). As is clear 

from fig. 28 and fig. 29 the PFM estimate at the same conditions 

has the smaller variance. 

This fact also takes place for arbitrary input signal u(t). Figs. 

30 and 31 show the simulation results when the input was represent

ed by noise signal (program WFN1 and RC2N) . 

The result was due to aliasing noise under regular time quantiza

tion. To avoid this effect one should perform a preliminary analog 

processing of the input signals before regular time quantization. 

This is the main disadvantage of regular time quantization. 

Now let us consider the problem (3.3) when the model of the process 

is excited by output signal of the PFC and the output signal of the 

process is also observed with the help of PFC (fig. 6). Then we can 
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formulate the next two lemmas. 

Lemma 6.4: Let assumptions (6.1), (6.4), (6.5), (6.7) hold true 

and the output signal of process, observed with the help of the 

PFC, be described as 

then the estimate of coefficients An is equal to 

I. I. to (t ,-t . ) 
j 1. 't'-n .<. J 

An = :--------------------------
J 
o 

I. cp (t-t .).I. cp (t-t.)dt 
j n J j -n J 

where t j £. [0, T], t 1. £ [0, T] 

Proof 

There are two ways to prove this lemma. 

1) Consider criterion (6.5). Then 

T 

J = f 
o 

co 

{
I. I. LA 

. k n 
n=-oo J 

After equating the derivative 

T 

= £ f 
k 0 

to zero we obtain (6.42). 

(6.41) 

(6.42) 

(6.44) 

2) The proof of this lemma can be obtained immediately from the

orem 6.1 if one substitutes in (6.6), instead of signal y(t), the 

expression (6.41). This is possible because when proving theorem 

6.1 no assumption about signal y(t) has been made. 

Lemma 6.5: If the orthogonal functions satisfy condition (6.15) 

and if assumptions (6.1), (6.4), (6.5), (6.41) hold true then 



Proof 

r Cjl-n (t1) 

= c n t. Cjl_n(t j ) 
J 
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Consider the estimate (6.41). using (6.15) we can write 

T 

~ Cjln(-tj).~ Cjl_n(-t j ) fo Cjln(t) ·Cjl_n(t)dt 
J J 

Taking into account that Cjl (-t.) = Cjl (t.) we obtain (6.45). 
n J -n J 

iroont 

(6.45 ) 

(6.46) 

Corrolary 6.5: In a particular case when Cjln(t) = e , roo = 2x/T 

the estimate (6.46) can be written in the form 

Thus we have 

T L e 
j 

-iroo nt; 

Y~ (iron) 

T U~(iron) 

D (6.47) 

(6.48) 

The distinction of the estimate (6.48) from (6.27) is only in the 

fact that in expression (6.48) the nominator is the PFM Fourier 

transformation of the output signal model YM(t) . 

For sufficiently small ro 9
j 

and ro 9
1 

the estimate 

A T = 
n 

Y~ (iron) 

U~ (iron) 
(6.49) 

gives us the estimate of the transfer function at the frequency 

ron· 
Fig. 32 shows the simulation results of the estimate (6.49). As 

was expected, the higher the average frequency of the PFC, the 

closer the estimate to the true frequency response (Program 

IDNWF3) . 



1 
~---' 

0 9 I.G (iW)I .. 

0 8 

0 7 

O. 6 

O. 5 

O. 4 

0 3 

O. 2 . ........ 

0 1 ........ 

W, rad/s 

0 
10- 1 10 0 

Fig.32. PFM estimate of the ETM (program IDNWFE) 

••••••••• , •••• I'" 

true proces 5 : 

I 
F =5HZ 
.a 



53 

7. CONCLUSIONS 

Non-periodic time quantization has proved very useful for the 

improvement of measurement and control systems. 

Very often non-periodic time quantization is connected with pulse

frequency modulation. In the present report some aspects of con

tinuous system identification using PFM signals have been studied. 

To design the transfer function and weighting function estimates 

based on the use of PFM signals several models of these signals 

were briefly reviewed. It has been shown that the continuous mea

surement signals can be represented by the sum of shifted Dirac 

delta functions. 

This presentation follows from certain definitions of frequency and 

this is related to the piecewise step approximation of the integral 

of continuous measurement signals. 

The PFM estimate of the transfer function has been obtained on the 

basis of the suggested presentation of continuous measurement sig

nals and frequency analysis by the correlation method. The more 

attractive feature of this estimate is the simplicity of hardware 

digital realization. The simulation has shown that under equal 

conditions the PFM estimation of the transfer function gives a bet

ter result than the estimate based on periodic sampling data from 

continuous measurement signals. 

A more interesting case of the implementation of PFM signals was 

connected with the estimation of the weighting function. To obtain 

the estimate of the weighting function the orthogonal expansion and 

output error approach with minimum mean square criteria have been 

used. It has been shown that a PFM weighting function estimate 

does not require the apriori knowledge of input signal spectral 

density in order to find a suitable set of orthogonal functions. 

