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ON TAIL PROBABILITIES FOR MARTINGALES!

By DAvID A. FREEDMAN
University of California, Berkeley

Watch a martingale with uniformly bounded increments until it first
crosses the horizontal line of height a. The sum of the conditional variances
of the increments given the past, up to the crossing, is an intrinsic measure
of the crossing time. Simple and fairly sharp upper and lower bounds are
given for the Laplace transform of this crossing time, which show that the
distribution is virtually the same as that for the crossing time of Brownian
motion, even in the tail. The argument can be adapted to extend ine-
qualities of Bernstein and Kolmogorov to the dependent case, proving the
law of the iterated logarithm for martingales. The argument can also be
adapted to prove Lévy’s central limit theorem for martingales. The
results can be extended to martingales whose increments satisfy a growth
condition.

1. Introduction. In 1937, Lévy ([16] Theorem 67, page 243) showed that
Lindeberg’s central limit theorem (with an error bound) could be extended to
martingales. Using this, he generalized Kolmogorov’s law of the iterated loga-
rithm to martingales ([16] pages 258 ff). This paper presents another method
for proving these results, by extending inequalities of Bernstein and Kolmogorov
on tail probabilities for sums of independent variables to the dependent case;
these inequalities are powerful enough to prove the law of the iterated loga-
rithm. The method also gives a bound on the Laplace transform, sharp enough
to prove the central limit theorem. It could also be used to prove Dvoretzky’s
general central limit theorem (unpublished) for dependent summands: I hope
to explore this elsewhere.

There is a review of the literature in Godwin (1964) and in Karlin and Stud-
den (1966). Also see Bennett (1962), Hoeffding (1963), Loéve ((1963) Section
18), and Steiger (1969).

The general approach used here is to transform a given martingale into two
processes, one being expectation-decreasing and the other expectation-in-
creasing. The first gives upper bounds, and the second lower bounds, on the
probabilities of interest. I learned the idea from Theorem (2.12.1) of Dubins
and Savage (1965); but this paper only uses standard martingale arguments.

Let (Q, .5, P) be a probability triple. Let &,C &, C .5,--- be an
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increasing sequence of sub-g-fields of .. Say ¢ is a stopping time if 7 is a
function on Q, which takes the values 0,1,2, ..., co, such that {r=n}e s,
forn=20,1,2, -..; but P{r = oo} > Oisallowed. Let X, X,, - - - be random vari-
ables on (Q, &7, P), such that X,, is % ,-measurable. Let ¥, = Var (X, | =)
Until further notice, assume

(1.1) X, <1 and EX,|.7,}=0.

The restrictive condition is the uniform boundedness, which will be relaxed to
a growth condition in Section 2.

(1.2) DEFINITION. 2 is a positive number.

@) edD)=e¢" —1—2,

(b) f()=e?—~1+32,

(c) expx = e?,

(d) O,(v,y) = exp{ty — e(ay},

(€) Ry(v,y) = exp{ah — f(A)v},

(f) S, =X+ --- + X, so S, =0,

(g) T, = Vi+ .- + Vn,SO T0=0,

(h) a A b = min {a, b).

Informally, T, is an intrinsic measure of time, while # is a nominal measure
of time: this is discussed in [3]. If S, is considered as occurring at time T,
rather than time n, the process {S,} is remarkably like Brownian motion, even
when many tail probabilities are computed.

The results of this paper all follow from the observation that Q, is super-
harmonic and R; subharmonic under (1.1). More exactly, let y be real and v
nonnegative. Let X be a random variable with |X| < 1 and E(X)=0 and
E(X?) = V. Then
(1.3) LEMMA.

(@) Eflexp(4X)} < exp[Ve(d)],

(b) E{Q)(v + V,y + X)} < 0,(v, ),

(©) E{exp(AX)} = exp[Vf(2)],

(d) E{R,(v + V,y + X)} Z Ry(v, y).

Of these, (a) and (c) are proved in Section 2; inequalities (b) and (d) are
immediate consequences.

(1.4) COROLLARY.

(@) {Q«(T,,S,), #,:n=0,1, .. -}is an expectation-decreasing martingale;
(®) {R(T,, S.), F,in=0,1,...}isan expectation-increasing martingale.

(1.5) MAIN INEQUALITY. If ¢ is a uniformly bounded stopping time, then

(@) E{Qx(T,, S,)} < 1and
(b) E{R(T,,S,)} = 1.
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By appropriate limiting arguments, (1.5) can be extended to very general o.
All the inequalities in this paper come from (1.5), by proper choice of 1 and ¢.

The first consequence is the extension of the inequalities of Bernstein and
Kolmogorov. It makes explicit a bound implied by (31) of [5]. This bound was
discovered by Steiger (1969).

(1.6) THEOREM. For any positive numbers a and b,

P{S, =a and T, < b for some n) g( b )a“ e“gexp[—- L_]
a-b 2(a + b)

To get this from (1.5a), let ¢ be the least » with S, > a. There is a detailed
argument in (4.1). This inequality shows that
lim sup §,/(2T, loglog T,)* < 1 a.e. on {) V,= oo};
see (6.1).
To get the other half of the law of the iterated logarithm, make the

(1.7) DerFiNITION. Fix @ > 0. Let r, be the least n if any with §, = a, and
let 7, = oo if there isno such n. Let W, =T, = 3, V,.

So {W, < b} ={S, Zaand T, < b for some n} U {sup, T, < b}. Thus W, is
the total amount of conditional variance it takes for the partial sum process to
cross the g-line, if it crosses; otherwise, W, is the total amount of conditional
variance.

(1.8) THEOREM. E{exp[— f()W,]} = exp[—4A(a + 1)] fora > 0.

