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ON TALAGRAND�S DEVIATION INEQUALITIES

FOR PRODUCT MEASURES

MICHEL LEDOUX

Abstract� We present a new and simple approach to some of the

deviation inequalities for product measures deeply investigated by M�
Talagrand in the recent years� Our method is based on functional in�

equalities of Poincar�e and logarithmic Sobolev type and iteration of
these inequalities� In particular� we establish with these tools sharp

deviation inequalities from the mean on norms of sums of indepen�

dent random vectors and empirical processes� Concentration for the
Hamming distance may also be deduced from this approach�

�� Introduction�

Deviation inequalities for convex functions

It is by now classical that if f is a Lipschitz function on IRn with
Lipschitz constant kfkLip � �� and if �n denotes the canonical Gaussian
measure on IRn� for every t � ��

�n�f �M � t� � e�t��� �����

where M is either the mean or the median of f with respect to �n �see
Ledoux and Talagrand ������� Ledoux ����	��
 This inequality is part of
the so�called concentration of measure phenomenon of isoperimetric type


In the past years� M
 Talagrand developed striking new methods in the
investigation of this phenomenon in the case of product measures
 These
ideas led to de�nitive progress in an number of various areas such as Prob�
ability in Banach spaces� Empirical Processes� Geometric Probability� Sta�
tistical Mechanics


 The interested reader will �nd in the important contri�
bution Talagrand ����a� a complete account on these methods and results
�see also Talagrand ����	b��
 One of the �rst results at the starting point of
these developments is the following simple inequality for arbitrary product
measures Talagrand ������� Johnson and Schechtman ������ �see also Mau�
rey �������
 Let f be a convex Lipschitz function on IRn with kfkLip � �

Let �i� i � �� � � � � n� be probability measures on ��� �� and denote by P the
product probability measure �� � � � � � �n
 Then� for every t � ��

P �f �M � t� � � e�t��� �����
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�� MICHEL LEDOUX

where M is a median of f for P 
 Contrary to the Gaussian case� it is known
that the convexity assumption on f is essential �cf
 Ledoux and Talagrand
������� p
 ��
 The proof of ��
�� is based on the inequality

Z
e
�

�
d���Conv�A���dP � �

P �A�

that is established by geometric arguments and a basic induction on the
number of coordinates
 It is now embedded in some further abstract frame�
work called by M
 Talagrand convex hull approximation �cf
 Talagrand
����a�� ����	b��
 M
 Talagrand also introduced a concept of approxima�
tion by a �nite number of points Talagrand ������� ����a�� ����	b�
 These
powerful abstract tools have been used in particular to study sharp devia�
tions inequalities for large classes of functions �Talagrand ����	a�� ����a��
����b��


The aim of this work is to provide a simple proof of inequality ��
���
as well as of deviations inequalities for classes of functions� based on func�
tional inequalities
 Following the basic induction principle� we will work with
the only functional inequalities which we know to easily tensorise� namely
Poincar�e and logarithmic Sobolev inequalities
 The proof then reduces to
estimates on convex functionals in dimension one which turns out to be triv�
ial
 Once the appropriate logarithmic Sobolev inequality holds� it may be
turned into a simple di�erential inequality on Laplace transforms
 We apply
these ideas to obtain� in Section �� precise bounds for deviation inequalities
on sums of independent vector valued random variables or empirical pro�
cesses of statistical interest� and motivated by questions by L
 Birg�e and P

Massart �cf
 Talagrand ����b��
 More precisely� if Xi� i � �� � � � � n� are
independent random variables with values in some space S� and if F is a
countable class of measurable functions on S� set

Z � sup
f�F

����
nX
i��

f�Xi�

�����

Then� if jf j � C for every f in F � and if IEf�Xi� � � for every f � F and
i � �� � � � � n� for all t � ��

IP
�
Z � IE�Z� � t

� � � exp
�
� �

K
� t
C
log

�
� �

Ct

�� � CIE�Z�

��

where �� � supf�F
Pn

i�� IEf
��Xi� and K � � is a numerical constant
 The

new feature is an exact deviation from the mean rather than only from some
multiple of it as in Talagrand ������� ����	a�� Ledoux and Talagrand ������

This result has been obtained recently by M
 Talagrand Talagrand ����b�
as a consequence of a further deepening of his abstract principles
 While
it is uncertain whether our approach could recover these abstract princi�
ples� the deviation inequalities themselves follow rather easily from it
 On
the abstract inequalities themselves� let us mention here the recent alter�
nate approach by K
 Marton ����a�� ����b� and Dembo ����� �see also
Dembo and Zeitouni ������ based on information inequalities and coupling
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ON TALAGRAND�S DEVIATION INEQUALITIES ��

in which the concept of entropy also plays a crucial role
 Let us also observe
that hypercontraction methods were used in Kwapie�n and Szulga ������ to
study integrability of norms of sums of independent vector valued random
variables
 The work by K
 Marton also concerns some Markov chain set�
ting
 It might be that the functional approach developed in this paper also
applies in certain dependent situations
 In Section �� we brie�y investigate
in the same way deviation inequalities for chaos
 In the last section� we
emphasize� following S
 Bobkov� the basic induction procedure
 As is known
for example� if g is a function on a product space � � �� � � � � � �n with
product probability measure P � �� � � � � � �n� thenZ

g� log g�dP �
Z
g�dP log

Z
g�dP

�
nX
i��

Z �Z
g� log g�d�i �

Z
g�d�i log

Z
g�d�i

�
dP�

In particular� we easily recover the basic and historical concentration for
the Hamming distance �Milman and Schechtman ������� Talagrand ����a��
with which we conclude this work


To introduce to our main argument� we �rst treat the case of Poincar�e
or spectral gap inequalities
 As before� ��� � � � � �n are arbitrary probability
measures on ��� �� and P is the product probability P � �� � � � � � �n
 We
say that a function f on IRn is separately convex if it is convex in each
coordinate


Theorem ���� Let f be a separately convex smooth function on IRn� Then�
for any product probability P on ��� ��n�

Z
f�dP �

�Z
fdP

��

�
Z
jrf j�dP

�where rf is the usual gradient of f on IRn and jrf j denotes its Euclidean
length��

After this work was completed� we discovered that this statement has
been obtained previously by S
 Bobkov ����	� �with the same proof� and
a better constant when the �i�s are centered probability measures on a
symmetric interval�

Proof� We will actually prove something more� namely that� for any product
probability P on IRn� and any separately convex smooth function f �

Z
f�dP �

�Z
fdP

��

�
nX
i��

Z Z
�xi � yi�

���if�
��x�dP �x�dP �y�� �����

When P is concentrated on ��� ��n� Theorem �
� follows
 This important
inequality ��
��� and the corresponding one for entropy ��
	�� is in fact the
form that will be used in a vector valued setting in Section � and will be
emphasised there as Proposition �
�
 Assume �rst that n � �
 Since f �
IR 	 IR is convex� for any x� y � IR�

f�x�� f�y� � �x� y�f ��x��
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Hence ��f�x�� f�y�
�� � jx� yjmax���f ��x���� ��f ��y�����

Therefore

Z
f�dP �

�Z
fdP

��

�
�

�

Z Z ��f�x�� f�y�
���dP �x�dP �y�

�
Z Z

�x� y��f ��x�
�
dP �x�dP �y�

which is the result in this case

Now� we simply need to classicaly tensorise this one�dimensional Poin�

car�e type inequality
 Suppose ��
�� holds for Pn�� � ���� � ���n�� and let
us prove it for Pn � P � �� � � � ���n 
 Let thus f � IR

n 	 IR be separately
convex
 By Fubini�s theorem and the induction hypothesis�

Z
f�dPn �

Z
d�n�xn�

�Z
f��z� xn�dPn���z�

�

�
Z
d�n�xn�

��Z
f�z� xn�dPn���z�

��

�
n��X
i��

Z Z
�xi � yi�

���if�
��z� xn�dPn���z�dPn���y�

�

where z � �x�� � � � � xn��� � IRn��
 Let h�xn� �
R
f�z� xn�dPn���z�
 Then

h is convex on IR and� by the �rst step�

Z
h�d�n �

�Z
hd�n

��

�

Z Z
�xn � yn�

�h��xn�
�
d�n�xn�d�n�yn��

Now
R
hd�n �

R
fdPn and� by Jensen�s inequality�

h��xn�
� �

Z
��nf�

��z� xn�dPn���z��

Therefore�

Z
d�n�xn�

��Z
f�z� xn�dPn���z�

���

�
� Z

fdPn

��

�

Z Z
�xn � yn�

���nf�
��x�dPn�x�dPn�y�

from which the conclusion follows
 Theorem �
� is proved
 tu
Now� in a setting where a Poincar�e type inequality is satis�ed� it is

known that Lipschitz functions are exponentially integrable Gromov and
Milman ������� Aida et al
 ����	�
 This is however not quite enough to
reach Gaussian estimates such as ��
��
 This is why we rather have to turn
to logarithmic Sobolev inequalities that however are not more di�cult
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Theorem ���� Let g be a smooth function on IRn such that log g� is
separately convex �g� � ��� Then� for any product probability P on ��� ��n�

Z
g� log g�dP �

Z
g�dP log

Z
g�dP � 	

Z
jrgj�dP�

Proof� As in the proof of Theorem �
�� we establish that� for any prod�
uct probability P on IRn� and any smooth function g such that log g� is
separately convex�

Z
g� log g�dP �

Z
g�dP log

Z
g�dP

� 	
nX
i��

Z Z
�xi � yi�

���ig�
��x�dP �x�dP �y��

���	�

Start again with n � �
 Set g� � ef 
 Since f and ef are convex� for all
x� y � IR�

f�x�� f�y� � �x� y�f ��x�

and
ef�x� � ef�y� � �x� y�f ��x� ef�x��

It follows that� for all x� y � IR�
	
ef�x� � ef�y�
	f�x�� f�y�


 � �x� y��max
�
f ��x�

�
ef�x�� f ��y�

�
ef�y�

�
�

In another words

	
g��x�� g��y�


	
log g��x�� log g��y�
 � 	�x� y��max

�
g��x�

�
� g��y�

��
�

Hence
Z Z 	

g��x�� g��y�

	
log g��x�� log g��y�
dP �x�dP �y�
� �

Z Z
�x� y��g��x�

�
dP �x�dP �y��

Now� the left�hand�side of this inequality is equal to

�

�Z
g� log g�dP �

Z
g�dP

Z
log g�dP

�

which� by Jensen�s inequality� is larger than or equal to

�

�Z
g� log g�dP �

Z
g�dP log

Z
g�dP

�
�

ThereforeZ
g� log g�dP �

Z
g�dP log

Z
g�dP � 	

Z Z
�x� y��g��x�

�
dP �x�dP �y�
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which is the result for n � � thus

We tensorise this one�dimensional inequality as in Theorem �
�
 Let us

brie�y recall this classical argument Gross ����� for the sake of complete�
ness
 �In Section 	 �Proposition 	
��� we will come back to this iteration
procedure in an abstract framework
 For pedagogical reasons� we found it
easier to present �rst the argument in this more concrete setting
� Let g be
as in the theorem
 With the notation of the proof of Theorem �
�� and the
induction hypothesis�Z

g� log g�dPn �

Z
d�n�xn�

�Z
g��z� xn� log g

��z� xn�dPn���z�

�

�
Z
d�n�xn�

�Z
g��z� xn�dPn���z� log

Z
g��z� xn�dPn���z�

� 	
n��X
i��

Z Z
�xi � yi�

���ig�
��z� xn�dPn���z�dPn���y�

�
�

Set h�xn� �
�R

g��z� xn�dPn���z�
����


 It is easily seen� by H�older�s inequal�
ity� that log h� is convex on IR
 Hence� by the one�dimensional case�Z

h� log h�d�n �
Z
h�d�n log

Z
h�d�n

� 	

Z Z
�xn � yn�

�h��xn�
�
d�n�xn�d�n�yn��

Now�
R
h�d�n �

R
g�dPn and� by the Cauchy�Schwarz inequality�

h��xn�
�
�

�

h�xn��

�Z
�ng�z� xn�g�z� xn�dPn���z�

��

�
Z
��ng�

��z� xn�dPn���z��

The proof of Theorem �
� is easily completed
 tu
With a little more e�ort� the constant 	 of the logarithmic Sobolev

inequality of Theorem �
� may be improved to �the probably optimal con�
stant� �
 We need simply improve the estimate of the entropy in dimension
one
 To this end� recall the variational caracterisation of entropy �Holley
and Stroock ������� asZ

g� log g�dP �
Z
g�dP log

Z
g�dP

� inf
c��

Z 	
g� log g� � �log c� ��g� � c



dP�

����

Let thus P be a probability measure concentrated on ��� ��
 Set again g� � ef

where f is �smooth and� convex on IR
 Let then y � ��� �� be a point at which
f is minimum and take c � ef�y� �in ��
��
 For every x � ��� ���
f�x� ef�x� � �log c� �� ef�x� � c �

	
f�x�� f�y�



ef�x� � 	

ef�x� � ef�y�

�
	�
f�x�� f�y�

�� � � e��f�x��f�y��
ef�x�
� �

�

	
f�x�� f�y�


�
ef�x�
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since u � � � e�u � u�

� for every u � �
 Hence� by convexity� and since
x� y � ��� ���

f�x� ef�x� � �log c� �� ef�x� � c � �

�
f ��x�

�
ef�x�

from which we deduce� together with ��
�� that

Z
g� log g�dP �

Z
g�dP log

Z
g�dP � �

Z
g�
�
dP�

Tensorising this inequality thus similarly yields that if g is smooth on IRn

with log g� separately convex� for every product probability P on ��� ��n�

Z
g� log g�dP �

Z
g�dP log

Z
g�dP � �

Z
jrgj�dP� �����

Now� in presence of a logarithmic Sobolev inequality� there is a general
procedure that yields concentration inequalities of the type ��
�� via a simple
di�erential inequality on Laplace transforms
 This has been shown in Davies
and Simon ����	�� Aida et al
����	� and Ledoux ����� and we recall the
simple steps here
 In the recent note Bobkov ������ Talagrand�s inequality
��
�� on the cube is deduced in this way from Gross�s logarithmic Sobolev
inequality on the two point space
 Note that ��
�� also follows like that
from the Gaussian logarithmic Sobolev inequality Gross �����
 We use
below ��
�� rather than Theorem �
� in order to improve some numerical
constants
 �With Theorem �
�� the constants are simply weaker by a factor
�
�

Let f be a separately convex smooth Lipschitz function on IRn with
Lipschitz norm kfkLip � �
 Let P be a product probability measure on
��� ��n which we assume �rst to be absolutely continuous with respect to
Lebesgue�s measure
 �A simple smoothing procedure will then reduce to
this case
� For any 	 � �� apply ��
�� to g� � e�f 
 Setting F �	� � R

e�fdP �
it yields� for any 	 � ��

	F ��	�� F �	� logF �	� � 	�

�

Z
jrf j�e�fdP� �����

Since kfkLip � �� jrf j � � almost everywhere� and thus also P �almost surely
since P is assumed to be absolutely continuous with respect to Lebesgue�s
measure
 We therefore get the di�erential inequality

	F ��	�� F �	� logF �	� � 	�

�
F �	�� 	 � ��

which can easily be integrated
 If we let H�	� � �
� logF �	�� 	 � �� it

reduces to H ��	� � �
�
 Since

H��� � lim
���

�

	
logF �	� �

F ����

F ���
�

Z
fdP�
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it follows that� for every 	 � �� H�	� � R
fdP � 	
�
 Therefore� for every

	 � ��
F �	� �

Z
e�fdP � e�

R
fdP	�����

Let now P be arbitrary
 Any smooth �product� convolution of P will sat�
isfy the preceding inequality and thus� since f is continuous� P also
 The
smoothness assumption on f may be dropped similarly
 Summarizing� we
obtained that for any separately convex Lipschitz function f on IRn with
kfkLip � �� and any product probability P on ��� ��n� for every 	 � ��

Z
e�fdP � e�

R
fdP	�����

By Chebyshev�s inequality� for every 	� t � ��

P
�
f � R

fdP � t
� � e��t	�����

Optimising in 	 yields the following corollary


Corollary ���� Let f be a separately convex Lipschitz function on IRn

with Lipschitz constant kfkLip � �� Then� for every t � ��

P
�
f � R

fdP � t
� � e�t����

This inequality is the analogue of ��
�� with the mean instead of the

�a� median M and the improved bound e�t
���


M
 Talagrand ������ �see also Johnson and Schechtman ������� Maurey
������� Talagrand ����a�� ����	b�� actually also showed deviation inequal�
ities under the level M � that is an inequality for �f �f convex�
 It yields a
concentration result of the type

P
�jf �M j � t

� � 	 e�t���� t � ��

We have not been able so far to deduce such a result with our methods

At a weak level� Theorem �
� indicates that for f separately convex with
kfkLip � ��

P
���f � R

fdP
�� � t

� � �

t�
� t � ��

This inequality ensures in any case that a median M �of f for P � is close to
the mean

R
fdP 
 Indeed� if t �

p
��

P
���f � R

fdP
�� � t

�
�
�

�

so that the de�nition of a median implies that

��M � R
fdP

�� � p
� �

That concentration inequalities around the mean or the median are equiv�
alent up to numerical constants is a well�known issue �cf
 e
g
 Milman
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and Schechtman ������� p
 �	��
 Although deviation inequalities above the
mean or the median are the useful inequalities in Probability and its appli�
cations� concentration inequalities are sometimes important issues �e
g
 in
Geometry of Banach spaces �Milman� and Schechtman �������� percolation�
spin glasses