As it fOllows from the proved theorem for the PFM estimation, the 

orthogonal functions should keep their orthogonal properties when 

the argument of these functions has an arbitrary shift. 

For the PFM estimation one can use Rademacher and trigonometrical 
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functions. Nevertheless an auxiliary investigation could be 

attempted in order to find another set of orthogonal functions 

which satisfy the given condition. 

Two different cases of PFM estimation of the weighting function 

have been considered. First when the process is excited by a PFC 

output signal and second when a PFC is used only for the observa

tion. It has been established that in the first case the weighting 

function estimate is unbiased. In the second case the estimate has 

a bias, but for a sufficiently small interval between the pulses 

(or for a sufficiently high average frequency of the PFC) the bias 

is small and one can neglect it. It permits us to use the PFM 

estimation in those cases when an ordinary estimate based on regu

lar time sampling is used. 

The relationship between the PFM estimate of the weighting function 

coefficients and the emperical transfer function estimate has given 

an easier way to verify the obtained results. The simulation based 

on this relationship has shown that for arbitrary input signal or 

for unknown noise the variance of the PFM estimate can be smaller 

than the estimate with regular time quantization. 
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APPENDICES 



C 

F'ROGRAM INDi. 
IMPLICIT REALCA-Z) 

59 

C ESTIMATION OF THE TRANSFER FUNCTION 
C FIRST ORDER MODEL 
C PULSE FREQUENCY OBSERVER 
C CORRELATION ANALYSIS 
C 
C FS-average f;equency of PFC 
C OM-circle frequency of input signal 
C G -coefficient of PFC sensetivity 
C file 'IND.DAT'collect the output data of program 
C Q -number of periods of input signal 
C 

OPENI3,FILE='INN.DAT') 
WRITE II, 4) 

4 FORMATllX,'Q=') 
READ(*,!O) Q 
WI:;:ITE q, 5) 

5 FORMAT(lX,'FS=') 
READ 1*, 1 (I) FS 

10 FORMATIE10.4) 
WRITEI*,15) 

15 FORMATI1X,'G=') 
READI*,10) G 

25 WRITE (*, 30) 
30 FORMATI1X,'OM=') 

READI*,10) OM 
TN=O 
SR=l 
SM=O 
TI=2*3.1415/0MW 
H=I/SQRTIOM**2+1) 
FH=-ATAN (OM) 

40 U=H*SINIOM*TN+FH) 
TE=lI (FS+G*U) 
TN=TN+TE 
ER=COS IOM*TN) 
E~'I=SIN (oM*TN) 
SR=SR+ER 
SM=SM-Et1 
IF (TN .LT. TI) THEN 

GOTO 40 
ELSE 

SN=SQRTISR**2+SM**2)/IG*TI)*2 
F=(~Tm~(St·1/SR)-1.57075 ' 
WF(lTE 1*, 45) 

45 FORMATI9X,'SN',14X,'H',15X,'F',15X,'FH') 
WRITEI*,50) SN,H,F,FH 
00=0 
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WRITE(3,51) OM,SN,H,OO 
50 FORMAT(lX,4(E15.5,2X» 
51 FORMAT(lX,3(E15.5,2X),F2.1) 

IF (OM .LT. 100) THEN 
GOTO 25 

ELSE 
GOTO 55 

END IF 
END IF 

55 END 



C 

PROGRAM IND2 
IMPLICIT REALCA-Z) 

61 

C SPECTRA ANALISIS 
C HARMONIC SIGNAL 
C PULSE FREQUENCY OBSERVER 
C 

C 
C FS-average frequency of PFC 
COM-circle 'requency of signal 
C G -coefficient of PFC sensetivity 
C file 'IND.DAT'collect the output data of program 
C Q -number of periods of the input siignal 
C 

OPENI3,FILE='IND.DAT') 
WRITEI*,5) 

5 FORMATIIX,'OM=') 
READI*,10) OM 
WRITEI*,6) 

6 FDRMATCIX,'Q=') 
READI*,10) Q 

10 FORMATIEI0.4) 
25 WRITE(*,30) 
30 FDRt1AT (1 X, ' FS=' ) 

READ(*,10) FS 
G=FS/I0 
DM=G/FS 

35 TN=O 
SR=1 
SM=O 
TI=2*3.1415/DM*Q 

40 lI=SIN <DM*TN) 
TE=1/IFS+G*U) 
TN=TN+TE 
ER=COS (OMHN) 
EM=SIN(OMHN) 
SR=SR+ER 
S~l=S~I-EM 

IF (TN .LT. TI) THEN 
GOTO 40 

ELSE 
SN=SQRTCSR**2+SM**2)/CG*TI) 
F=ATAN(SM/SR) 
WR ITE ( *, 45) 