To get this from (1.5b), use ¢, for . There is a detailed argument in (4.2).
This theorem prevents W, from being too large. Here is a more precise state-
ment, interesting when a = o (b%).

(1.9) CoRrOLLARY. P{W, = b} < 5(a + 1)/b? for positive a and b.

This follows from (1.8) by Chebychev’s inequality. There is a detailed argu-
ment in (4.4). Consequently, sup, S, = oo a.e. on {3 V, = oo}, as argued in
4.5).

The next result is interesting when « is around (26 log log b)%.

(1.10) COROLLARY. Suppose 0, a, b are positive, with 6 < % and bja > 9/d°
and a@*[b > (16/06%) log (64/6%). Then
P{W, < b} > }exp[—(} + 20)a*fb]

This follows from (1.8) by a complicated analytical argument, carried out in

(4.31). As in (6.3), it shows that
lim sup S,/(2T, log log T,)* = 1 a.e.on {XY V,= oco}.

Nothing so far stops W, from being small. For instance, all the ¥, could
vanish identically, so X; = 0 and z, = oo and W, = 0 identically. Suppose,
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however, that
(1.11) P, Vi= oo} =1.

Then P{r, < oo} = 1, because (1.9) makes P{W, < oo} = 1. And the distri-
bution of W, is virtually the same, for all processes satisfying (1.1) and (1.11).

(1.12) THEOREM. Suppose (1.1) and (1.11). Then Efexp[—e()W,]} <
exp(—4a) fora > 0.

To prove this, use (1.5a) with r, for o. There is a detailed argument in (4.6).
Since e(2) and f(4) are very close for small 2, inequalities (1.8) and (1.12)
effectively determine the tail of W,. The argument is carried out in Section 5,
but seems to involve a nonconstructive step, so c(¢) in the next result is not
explicitly determined:

(1.13) COROLLARY. Suppose (1.1) and (1.11). For any positive ¢, there is a
finite ¢ = c(e) such that: a > c and bja® > ¢ imply
(1 = )2/m)t < (B4a)P(W, Z b} < (1 4 &)(2/m)}

Of course, as @ — oo the distribution of W,/a? tends to the distribution of the
time for ordinary Brownian motion to cross the level 1, by the invariance
principle for martingales ([11] pages 89 ff). The result (1.13) is interesting
because it says something about finite a. The amount of variance needed to
escape from a strip (as opposed to crossing a line) is described in [3].

Inequalities (1.5) also prove a variant of the central limit theorem, as shown
in Section 7.

(1.14) THEOREM. 0 < a < B < oo. Let o be a stopping time with Pla <
Tv = ‘B} = 1. Then

explaf(d)] < Efexp (25,)} < exp[Be(A)] -
Since e(4) and f(2) are essentially 12? for small 2,

(1.15) COROLLARY. For each n, let 0 < a, < B, be real numbers, and let o,

be a stopping time. As n — co, suppose a,, — oo and f,ja, — 1 and Pla, < T, <
B.} — 1. Then the distribution of S, |a,* weak* converges to normal, with mean 0
and variance 1. The convergence is uniform, in the following sense. Fix any weak*
neighborhood 4" of the N(O, 1) distribution. Then there is a small positive number
0 = 6(7) such that the distribution of S,|a* falls in 4 for any system {X,, )
satisfying (1.1), any stopping time o, and any real number a, provided

a>1/6  and Pla<T,<(l+8a}>1—3.

This will be proved in Section 7. A similar application could be made to the
invariance principle ([11], pages 89 ff). A variant of (1.15) will establish the
convergence of the finite-dimensional joint distributions. A variant of (1. 6)
will establish tightness, using the lemma of Arzela-Ascoli. Donsker’s original
argument will then prove the following variant of his invariance principle. Let
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C[0, 1] be the space of continuous functions on [0, 1], endowed with the uni-
form topology. Let the probability = on C[0, 1] be the distribution of Brownian
motion, with time parameter confined to [0, 1]. Let ¢ be a bounded, measura-
ble function on C[0, 1], which is continuous z—almost everywhere. If X =
{X;, &} satisfies (1.1), define X(¢r) by the requirements that X(7,) = S, and
X(.) is linearly interpolated. As will be seen, > X, converges a.e. on
{2V, < oo}; define X(¢) = X X;fort > > V,. Let X*(f) = X(f)for0 <t < 1,
so X* is a random element of C[0, 1].

(1.16) COROLLARY. Forany e > 0, there is a § > 0 such that
|E{p(X*)} — S pdn| < ¢

for any system {X,, .} satisfying (1.1), subject to the conditions P{3 .7V, < 1} <
dand {X,| < d forallnwith T, , < 1.

Similarly, Chover’s argument [4] for Strassen’s invariance principle can be
adapted to martingales, although the Skorokhod embedding works too ([11]
pages 89 ff).

2. The growth condition. Many of the inequalities can be extended to vari-
ables which are individually bounded, where the bound is not uniform but grows
at a controlled rate. Certain unbounded variables can then be handled by
truncation. As in Section 1, assume X, is .5 -measurable and E{X, | % ,_,} = 0;
do not assume the X, are bounded.

2.1 PROPOSITION. Let t be a stopping time, and K a positive real number.
Suppose P{|X,| < K fori < t} = 1. Then for all positive real numbers a and b,

b Ka+b 1/K2
P{S,=a and T, < b forsome n <t} < [( ) eK“:l
- Ka 4 b

= exp[— E(I(%—b—)] .