45 FORMAT(9X,'FS',14X,'DM',14X,'SN',14X,'F') 
WRITEC*,50) FS,DM,SN,F 
00=0 . 
WRITE(3,51) FS,DM,SN,DD 

50 FDRMAT(IX,4(E15.5,2X» 
51 FDRMAT(IX,3(EI5.5,2X),F2.1) 

IF (G . L T. (8*FSI 10» THEN 
G=G+FS/I0 
DM=G/FS 
GOTD 35 



ELSE 
IF (FS. L T. 1(0) THEN 

GO TO 25 
ELSE 
GO TO 55 
END iF 

END IF 
END IF 

55 END 
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C 

PROGRAM IND~; 

IMPLICIT REALIA-Zl 

63 

C ESTIMATION OF THE TRANSFER FUNCTION 
C FIRST ORDER MODEL 
C PULSE FREQUENCY OBSERVER 
C NOISE INTERRUPTION 
C CORRELATICIN ANALYSIS 
C 
C FS-average frequency of PFC 
C OM-circle frequency of input signal 
C G -coefficient of PFC sensetivity 
C file 'IND.DAT'collect the output data of program 
C Q -number of periods of input signal 
C file 'F. MAT' consists the random numbers RR 
C 

DPENI3,FILE='INN.DAT') 
WRITE I 1,4) 

4 FORMATIlX,'Q=') 
READ(I,lO) Q 
WRITEI*,5) 

5 FORMATIlX,'FS=') 
READII,lO) FS 

10 FORMATIE10.4) 
WRITEI*,15) 

15 FORMATllX,'G=') 

30 

READ n, 10) G 

WRITE 1*,30) 
FORMAT I lX, 'OM=' ) 
READII,lO) OM 
OPENI4,FILE='F.MAT') 
TN=O 
SR=1 
SM=O 
TI=2*3.l415/0M*Q 
H=l/SQRTIOM**2+l) 
FH=-ATANIOM) 

40 U=SINIOM*TN+FH) 
READI4,4l) RR 

41 FORMATI3X,F7.5) 
R=U+RR 
TE=l/IFS+G*R) 
TN=TN+TE 
ER=COS <OM*TN) 
EI'1=SIN <OMITN) 
SR=SR+ER 
SM=SM-EM 
IF ITN .LT. TIl THEN 

GOTO 40 
ELSE 

SN=H*SQRT(SRI*2+SM*121/IG*TI)*2 
F=ATANISM/SRI-1.57075 
WRITE (*,45) 

45 FORMAT(9X,'SN',14X,'H',15X,'F',15X,'FH') 
WRITE(I,50) SN,H,F,FH 
00=0 
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WRITE(3,~1) OM,SN,H,OO 
50 FORMAT(lX,4(E15.5,2X» 
51 FORMAT(lX,3(E15.5,2X),F2.1) 

IF (OM .LT. 100) THEN 
CLOSE(4,STATUS='KEEP') 
GOTO 25 

ELSE 
GOTO 55 

END IF 
END IF 

55 END 



C 

PROGRAM IND~· 

IMPLICIT REALCA-Z) 

65 

C ESTIMATION OF THE TRANSFER FUNCTION 
C FIRST ORDER MODEL 
C F'ULSE FREQUENCY OBSERVER 
C CORRELATION ANALYSIS 
C 

C FS-average frequency of PFC 
C OM-circle frequency of input signal 
C G -coefficient of PFC sensetivity 
C file 'IND.DAT'collect the output data of program 
C Q -number of periods of input signal 
C 

OPENC3,FILE='INN.DAT') 
WRITE CI, 4) 

4 FORMAT(lX,'Q=') 
READ(',10) Q 
WRITE(*,5) 

5 FORMAT(lX,'FS=') 
READ ( *, 1 (» FS 

10 FOR~lAT (EI0.4) 
WRITEC*, 15) 

15 FORMAT(lX,'G=') 
READ ( *, 1 (» G 

25 WRITE(I,30) 
30 FORMAT(IX,'oM=') 

READ(*,10) OM 
TN=O 
SR=1 
SM=O 
TI=213.1415/0MIQ 
H=I/SQRT(OMI*2+1) 
FH=-ATAN COM) 

40 U=SIN(OM*TN+FH) 
TE=1i (FS+G*lJ) 
Rl=O 
WRITE(3,41) U,TN,G,Rl 

41 FoRMAT(IX,3(EI5.5,2XI,F2.1) 
TN=TN+TE 
ER=CoS COI1ITN) 
EM=ElIN COM*TN) 
SR=SR+ER 

SM=SM-Et1 
IF (TN .LT. TI) THEN 

GOTo 40 
ELSE 

SN=H*SQRT(SR**2+SM*12)/CG*TI)*2 
~=ATAN(SM/SR)-1.57075 

WRITE <*, 45) 
FoRMAT(9X,'SN',14X,'H',15X,'F',15X,'FH') 
WRITE(',50) SN,H,F,FH 
00=0 



66 

WRITE(3,51) OM,SN,H,OO 
50 FORMAT(lX,4(E15.5,2X» 
51 FORMAT(lX,3(E15.5,2X),F2.1) 

IF (OM .LT. 100) THEN 
GOTO 25 

ELSE 
GOTO 5:'; 

END IF 
END IF 

55 END 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

4 

5 

10 

PROGRAt1 RTC 
IMPLICIT REAL(A-Z) 
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ESTIMATION'OF THE TRANSFER FUNCTION 
FIRST ORDER MODEL 
REGULAR TIME QUANTIZATION 
NOISE INTERRUPTION 
CORRELATION ANALYSIS 

FS-ave,.-age f,.-equency of PFC 
OM-ci,.-cle f,.-equency of input signal 
G -coefficient of PFC sensetivity 
file 'IND.DAT'collect the output data of p,.-og,.-am 
Q -numbe,.- of periods of input signal 
file 'F. MAT' consists the ,.-andom numbe,.-s RR 

OPENC3,FILE='INN.DAT') 
WRITE C', 4) 
FORMAT ( 1 X , ' Q~' ) 
READC',10) Q 
WRITE (*,5) 
FORMAT C lX,' FS~') 
READ(',10) FS 
FORMAT(E10.4) 
DO 2 OM~O.l,lOO,O.l 

TN~O 

SR~l 

SM~O 

TI~2*3.1415/0M*Q 

H~1/SQRT(OM**2+1) 

FH~-ATAN(OM) 

40 U-SIN(OM*TN+FH) 
TE~lIFS 

TN-TN+TE 
ER-COS(OM*TN)*U*TE 
EM-SINCOM*TN)*U*TE 
SR-SR+ER 
SM-SI'1-EM 
IF (TN .LT. TIl THEN 

GOTO 40 
ELSE 

SN~H*SQRT(SR**2+SM**2)/(TI)*2 

F~ATANCSM/SR)-1.57075 

WRITE ,*,45) 
45 FORMAT(9X,'SN',14X,'H',15X,'F',15X,'FH') 

WRITE(I,50) SN,H,F,FH 
00-0 
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WRITE(3,51) OM,SN,H,OO 
50 FORMAT(lX,4(E15.5,2X» 
51 FORMAT(lX,3(E15.5,2X),F2.1) 

END IF 
2 CONTINUE 

55 END 



C 

PROGRAt1 IDNWF 1 
IMPLICIT REAL CA-Z) 

69 

C ESTIMATION OF THE COEFFICIENTS OF THE WEIGHTING FUNCTIONS 
C RECTANGULER INPUT SIGNAL 
C FIRST ORDER MODEL 
C PULSE FREQUENCY ANALYSIS 
C ANALITICAL DESISION FOR SYSTEM OUTPUT 
C 

C DENOTI ONS: 
C FS-AVERAGE FREQUENCY OF PFM, 
C OMU-FREQUENCY OF THE INPUT SIGNAL 
C N-NUMBER OF COEFFICIENTS OF WEIGHTING FUNCTIONS, 
C G-PFM COEFFICIENT, 
C Q-NUMBER OF THE PERIODS OF INPUT SIGNALS, 
CAR-REAL PART OF THE ESTIMATECARM-REAL PART TRUE VALUE OF COEFFICIEi 
C AM-COMPLEX PART OF THE ESTIMATECAMM-COMPLEX PART TRUE •.• ), 
C AOM-ABSOLUTE VALUE OF THE ESTIMATECMM-ABSOLUTE TRUE VALUE •.. ) 
C 

OPENC3,FILE-'IDN.DAT') 
WRITE n, 5) 

5 FORMATC1X,'FS-') 
READC*,10) FS 

10 FOR~IAT (ElO. 4) 

Wr~ITEC*,15) 

15 FORMAT(lX,'OMU-') 
READC*,10) OMU 
WRITE (*,35) 

35 FORMATC1X,'N-') 
READ ( *, 10) N 
WRITE C *,36) 

36 FORMAT(lX,'G-') 
READC*,10) G 
WRITE(*,37) 

37 FORMATC1X,'Q-') 
READ(*,10) Q 
DO 1, K-1, N, 2 

TN-O 
SR-O 
51'1-0 

T-6.283/0MU 
TI-QH 

40 U-SIN COMIJ*TN) 
IF CU.LT.O) THEN 

U--1 
ELSE 

U=:l 

END IF 



TE=l/(FS+G*U) 
TN=TN+TE 
ER=COS <DMU * 1<* TN ) 
EM=SIN <DMU*K*TN) 
SR=SR+ER 
SM=SM-EM 
IF (TN.LT.TI) THEN 

GOTO 40 
ELSE 

70 

SN= (SRU.2+SMU2) 
R=4*Q/(1+(OMU*K)**2) 
M=4*Q/IOMU*K*(1+(OMU*K)**2» 
AR=G* (R*SR-M*SM) ISN 
AM=-G* (R*SM+M*SR) ISN 
AOM=SQRTIAR**2+AM**2) 
ARM=(I-EXPI-T»/11+(OMU*K)**2) 
AM~l=ARM*OMU*K 