This follows from (1.6): replace X; by X,/K for i < 7, and by 0 for i > r.
To continue, it is helpful to make the

(2.2) DEFINITION. Let ¢, be the least n if any with T, > b, and ¢, = oo if
none. Let

L(b) = ©s8 Sup(’v Supnéab(w) IX”((U)I ‘

This L(b) is not random, 0 < L(b) < oo, and L is non-decreasing. Previous
results can be extended to processes which satisfy a growth condition of the
form L(b) = O[4(b)], where ¢ is some function which increases to co slowly.
To make this kind of condition clearer, check that L(b) is the smallest real
number for which i < nand T, (0) > b = T,_,(w) imply |X(w)| < L(b), almost
surely. So L is the smallest non-decreasing function such that |X,, (0)| <
L[T,(w)] for n=0,1, -.. almost surely. And L = o(¢) means: there is a
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function ¢(b) of b, tending to 0 at oo, but with ¢(b)¢(b) non-decreasing, and
| X,12(0)] < e[ T(0)14[T,(®)] for all .

As is immediate from (1.9),
(2.3) ProrosiTION. P{W, = b} < 5[a 4 L(b)]/b for positive a and b.
As is immediate from (1.10),

(2.4) PrOPOSITION. Let 0 < 6 < 4. Let a and b be positive, with L(b) finite,
bla > 9L(b)/d* and a*|b > (16/d%) log (64/0%). Then

P(W, < b) > }exp[—H@/b)(1 + 49)].
As is immediate from (1.14),

(2.5) PrOPOSITION. Let 0 < a < B < co. Let t be a stopping time with
Pla < T.< B} = 1. Then

. ’
exp { o MRLON} = Elexp (15} = exp { L2 etinon}

Arguing as for (4.5),

(2.6) PROPOSITION. Suppose L(b) = o(b?) as b — co. Thensup, S, = oo and
inf, S, = —o0, a.e. on {3, V, = co}.

Of course, S, converges to a finite limit S, as n — oo, a.e. on {} V, < oo},
without any growth condition.

The result (2.6) is due to Lévy ([16], page 248 footnote). Ido not know what
happens when L(b) = o(b?), but the result is false when L(b) = o (bt*°).

Similarly,

2.7 PROPOSITION. Suppose L(b) = o(b/loglog b)} as b — oo. Then
lim sup, ., S,/(2T, loglog T,)t = 1 a.e.on {3V, = oo}.

This can be argued like (6.1) and (6.3). There is one new difficulty: in esti-
mating P{W, < b} for the process shifted by ¢,, with a = (1 — r~¥¢(r*) and
b = r**' — r*, check that L(b) for the shifted process is at most L(r*+*) for the
old process, so b/(L(b)a) — oo as k — co.

The growth condition L(b) = o(b/log log b)! is the one used by Kolmogorov
(1929) for the independent case. In a sense, it is best possible, as shown by an
example of Marcinkiewicz and Zygmund (1937). For a discussion of other
growth conditions in the independent case, see Feller, (1943). The iterated
logarithm for martingales with this growth condition was established by Stout
(1970), in the main special case where > V, = oo a.e.

(2.8) PROPOSITION. The central limit theorem (1.15) and the invariance princi-
ple (1.16) hold with the growth condition L(b) = o(bt) as b — co.

The condition L(b) = o(b?) is best possible, even in the case of independence:
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because the Lindeberg condition is necessary (Feller (1966) Section XV. 6).
Suppose, for instance, that the X, are independent, and X, takes the three values
0 and +n-*%, with P(Xn = 0) =1—n"'tand P(X,,L = ini) = %n“‘. So V,= 1,
T, = n, and L(b) ~ bt. But §,/n? does not converge to normal. Theorem (2.8)
is a little sharper than Lévy’s result ([16] page 246), since ¢ is a more general
stopping time than Lévy’s T.

3. The transformation. This section proves the main technical estimates cor-
responding to (1.3)-(1.5).
3.1 LemMA. Let g(0) = 4 and g(x) = (¢ — 1 — x)[x* for x 0. Theng
is increasing.

Proor. Check that ¢’(0) = 0 and x°¢'(x) = h(x), where A(x) = xe® — 2¢* +
x 4+ 2. So h''(x) = xe®, and /' is increasing on (0, o), decreasing on (— oo, 0).
But #'(0) = 0, so /' is nonnegative, and # is increasing. But #(0) = 0, so A(x)
has the same sign as x, and g'(x) > 0 for x == 0. [T

(3.2) COROLLARY. exp(Ax) < 1 + Ax 4 x%¢(2) for A= O0and x < 1.
Proor. g(ix) < g(4), by (3.1). [T
(3.3) PROPOSITION. §,ce; @:(T,, S,)dP < 1 for 2 = 0 and any stopping time
o, provided
3.4) X, <1 a.e. and E{X,| #,. <0 ae. foral n.

No lower bound is assumed on X,.

Proor. It is enough to show that {Q,{T,, S,}, &} is an expectation-decreas-
ing martingale. This follows from

3.5) E{exp(AX)} < 1 + e(4) Var X < exp[e(2) Var X] for 2 = 0 and ran-
dom variables X satisfying X < 1 and E(X) < 0.
It is enough to prove (3.5) when E(X?) < oo. Let p be the distribution of X, so
¢ = pto + (1 — p)p_, where 0 < p < 1 and g, is a probability on (— oo, 1] with
{ xuf(dx) = 1 and p_ is a probability on (—oo0,0). Let v, = § x*u(dx) and
v_ = §{ x*u_(dx) — (§ xp_(dx))®. Then
E{exp(2X)} = p § exp(Ax)s(dx) + (1 — p) § exp(dx)p_(dx)

< pll + e(@Qw] + (1 — p)[1 + e(A)v_]

<1+ e@)Vark,
using (3.2) on the first term in the first line, and Schwarz’s inequality to check
poo+ (1 —pw_ < Var X. [T

In a sense, e(4) is best possible:

1
Var X

supﬁ [E{exp(AX)} — 1] = sup log E{exp(2X)} = e(4),
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where the sup is taken over all X with X £ 1 and E(X) < 0. The extreme X
take only the values —¢ and 1, and have mean 0.