MM=SQRT(ARM**2+AMM**2) 
END IF 
WR ITE ( *, 45) 

45 FORMAT(9X,'K',14X,'AR',14X,'AM',15X,'AOM') 
WRITEI*,50) K,AR,AM,AOM 
01=0 
WRITE(3,54) AR,AM,AOM,OI 

50 FORMAT(IX,4(E15.5,2X» 
WRITE (.*, 51) 

51 FORMATI24X,'ARM',14X,'AMM',15X,'MM') 
WRITE(*,52) ARM,AMM,MM 
WRITE(3,54) ARM,AMM,MM,OI 

52 FORMAT(18X,3(E15.5,2X» 
54 FORMAT(IX,3(E15.5,2X),F2.1) 

1 CONTINUE 
END 



C 

PROGRAM WF1N 
IMPLICIT REAL CA-Z) 
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C ESTIMATION OF COEFFICIENTS OF WEIGHTING FUNCTIONS 
C PERIODIC INPUT SIGNAL 
C NOISE DISTURBANCE NN 
C FIRST ORDER ~lODEL 

C PULSE FREQUENCY ANALYSIS 
C 

C DENOTIONS: 
C FS-AVERAGE VALUE OF FREQUENCY OF PFM, 
e OMU-FREQUENCY OF THE INPUT SIGNAL OF PFM, 
eN-NUMBER OF COEFFICIENTS OF WEIGHTING FUNCTIONS, 
C G-PFM COEFFICIENT, 
C Q-NUMBER OF PERIODS OF INPUT SIGNALS (Q>ll.), 
CAR-REAL PART OF THE ESTIMATE(ARM-REAL PART TRUE VALUE OF THE COEFF: 
C AM-COMPLEX PART OF THE ESTIMATE(AMM-eOMPLEX PART .. ), 
e ADM-ABSOLUTE VALUE OF THE ESTIMATECMM-ABSOLUTE VALUE .. ) 
C 

OPEN(3,FILE-'IDN.DAT') 
WRITE(*,5) 

5 FoRMAT(lX,'FS-') 
READ(*,10) FS 

10 FoRMAT(E10.4) 
WRITE (*,15) 

15 FORMAT(lX,'OMU-') 
READ C *,10) ot1U 
WR ITE ( *, 35) 

35 FORMAT(lX,'N-') 
READ(*,10) N 
WR ITE ( *,36) 

36 FORMAT(lX,'G=') 
READ(*,10) G 
WR I TE C *, :57> 

37 FORMATCIX,'O-') 
READ(*,10) 0 
DO 1,K=1,N,2 
TN-O 
YN-FS+.5 
SR-O 
SM=O 
SNR-O 
SNM-O 
T-6.283/0MU 
TI-OH 
OPENC4,FILE-'F.MAT') 

40 LJ=SIN (Dr'lLJ*TN) 
IF CU. LT. 0) THE~" 

LJ--l 
ELSE 

U=l 
END IF 



TE=lI (FS+GIUl 
F=OMUH:: 
ER=COS(F*TNI 
EI'1=SIN (FHNI 
NR=YNIEM/F 
NM=YNIER/F 
YR1=COS(FHE1-1 
YM1=SIN (FHEI 
YNR=NRIYR1+NMIYM1 
YNM=-NR*YM1+NM*YR1 
READ(4,41) NN 

41 FORMATI3X,F7.5) 
YN=YNIEXPI-TE1+1+NN/10 
TN=TN+TE 

SR=SR+ER 
SM=SM-EM 
SNR=SNR+YNR 
SNM=SNM+YNM 

IF ITN.LT.TI) THEN 
GOTO 40 

ELSE 
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SN= (SRU2+SM**2) 
AR=(SRISNR+SMISNMJ/SN 
AM=ISMISNR-SR*SNMI/SN 
AOM=SQRTIAR**2+AM**21 
ARM=11-EXPI-Tll/l1+IOMUIK)**21 
AMM=ARM*OMUIK 
MM=SQRTIARM**2+AMM**2) 

END IF 
WRITEI*,45) 

45 FORMATI9X,'K',14X,'AR',14X,'AM',15X,'AOM') 
WRITEI*,50) K,AR,AM,AOM 

50 FORMAT(lX,4IE15.5,2X» 
01=0 
WRITEI3,541 AR,AM,AOM,Ol 
WRITE 1:1<, 51> 

51 FORMATI24X,'ARM',14X,'AMM',15X,'MM') 
WRITEII,521 ARM,AMM,MM 
WRITEI3,541 ARM,AMM,MM,Ol 

52 FORMATI18X,3IE15.5,2X» 
54 FORMATI1X,3IE15.5,2X),F2.11 

CLOSEI4,STATUS='KEEP') 
1 CCiNTINUE 

END 



c 

PROGRAM RC1N 
IMPLICIT REAL (A-Z) 
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C ESTIMATION OF COEFFICIENTS OF WEIGHTING FUNCTIONS 
C PERIODIC INPUT SIGNAL 
C NOISE DISTURQANCE 
C FIRST ORDER MODEL 
C REGULAR TIME QUANTIZATION 
C 
C DENOTIONS: 
C FS-AVERAGE VALUE OF FREQUENCY OF PFM, 
C OMU-FREQUENCY OF THE INPUT SIGNAL OF PFM, 
C N-NUMBER OF COEFFICIENTS OF WEIGHTING FUNCTIONS, 
C G-PFM COEFFICIENT, 
C Q-NUMBER OF PERIODS OF INPUT SIGNALS (Q)II.), 
CAR-REAL PART OF THE ESTIMATE(ARM-REAL PART TRUE VALUE OF THE COEFFI 
C AM-COMPLEX PART OF THE ESTIMATE(AMM-COMPLEX PART .. ), 
C ADM-ABSOLUTE VALUE OF THE ESTIMATE(MM-ABSOLUTE VALUE .. ) 
C 

OPENI3,FILE='IDN.DAT') 
WRITEI*,5) 

5 FORMAT(lX,'FS=') 
READI*,10) FS 

10 FORMATIE10.4) 
WRITEI*,15) 

15 FORMATI1X,'OMU=') 
READ(*,10) OMU 
WRITE (*, 35) 

35 FORMAT(IX,'N=') 
READI*,10) N 
WRITE (*,37) 

37 FORMAT(IX,'Q=') 
READI*,10) Q 
DO 1, .::=1, N, 2 
OPEN(4,FILE='F.MAT') 
TN=O 
YN=O 
SR=O 
SM=O 
SNR=O 
SNM=O 
T=6.283/ot1U 
TI=QH 

40 U=SINIOMU*TN) 
IF IU.LT.O) THE:N 

U=-1 
ELSE 

U=1 
END -IF 



TE:lIFS 
F:OMU*K 
ER:CoSIF*TN)*U*TE 
EM:SINIF*TN)*U*TE 
NR:YN*SINIF*TN)/F 
NM:YN*COSIF*TN)/F 
YR1:COSIFHE)-1 
YM1=SIN IFHE."J 
YNR=NR*YR1+NM*YMl 
YNM=-NR*YM1+NM*YRI 
READI4,41) NN 
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41 FoRMATI3X,F7.5) 
YN:YN*EXPI-TE)+U*II-EXPI-TE»+NN/I0 
TN:TN+TE 

SR:SR+ER 
SM:SM-EM 
SNR:SNR+YNR 
SNM:SNM+YNM 

IF ITN.LT.TI) THEN 

ELSE 
GO TO 40 

SN: ISRU2+SM**2) 
AR:ISR*SNR+SM*SNM)/SN 
AM:ISM*SNR-SR*SNM)/SN 
AOM:SQRTIAR**2+AM**2) 
ARM:II-EXPC-T»/CI+loMU*K)'*2) 
AM~l:ARM*OMUn: 

MM:SQRTCARM*.2+AMM**2) 
END IF 
WR ITE C *, 45) 

45 FoRMATC9X,'K',14X,'AR',14X,'AM',15X,'AoM') 
WRITEC*,50) K,AR,AM,AoM 

50 FoRMATIIX,4(EI5.5,2X» 
01:0 
WRITEI3,54) AR,AM,AOM,ol 
WR ITE ( * , 51 ) 

51 FoRMAT(24X,'ARM',14X,'AMM',15X,'MM') 
WRITE (*,52) ARM, A~lM, MM 
WRITE(3,54) ARM,AMM,MM,OI 

52 FORMATC18X,3(EI5.5,2X) 
54 FoRMAT(IX,3(E15.5,2X),F2.1) 

CLoSE(4,STATUS:'KEEP') 
1 CONTINUE 

END 



C 

PROGRAM WFNI 
IMPLICIT REAL IA-Z) 
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C ESTIMATION OF COEFFICIENTS OF WEIGHTING FUNCTIONS 
C NOISE INPUT SIGNAL 
C FIRST ORDER MODEL 
C PULSE FREQUENCY ANALYSIS 
C 
C DENoTI oNS: 
C FS-AVERAGE VALUE OF FREQUENCY OF PFM, 
C oMU-FREQUENCY OF THE INPUT SIGNAL OF PFM, 
C N-NUMBER OF COEFFICIENTS OF WEIGHTING FUNCTIONS, 
C G-PFM CoEFFICIEN, 
CAR-REAL PART OF THE ESTIMATEIARM-REAL PART TRUE VALUE OF THE CoEFF 
C AM-COMPLEX PART OF THE ESTIMATEIAMM-CoMPLEX PART .. ), 
C ADM-ABSOLUTE VALUE OF THE ESTIMATE(MM-ABSOLUTE VALUE •. ) 
C 

oPENI3,FILE='IDN.DAT') 
WRITE (*,5) 