(3.6) PropPOSITION. E{Ri(T,, S,)} = 1 for any 2 = 0 and uniformly bounded
stopping time o, assuming condition (1.1).

Proor. This follows from

3.7 Ef{exp(21X)} = exp{f(4) Yar X}, for random variables X with X > —1
and E(X) = 0.

Inequality (3.7) can be proved by cases, as follows.

Case 1, in which X takes only the two values —1 anda > 0. Then P{X = —1} =
a/(1 4+ a) and P{X = a} = 1/(1 4+ a), so E{X?} = a. Let 6(2) = Efexp (AX)} —
exp {f(2) Var X}. Check that 6(0) = 0 and §’(2) = 0.

Case 2, in which X takes only the two values —b and a, with positive a, b and
b< 1. There is a ¢ >1 with bc =1. Let Y= cX and use Case 1 on Y.
So E{exp(21X)} = Efexp[(4/c)Y]} = exp[f(4/c) Var Y] = exp[f(4/c)c* Var X]| =
exp[2® - f(4[c) - (A]e)~* Var X] = exp[4® - f(4) - A7 Var X] = exp[f(4) Var X].
The last inequality follows from (3.1), since f(x)/x* = g(—x) and —4 < —/c.

The general case. Let p be the distribution of X, so p = § g, 0(der), where p,
is a probability on [—1, co) residing on two points and having mean 0. Let
v, = § X*p,(dx), so Var X = § v,0(da). Let ¢,(2) = § exp(dx)p(dx). Use Case
2 on yp,, followed by Jensen’s inequality: Efexp(iX)} = § ¢,(2)0(da) =
§ exp[f(A)va]0(da) 2 exp[f(4) - § v.0(da)] = exp[f(4) Var X]. []

Again, f(4) is best possible. Of course, (3.6) holds if {X,} satisfies a weaker
condition than (1.1), namely:

(3.8) X,= —1 ae. and E{X,|#,} =0 a.e. forall n.

A similar argument will prove (3.6) under the alternative condition

(3.9) X, =<1 ae. and E{X,|.%,..} =0 ae. forall n,

even if V, is replaced by the larger quantity E{X,?| .5, _,}. This can be used to
sharpen some later inequalities, but not in any very interesting way.

4. Inequalities. This section proves results (1.6) to (1.12).
4.1) THEOREM. Suppose (3.4). For any positive numbers a and b,

PlS,=a and T, < b forsome n=1,2, ...}

=) e =l

Let ¢ be the least n if any with S, = a,and ¢ = coifnone. Let4 = {S, = a
and T, < b for some n}. Theno < coand S, = aand T, < b on A. Use(3.3)

1 = {,exp[4S, — e(A)T,) dP = P{A} - exp[ia — e(4)b],
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so P{4} < exp[—2a + e(2)b]. The minimizing 2 is log [(a + 5)/b], which gives
the first bound, and the second follows by calculus.

4.2) THE Proor oF (1.8). Confirm that S, < a 4- 1 for n < 7,. Then use
(3.6) with =, A n for o:

< B{exp[AS.,n — fIOT., ]} < exp[A(a + 1)] - {exp[—f(A)T., ]} -
Let n — oo and use dominated convergence. []

4.3) ExampLE. Theorem (4.2) is false just assuming (3.8). For instance,
make the X, independent, X, being —1 or »* and having mean 0. Then
PlX, = n*} = 1/(n* 4 1), so P{X, = —1 for all n} > 0, and P{W, = oo} > 0.
This contradicts (4.2), by letting 2 approach 0.

4.4) THE PROOF OF (1.9). Use Chebychev’s inequality on (1.8) to see
P{W, 2 b} = P{1 — exp[—f()W,] = 1 — exp[—f(2)b]}

< 1 — exp[—2(a + 1)] -
1 —exp[—f(1)?]

Putting 2 = b-% gives
1 —exp[—2(a + 1] < Aa+ 1) = (a + 1)/bt
I — exp[—f(2)8] > fA)b — 425

A A2 Ab?
- )b -7
><2 6> 8

and

> 5 for 5>1.
If b < 1, the bound is at least 5, dwarfing P{W, > b} [

4.5) COROLLARY. This proves the following result of Lévy ([16] Theorem 68
on page 247). Suppose (1.1).

(a) sup, S, = o and inf, S, = — oo, a.e. on {(Z V.= o0}
(b) S, converges to a finite limit S, as n — co, a.e. on {Z V., < oo}

PROOF. Claim (a). By symmetry, only the sup need be argued. (4.2) implies,
PIW, < oo} =1. Sofr,=ccand 3] ¥, = oo} C {W, = oo} has probability 0.
That is, P{S, < aforall nand 37 V; = oo} = 0. Claim (b) holds even for un-
bounded X, by Kolmogorov’s inequality. []

(4.6) THE ProoF OF (1.12). Relation (3.3) shows

(4.7) §iey<es SXP[AS,, — e(W,]dP < 1.
But S, = aon{r, < co}. So

(4.8) §irg<en) €XP[—e()W,] dP < exp(—4a).
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And W, = oo a.e. on {r, = oo}, because 3} ¥, = w0 a.e. So exp[—e()W,] =0
a.e. on {r, = oo}, and the integral can be extended over the whole space. []

This result is false if, for instance, all the ¥, vanish. The next main step is
proving (1.10), which estimates P{W, < b} from below when a is the order
(bloglog b)t. The proof is disappointingly hard. The main analytical difficulty

is isolated in (4.10): here is a preliminary
4.9) LeMMA. If a > 0 and x > 2log a, then e* > ax.