5 FORMAT(lX,'FS=') 
READ(*,10) FS 

10 FORMATIE10.4) 
WRITE (*,15) 

15 FORMAT(lX,'oMU=') 
READ(*,10) oMU 
WRITE (*, 35) 
FORMAT (1 X, '1\1=' ) 
READ(*,10) N 
WRITE (*,36) 

36 FORMAT(lX,'G=') 
READ(*,10) G 
DO 1, K=l, N 

TN=O 
YN=F-S+.5 
SR=O 
SM=O 
SNR=O 
SNM=O 
T=6.283/oMU 
oPEN(4,FILE='F.MAT' ) 

4-(1 READ (4, 41) U 
41 FoRMAT(3X,F7.5) 



TE=lI (FS+G*U) 
F=OMU*K 
ER=COS(F*TN) 
EM=SIN (FHN) 
NR=YN*EM/F 
NM=YN*ER/F 
YR1=COS(nTE)-1 
YM1=SIN(nTE) 
YNR=NR *YR 1 +N'M* YM 1 
YNM=-NR*YM1+NM*YR1 
YN=YN*EXP(-TE)+l 
TN=TN+TE 

SR=SR+ER 
SM=SM-EM 
SNR=SNR+YNR 
SNM=SNM+YNM 

IF (TN.LT.TI THEN 
GOTO 40 

ELSE 
SN= (SRU2+SM**2) 
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AR= (SR*SNF:+SM*SNM) ISN 
AM=(SM*SNR-SR*SNM)/SN 
AOM=SDRT(AR**2+AM**2) 
ARM=(1-EXP(-T»/(1+COMU*K)**2) 
AMM=ARM * OMU n: 
MM=SDRTCARM**2+AMM**2) 
RSN=SDRT(SN) 

END IF 
WR ITE ( *, 45 ) 

45 FORMAT(9X,'K',14X,'RSN',14X,'AOM',15X,'MM') 
WRITE(*,50) K,RSN,AOM,MM 

50 FORMAT(lX,4(E15.5,2X» 
01=0 
WRITE(3,54) RSN,AOM,MM,Ol 

54 FORMAT(lX,3(E15.5,2X),F2.1) 
CLOSE(4,STATUS='KEEP') 

1 CONTINUE 
END 



C 

PROGRA~l RC2N 
IMPLICIT REAL IA-Z) 
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C ESTIMATION OF COEFFICIENTS OF WEIGHTING FUNCTIONS 
C NOISE INF'UT SIGNAL 
C FIRST ORDER MODEL 
C REGULAR TIME QUANTIZATION 
C 
C DENOTIONS: 
C FS-AVERAGE VALUE OF FREQUENCY OF PFM, 
C OMU-FREQUENCY OF THE INPUT SIGNAL OF PFM, 
C N-NUMBER OF COEFFICIENTS OF WEIGHTING FUNCTIONS, 
C G-PF~l COEFF I C lENT, 
C Q-NUMBER OF PERIODS OF INPUT SIGNALS IQ)11.), 
CAR-REAL PART OF THE ESTIMATEIARM-REAL PART TRUE VALUE OF THE COEFFl 
C AM-COMPLEX PART OF THE ESTIMATECAMM-COMPLEX PART .• ), 
C AOM-ABSOLUTE VALUE OF THE ESTIMATECMM-ABSOLUTE VALUE .. ) 
C 

OPENI3,FILE-'IDN.DAT') 
WRITE ,*,5) 

5 FORMATllX,'FS-') 
READI*,10) FS 

10 FORMATIElO.4) 
WRITEI*,15) 

15 FORMAT(IX,'OMU-') 
RErlD 1*, 10) OMU 
WRITE(*,35) 

35 FORMATllX,'N-') 
READ(*,10) N 
DO 1,r.::-l,N 
OPENC4,FILE-'F.MAT') 
TN=O 
YN=O 

SR=O 
SI"I=O 
SNR-O 
SN11-0 
T-6.283/01"IU 

40 RE!~D(4,41) U 



TE=lIFS 
F=OMUIK 
ER=COS(FITN)*U*TE 
EM=SIN(F*TN)*UITE 
NR=YN*SIN(F*TN)/F 
NM=YNICOS(FITN)/F 
YR1=COS(F*TE)-1 
YM1=SIN (FHE) 
YNR=NR*YR1+NMIYMl 
YNM=-NR*YM1+NM*YRl 
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41 FORMAT(3X,F7.5) 
YN=YN*EXP(-TE)+U*(l-EXPC-TE» 
TN=TN+TE 

SR=SR+ER 
SM=SM-EM 
SNR=SNR+YNR 
SNM=SNM+YNM 

IF CTN.LT.T) THEN 

ELSE 
GOTO 40 

SN= (SR**2+SM**2) 
AR=CSRISNR+SM*SNM)/SN 
AM=CSM*SNR-SRISNM)/SN 
AOM=SQRT(ARI12+AM**2) 
ARM=(1-EXPC-T»/C1+(OMUIK)*'2) 
A~lM=ARMWMU*K 