Proor. By calculus, a — 2log a has its minimum at « = 2 and is positive
there. By more calculus, e* — ax increases with x for x > log a; but this
function is positive at x = 2 log a by the previous remark. []

The proof of the next result is hard, and can be skipped without much loss.

(4.10) PROPOSITION. For each a > 0, let W, be a nonnegative random variable.
Suppose that for all 2 > 0,

(4.11a) E{exp[—e()W,]} < exp(—4ia)
(4.11b) Efexp[—f()W,]) = exp(—i(a + 1)) .
Let 9, a, b be positive, with
(4.12a) 0<%
b 9
(4.12b) - > 5
P 16, 64
12 2> Dlog .
(4.12¢) b > 5 08
Then
(4.13) P{W, < b} > s exp[—(} + 20)a%/b] .
Proor. Let
(4.14) =252 and a1 +62  and
2 6 b

k:—a—7 and N=£
b o2

Now 0 < ¢ < f, so Efexp[—¢(A)W,]} > exp[—A(a + 1)], by (4.11b). In-

tegrating by parts,
(4.15)  §(2) §¢ P{W, < x} exp[—¢(A)x] dx > exp[—A(a + 1)].
The interval of integration [0, co) in (4.15) splits into five subintervals:

I, = [0, Na] and I, = (Na, (1 — 20)b] and I, = (b, 28],

I, = (2b, ) and Iy = (1 — 28)b, b)) .
Let

7 = 6(4) SI“ P{W, < x}exp[—¢(2)x]dx .
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Of these, the terms with i < 4 are errors. As will be seen,

(4.16:1) m < (& — do)exp[—(1 + 9)k]

(4.16:i) 7, < Lexp[—(1 4 9)k] for i=2,3,4.
The main term is 7,. As will be seen, ‘

(4.16:5) ns < P{W, < b} - exp[(—% + 20%)k].

For now, suppose (4.16). Look at the right side of (4.15). Check
exp[—4A(a 4 1)] = exp[—(l + 5) _Z—] - exp[— (1 + 9)k] by (4.14)

> exp (—4y) - exp(—(1 + 9)k] by (4.12)
> (1 = gg)exp[—(1 + 9)k] .
Using (4.15) and (4.16:1-4):
75 > exp[—4(@ + 1)] — 9 — 7 — 0, — 7 > Fexp[—(1 + 0)k].
Using (4.16:5)
P{W, < b} > exp[(3 — 20°)k] - »,
> $exp[— (3 + 0 + 20%)k]
> § exp[—(} + 20)k] by (4.12a).
This reduces the task of proving (4.13) to the task of proving (4.16). There
are two facts which will help. First,
(4.17) exp(—0d%k/8) < 1/(8k),
—which is a special case of (4.9). Second,
4.18 P{W, - _L]
(4.18) W <5} < exp| — 3
Using Chebychev’s inequality on (4.11a),
P{W, < x} = Plexp[—e()W,] > exp[—e(4)x]}
< exple(d)x] - E{exp[—e()W,]}
< exp[—4a 4 e(A)x].
The argument for (4.18) is completed as in (4.1).
THE ProoF oF (4.16:1). If x < Na, then
(4.19) PIW, <x} < 0= — do)exp[—(1 + 9)].
This follows from (4.18): if x < Na, then a*/(a + x) = a/(N + 1). Next, N +
1 < 3/0% s0a?/(a + x) > (0*/3)a = (6*/3)(bjayk > 3k > (1 + d + {)k; and k/6 >
5, so exp(—k/[6) < 27 < § — ;. This settles (4.19). To complete the proof
of (4.16: 1),

< 0+ $(2) - 17 exp[—p(A)x]dx < 0 - $(3) - §7 exp[—g(A)x]dx = 0 .
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THE PROOF OF (4.16:2). Confirm that Na < (1 — 28)b, so I, is proper. If
x = Na, then @*/(a + x) = a*/x(1 + N~*) = (N/N + 1)a*/x. Use (4.18) and
(4.14):

(4.20) 7 < exp[3A(1 — 20)b] - §(2) - 1,
where y = {, exp[—0(x)] dx, and

A N a
4.21 0(x) = =~ _— .
(421) ) 2" + N+12x

By calculation,
(4.22) - 0 is strictly convex on (0, o), and takes its minimum at x, =
(N/N + 1)taj2 = (N/N + 1)!b/(1 + 6), and (1 — 0)b < x,, < b.

This shows that the minimum of ¢ on /, occurs at the right endpoint (1 — 29)b,
and is pk, where

1 N 1
“lavopa_—2sy+ N 1 7,
# 2[(+)( )+N+'11—25]

By calculation,

(4.23) p>1+0+4 20%.

So

(4.24) O(x) > (1 + ¢ + 0%k for xelf,.
Return to (4.20). The length of /, is less than (1 — 28)b. So (4.24) shows
(4.25) 7 < (1 — 20)b exp(—310%) exp[—(1 + 0)k].

But ¢(2)(1 — 20)b < $4(1 — 28)b = $(1 + 0)*(1 — 20)k < k. So

(4.26) Sy < ik exp(—10%) exp[—(1 + d)k] .

To estimate the first factor in (4.20), check 12%(1 — 20)b = (1 + 9)*(1 —
28)(a/b)k < (1 + ) (a/b)k < & - 4 - (6*/9)k. So

(4.27) exp[323(1 — 20)b] < exp(§0%) .

Combining this with (4.26) shows 7, < aexp[—(1 4 0)k], where a =
Lk exp(§9%k)exp(—40%k) < } by (4.17), settling (4.16: 2).

THE PROOF OF (4.16:3). As for (4.20),
(4.28) 7 < eXp(E - 26) - 6(2) - 7

where y = §; exp[—0(x)] dx, and ¢ is still defined by (4.21). By (4.22), the
minimum of # on /; occurs at the left endpoint 4, and is pk, where p =
$[(1 + 6)* + N/(N + 1)]. By computation, g > 1 4 d + }9°. Consequently,
7 <b.exp[—(1 + 0+ 30%k1. But ¢(A)b < (1 + 0)’%k < k; so

(4.29) $(A)r < kexp[—(1 + 9 + }0%)k] .
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Next
(4.30) exp(34° - 2b) = exp [%(1 + oy o k:l

< exp [%(1 + 5)3%1 k] < exp (30%) .

So 9, < aexp[—(1 + 9)k], where a = k . exp(}9%) - exp(—30%) < § by
(4.17). This proves (4.16: 3).

THE ProoF oOF (4.16:4). Confirm that 7, < ¢(4) {5 exp[—¢(d)x]dx =
exp[ —2b¢(4)] = exp(§4® - 2b) . exp[— (1 + 0)°*k]. The first factor in the last
expression was shown to be less than exp(30%) in (4.30). Confirm that }o* —
(1 4+ 9 < —k~'log3 — (1 + d)k, completing the proof of (4.16:4).

THE PrOOF OF (4.16:5). Since P{W, < x} < P{W, < b} for x < b,

75 < P{W, < b} + §tu_usys $(A)exp[— p(A)x] dx
< P{W, < B} - §5-a0s P(2)exp[— $(2)x] dx
= P{W, < b} - exp[—$(a)(1 — 20)b]
= P{W, < b} - exp[32%(1 — 20)b] - exp[—4(1 + 9)*(1 — 20)k] .
In the last line, the second factor is less than exp(4d%) by (4.27). And
—4(1 4 0)*(1 —20) < —3% 4 20— 0% This settles (3.16:5) and the theorem. []

(4.31) THE ProoF oF (1.10). First, suppose 3} V; = co a.e. Then (4.11a)
holds by (4.6), and (4.11b) holds by (4.2). So (4.11) proves (1.10) in this special
case. What happens in general? The trouble is, (4.11a) can fail. But it is
possible to construct a new variable W, * = W,, which satisfies (4.11a-b). Then
(4.11) can be used on W_*; and (1.10) holds a fortiori.

To construct W *, introduce new variables Y;, Y,, - . - which are independent
and +1 with probability 4 each. Make all the Y,’s independent of all the
7.’s, which may require an enlargement of the basic probability triple. As
(4.5) shows, 7, < oo almost surely on {3} ¥, = oo}, and ] X, converges almost
surely to a finite limit S, on {3} ¥, < oo}. So

(4.32) 2. X, converges to a finite limit S, and T, = J} V; < o, a.e. on
{r, = oo}
If 7, = oo, let 7,* be the least n = 0,1, ... with S, +- Y, + ... + Y, = a.
Let W,* = W, when ¢, < o, and let W,* =T, + ¢,* when 7, = oo. So
W= W,.

I will now argue that W * satisfies (4.11a). Use (3.3) with ¢, A n for ¢ to see
that § Q)(T. rn» S. s) dP < 1. Let n— co and use (4.32):

(4.33) $icacor Qa(Wo, S, )dP + §. o) Qi(Tees S)dP < 1.

Given {r, = oo}, the process Q(T, + n, S, + Y, + .-+ + Y,) is an expectation-
decreasing martingale relative to the g-fields .7 ,*, where .7 * is the o-field

n n



TAIL PROBABILITIES FOR MARTINGALES 113

generated by all the 7, and by Y, ..., Y,, as follows from (3.5). So
(4.34) §iegmem) Qa(T + 7% S + 210" Y3) AP < § 1 coy Qi(Ts Sw) AP
Let S* = S, when 7, < oo, and §* = S, 4 3 {«" Y, when 7, = co. So (4.33)
and (4.34) show that § Q,(W, *, S*)dP < 1. But S* > a, and this proves (4.11a)
for W *,

The argument for (4.11b) is similar, using (3.6) and (3.7): sinceS, < a 41
for n < 7,*, the passages to the limit can all be justified. []

5. The Tauberian argument. This section uses inequalities (1.8) and (1.12)
to get a sharp estimate (1.13) of P{W, = b} when a = o(b*). The argument is
a rearrangement of Feller’s ((1966) Section XIII. 5) proof of the Tauberian
theorem. The first lemma is standard.

(5.1 LemMA. For each n, let h, be a non-increasing function on (0, o). Sup-
pose {3 e=**h,(x) dx — (2/2)t as n — oo, for all positive 2. Then h,(x) — [2/(xx)]t
as n— oo, for all positive x.

5.2) THE Proor oF (1.13). Let a, — co. For each n consider a process
which satisfies (1.1) and the additional condition that the sum of the conditional
variances is almost surely infinite. Let W, be the intrinsic time for the nth
process to cross a,, in the sense of (1.7). Let Z, = W, [b,, and A, (x) =
(b,%/a,)P(Z, = x). 1 will argue that h,(x) — (2/zx)t for all positive x; putting
x = 1 gives the theorem.

Let 6 be the inverse function to e(-), and let ¢ be the inverse function to f,
s0 e’ — 1 — 9(2) = e7#P — 1 4 $(4) = 4 for 2 > 0. Check

(5.3) 0(2)](24)t and ¢(2)/(24)* tends to 1 as 4 tends to 0.