MM=SQRTCARM**2+AMM**2) 
END IF 
WRITE (*,45) 

45 FORMAT(9X,'K',14X,'AR',14X,'AM',15X,'AOM') 
WRITE(*,50) K,AR,AM,AOM 

50 FORMAT(1X,4(E15.5,2X» 
01=0 
WRITEC3,54) AR,AM,AOM,Ol 
WR I TE ( *, 511 

51 FORMATC24X,'ARM',14X,'AMM',15X,'MM') 
WRITEC*,52) ARM,AMM,MM 
WRITE(3,54) ARM,AMM,MM,01 

52 FORMAT(18X,3CE15.5,2X» 
54 FORMAT(1X,3CE15.5,2X),F2.1) 

CLOSE(4,STATUS='KEEP') 
1 CONTINUE 

END 



C 

PROGRAM IDNWF3 
IMPLICIT REAL IA-Z) 

79 

C ESTIMATION OF COEFFICIENTS OF WEIGHTING FUNCTIONS 
C PERIODIC INPUT SIGNAL 
C FIRST ORDER MODEL 
C PULSE FREQU~NCY ANALYSIS 
C PFCI-INPUT 
C PFC2-0UTPUT 
CONLY PFM OBSERVATION 
C 
C DENOTI ONS: 
C FS-AVERAGE VALUE OF FREQUENCY OF PFM, 
C OMU-FREQUENCY OF THE INPUT SIGNAL OF PFM, 
C N-NUMBER OF COEFFICIENTS OF WEIGHTING FUNCTIONS, 
C G-PFM COEFFICIENT, 
C Q-NUMBER OF PERIODS OF INPUT SIGNALS (Q>ll.), 
CAR-REAL PART OF THE ESTII'1ATE (ARM-REAL PART TRUE VALUE OF THE COEFF 
C AM-COMPLEX PART OF THE ESTIMATEIAMM-COMPLEX PART .. ), 
C AO~l-ABSOLUTE VALUE OF THE ESTII'1ATE (MM-ABSOLUTE VALUE •. ) 
C 

OPEN(3,FILE='IDN.DAT') 
WRITE(*,5) 

5 FORMAT(lX,'FS=') 
READ(*,lO) FS 

10 FORMAT(El.O.4) 
WHITE(*,15) 

15 FORMAT(lX,'OMU=') 
READ(*,10) OMU 
wrn TE (*, 35) 

35 FORMATC1X,'N=') 
I'<EAD(*, (0) N 
WRITE n, 36) 

36 FORMAT(lX,'G=') 
READ(*,lO) G 
WRITE C*, 371 

37 FORMATC1X,'Q=') 
HEAD(*,IO) Q 
DO i, 1(= 1 , N, 2 

TN=O 
TN2-0 
YN--l. 
SR=O 
SM=O 
SNR=O 
SNM=O 
TE=C>. 
T=6.283/0MU 
TI=Q*T 

40 U=SINCOMU*TNI 
YN=YN*EXP(-TE) 
IF CU. L T. 0) THEN 

U=-l. 
YN=YN-(l-EXP(-TE» 

ELSE 
U=1. 
YN=YN+(l-EXP(-TE» 

END IF 



TE=1/ (FS+G*U> 
ER=COS(OMU*K*TN) 
EM=SIN (oMUn~nN) 
TE2=1/(FS+G*YN) 
YNR=COS(OMU*K*TN2) 
YNM=SIN(OMU*K*TN2) 
TN2=TN2+TE2 
TN=TN+TE 

SR=SR+ER 
SM=SM-EM 
SNR=SNR+YNR 
SNM=SNM-YNM 

IF (TN.LT.TI) THEN 
GOTO 40 

ELSE 
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SN= (SR**2+S~1**2) 
AR=(SR*SNR+SM*SNM)/SN 
AM=(SM*SNR-SR*SNM)/SN 
AOM=SQRT(AR**2+AM**2) 
ARM=(1-EXP(-T»/(1+(OMUIK)**2) 
AMM=AR~l*OMU*":: 

MM=SQRT(ARM**2+AMM**2) 
END IF 
WR ITE ( *, 45) 

45 FORMAT(9X,'K',14X,'AR',14X,'AM',15X,'AOM') 
WRITE(*,50) K,AR,AM,AOM 

50 FORMAT(IX,4(EI5.5,2X» 
01=0 
WRITE(3,54) AR,AM,AOM,OI 
WRITE (*,51) 

51 FORMAT(24X,'ARM',14X,'AMM',15X,'MM') 
WRITE(*,52) ARM,AMM,MM 
WRITE(3,54) ARM,AMM,MM,01 

52 FORMAT(18X,3(E15.5,2X» 

54 FORMAT(lX,3(E15.5,2X),F2.1) 
1 CONTINUE 

END 
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