Let
0,(2) = (22)¥(b,}[a, {1 — exp[—0(4/b,)a,]}

$u(2) = 20)74(b,Ha,){1 — exp[—¢(4/b,)(a, + D]} -
Using (5.3),

5.4) 0,2 — 1 and ¢,(2) — 1 as n — oo, for all positive 4.
Inequalities (1.8) and (1.12) imply

(5.5 exp[—§(3/b)a, + 1)] < Efexp(—2Z,)} < exp[—0(3/b,)a,]

Integrating by parts, E{exp(—4iZ,)} =1 Z 2 o> e~**h,(x)dx. So

(5.6) (2U3)40,(2) < §7 e 5, (x) dx < (2/2)},(3) -

Let n — oo and use (5.4) and (5.1). []

6. The law of the iterated logarithm. Inequalities (1.6) and (1.10) are
strong enough to prove Levy’s form of the iterated logarithm for martingales
with uniformly bounded increments. Let ¢(x) = (2x log log x)? for x > ¢* and
é(x) = 1 for x < e
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(6.1) THEOREM. Suppose condition (3.4). Then
lim sup, ., S,/#(T,) < 1 ae.on {3V, =c0}.

Proor. Fix r just a little bigger than 1. The main step is to show that
P{A} = 0, where A is the event that: }; V, = oo, and S, > r¢(T,) for infinitely
many n. Let o, be the sup of n with T, < r*. If 3] V, = oo, then ¢, < oo and
0, increases to co with k. So 4 C limsup 4,, where

A, ={XVi= o and S, > r’¢(T,) forsome n with ¢, < n <o,,}.
But #* < T, < r** for ¢, < n £ 0,,,. So 4, C B,, where
B, = {S, > r’¢(r*) for some n with T, < r*+1}.

Now use (4.1) to estimate P{B,}, with r’¢(r*) for a and r*+! for b. Keep k so
large that a 4 b < r**3, which is feasible because a = o(r*): then P{B,} <
exp[—a?/2(a + b)] < exp[—rloglog r¥] < 1/k", which sums on k because r >
1. So P{limsup B,} = 0. [T

In one respect, this theorem is a bit stronger than classical results, even for
independent variables: because there is no condition on the negative tail of
the X,. At first sight, large negative tails only reduce S,, so allowing them
is frivolous. But very small masses could be placed at faraway negative values,
so as to realize them only finitely often. This does not affect the asymptotic
behavior of S,. Then compensating masses could be allowed at 1, to bring the
expectation back up to 0. This tends to increase S,, which is the point of gen-
eralization. However, italso increases V,, in such a way that S, /¢(T,) decreases.
For example, look at (4.3) with the signs reversed.

The next result is standard.

(6.2) LEMMA. Suppose (1.1). Let t be a stopping time. Then 7 4 n is a
stopping time. Let 7 be the o-field of events A such that A n {r = n}e .7, for
alln >0. Forn=0,let 7 ,* =7 _,,. Fornz1,letX*=X_, and V,* =
V,pnon {t < oo}, while X,* = V,* = 0 on {r = co}.

(@) X,* is 7 *-measurable and V,* is 7 * -measurable, for n = 1.

(b) E{X,*|7*)} = 0and E{X,**| 7%} =V, *ae., fornz 1.

Let P (w, A) be a regular conditional probability on (Q, ), given 7.

(c) For P-almost all w, the starred system satisfies (1.1), relative to the con-
ditional probability triple (2, 7, P (o, +)).
(6.3) THEOREM. Suppose conditions (1.1). Then

lim sup, ., S,/¢(T,) = 1 a.e.on {3 V,= co}.

Proor. Fix rmuch larger than 1. The point to argue is that P{4}' = 0, where
A is the event that: 3 V; = oo, and S, = (1 — 3r ¥)¢(T,) for only finitely
many n. As before, let o, be the sup of n with T, < r*, so ¢, is a stopping
time, because V, is .7,_;-measurable. Let 4, be the event that ¢, < oo and
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Sy = Sy, = (1 — r4)g(r*+") for some n > g, With T, — T,, < r* — r*. Let
B, = 4, U {0, < oo and sup, T, — T, < r* —r.

Now B, is the event W, < b for the shifted process X, .., X, s --- o-fields
T 0437 ayr> + - - and variances V, o, V, 45 -+ With @ = (1 — rH)¢(r**!) and

b=r — ¥ on {0, < oo}. Choose a positive § < 4 so small that § =
(1 + 40)(1 — r#)?/(1 — r) < 1. Then keep k so large that conditions (4.12b-c)
are satisfied. By (6.2), inequality (1.10) can be used on the shifted process to
get

P{B,| .7, } > % exp(—0 loglog r**?) on {o, < oo}.

The bound is of order 1/k’: the sum on k diverges to co because § < 1. And
>: V; = oo implies ¢, < oo for all k. So Lévy’s conditional form of the Borel-
Cantelli lemma ([16] page 249; also see [5]) shows
P{3 V, = co and only finitely many B, occur} = 0.
Clearly, 4, = B,'when 3} ¥V, = co. So
P{3} V, = oo and only finitely many A4, occur} =0.
However, if 3] V, = oo and infinitely many 4, occur, then S, > (1 — 3r~4)¢(T,)
for infinitely many n. Indeed, suppose o, < n and S, — S, = (1 — r H)g(r**)
and T, — T, <r***—r* Then T, <r* so T, < ret so ¢(T,) < P(ré+?).
Use (6.1) on {—X,}. After discarding a null set, for all sufficiently large k,
So, > —20(T,) > —26(r*) > —2r74g(r**).
So S, > (1 = 3r)g(r) > (1 = 3rH§(T,). [
7. The central limit theorem. This section presents a variant of Lévy’s cen-

tral limit theorem for martingales with uniformly bounded increments ([16] page
243). The first result is immediate from (4.5).

(7.1) LeEMMA. Suppose (1.1). Let S, = X 72, X;, provided the sum converges
to a finite limit. Let o be a stopping time, with T, < co a.e. Let S, = S, when
o =mn,and S, = S, when 6 = oo. Then S, is defined and finite a.e.

(7.2) THEOREM. Suppose (1.1). Let A= 0and 0 < a < B < co. Leto bea
stopping time.

(a) If P(T, < B} = 1, then E{exp(S,)} < exp[Be(2)].

(b) If Pla < T, < B} = 1, then E{exp(4S,)} = exp[af(4)]. These bounds are
sharp.

PrOOF. Claim (2). Inequality (3.3) shows E{Q(T,,,» S,,.)} < 1. By assump-
tion, T, < oo a.e. S0 S,,, — S,a.e. asn— oo, by (7.1). Let n — co and use
Fatou’s lemma: :

exp[—Pe(d)] - E{exp(4S,)} < Efexp 1S, — e()T,} < 1.
Claim (b). Inequality (3.6) shows E{R)(T,.,, S,,,)} = 1. Again, (7.1) makes
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RAT, 0> Sonn) — Ry(T,, S,) a.e. as n— co. And this sequence of variables is
uniformly integrable, because

E{Rl(Ta/\n’ Sa/\n)z} é E{exp(zzsa/\n)} é exp[ﬂe(zz)] s
from claim (a) on the stopping time ¢ A n. Let n — oo:

exp[—af(d)] - Efexp(3S,)} = Efexp[sS, — AT = 1.

Sharpness. For (a), let the X; be independent and identically distributed,

taking the two values —e¢ and 1, and having mean 0. Let ¢ = N a.e., with

Ne = . Then S, is essentially centered Poisson. For (b), just reverse the
signs. []

The next result is standard.

(7.3)  LEmMMA. Let (Q, .7, P) be a probability triple, and let 7y C .7, C ---
be sub-o-fields of 7. For each n, let X, be .7 -measurable, and suppose Y, =
E[X, | ..} is defined a.e. Let t be a stopping time. Let X, = X, andY, =Y,
for n < ¢, while X,! =Y, =0 for n > 1. Then X,' is 7 -measurable, Y,' is
7, _,-measurable, and Y, = E{X,'| .7, _,}.

(7.4) LeEMMA. Suppose (1.1) and suppose (Q, .7, P) supports a uniform random
variable independent of all the .7 ,. Let0 < d <1 and 0 < a < B < oo, Letz
be a uniformly bounded stopping time, with Pla < T, < B} > 1 — 6. Then on the
same probability triple there are variables X,*, o-fields 7 .*, and variances V,*,
satisfying (1.1), and a stopping time t* relative to {7 *}, with P{S} + S.} < 0 and
Pla < T4 < B} = 1, where S,* = X;* + --- + X, *andT,* = V¥ ... + V%

Proor. Supposer < k. Let 7’ be the max of n < r with T, < 8. Then 7’ is
also a stopping time, because V, is .77, _;-measurable. Clearly, T, < § every-

n
where and ' = T on G.
Choose a positive ¢ so small that ¢* < 8 — a. Construct random variables

Y, Y,, - - - which are independent of one another and of all the .77, each vari-
able taking the values +¢ with chance 4. Let .9 * = 7 for n < k, while
¥ is the o-field spanned by 7, and Y,, ---, Y, , forn > k. Let
X*=2X, and V,x =1V, for n< ¢
X*=V*=0 for " <n<k
X =7Y,, and V,* = ¢ for n> k.

With the help of (7.3) for n < k, check that the starred system satisfies (1.1).
Let ¢* be the least n > k with T,* > a, so r* is a stopping time relative to
{7,*}. Clearly, T% > a everywhere. Check T% < j everywhere, and

t* =k and Sk=3FX*=3"X=8.,=385, on G. 0

n

(7.5 THE ProOF OF (1.15). Letd, > Owithd, — 0. Let0 < o, < 8, < o0,
with «, — oo and §,/a, — 1. For each n, consider a process satisfying (1.1),
and a stopping time 7,. Let S(n) be the sum of the variables in the nth process
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up to r,, and let T(n) be the sum of the conditional variances in the nth process
up to z,. Suppose

(7.6) PR, < T(n) < B} >1—39,.

The problem is to show that the distribution of S(n)/a,} tends to N(0, 1): the
uniformity follows by a conventional reductio ad absurdum. Here, S(n) is only
partially defined: it is undefined when the stopping time is infinite and the sum
of the variables fails to converge. However, as (4.5) shows, S(n) is defined a.e.
on {a, < T(n) < B,}. There is no loss in assuming each r, to be uniformly
bounded, say by k,. Indeed, z, could be replaced by =, A k,, with k, so large
that (7.6) still holds, and the distribution of S(n) over {a, < T(n) < 8,} is dis-
turbed very little (weak *) by the truncation. Of course, S(n) is now defined
off {«, < T(n) < B,}, but the set has probability less than J, — 0, so the overall
change is weak * negligible.

There is no loss in assuming the existence of uniform variables independent
of the processes, by enlarging the underlying probability triple. So (7.4) can
be used to modify the nth process in such a way as to keep (1.1), to disturb the
distribution of S(n) very little, and to get the sum of the conditional variances
strictly between a,, and 8, everywhere. Finally, since a, f(4/a,t) and 3, e(4/a,t)
both tend to 4?/2, convergence to the normal distribution follows from (7.2). O
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