 Talagrand ����a��


Corollary �
� of course extends to probability measures �i supported
on �ai� bi�� i � �� � � � � n� �following for example ��
	� of the proof of Theorem
�
�� or by scaling�
 In particular� if P is a product measure on �a� b�n and if
f is separately convex on IRn with Lipschitz constant less than or equal to
�� for every t � ��

P
�
f � R

fdP � t
� � e�t����b�a�� � �����

Let us also recall one typical application of these deviation inequalities
to norms of random series
 Let �i� i � �� � � � � n� be independent random
variables on some probability space ���A� IP� with j�ij � � almost surely

Let ai� i � �� � � � � n� be vectors in some arbitrary Banach space E with norm
k � k
 Then� for every t � ��

IP

�����
nX
i��

�iai

���� � IE
����

nX
i��

�iai

����� t

�
� e�t��
�� �����

where

�� � sup
k�k��

nX
i��

h�� aii��

�� Sharp bounds on norms of random vectors

and empirical processes

In the second part of this paper� we turn to the case where the �i�s
are probability measures on some Banach spaces Ei
 This will allow us to
investigate deviation inequalities for norms of sums of independent vector
valued random variables as well as empirical processes
 The main idea will
be to use the vector valued version of the basic inequalities ��
�� and ��
	�
of Theorems �
� and �
� that we emphasize �rst


For simplicity� we assume that Ei � E� i � �� � � � � n� where E is a real
separable Banach space with norm k � k
 If f � E 	 IR is smooth enough�
let Df�x�� x � E� be the element of the dual space E� of E de�ned as

lim
t��

f�x� ty�� f�x�

t
�
�
Df�x�� y


� y � E�

If f is convex� as in the scalar case� for every x� y � E�

f�x�� f�y� � �
Df�x�� x� y


�

Therefore� if f is a real valued separately convex smooth function on En� the
proofs of inequalities ��
�� and ��
	� in Theorems �
� and �
� immediately
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extend to this vector valued to yield the following statement� of possible
independent interest


Proposition ���� Let f be a real valued separately convex smooth function
on En� Then for any product probability P � �� � � � � � �n on En

Z
f�dP �

�Z
fdP

��

�
nX
i��

Z Z �
Dif�x�� xi � yi

�
dP �x�dP �y�

and
Z
fefdP�

Z
efdP log

Z
efdP �

nX
i��

Z Z �
Dif�x�� xi�yi

�
ef�x�dP �x�dP �y��

�Here Dif�x� denotes the i�th partial derivative of f at the point x��

These inequalities are of particular interest when f is given by f�x� �
kPn

i�� xik� x � �x�� � � � � xn� � En
 Since we however run into various
regularity questions� let us �rst illustrate how the preceding statement and
inequalities may be expressed in a �nite dimensional setting
 Let us thus
�rst assume that E � IRN and consider

f�x� � max
��k�N

nX
i��

xki or max
��k�N

����
nX
i��

xki

�����
As is easily seen� the convexity properties of this functional f still ensure
that� for every i � �� � � � � n and x� y � En with xj � yj � j 
� i�

f�x�� f�y� �
NX
k��

k jxki � yki j �����

where k � k�x� � IAk
�x� and �Ak���k�N is a partition of En with

Ak �
�
z � En� f�z� �

nX
i��

zki or

����
nX
i��

zki

����
�
�

In particular� k � � and
PN

k�� k � �
 Using ��
��� the inequalities of
Proposition �
� hold similarly for this functional f and we thus get respec�
tively �under proper integrability conditions�

Z
f�dP �

�Z
fdP

��

�
Z Z

max
��k�N

nX
i��

�xki � yki �
�dP �x�dP �y� �����

and� for every 	 � ��Z
	fe�fdP �

Z
e�fdP log

Z
e�fdP

�
Z Z

max
��k�N

nX
i��

�xki � yki �
�e�f�x�dP �x�dP �y��

�����
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As announced� by �nite dimensional approximation and monotone con�
vergence� the preceding inequalities extend to

f�x� �

����
nX
i��

xi

���� � sup
��E��k�k��

nX
i��

h�� xii� x � En�

on an arbitrary separable Banach space �E� k�k�with dual space E�
 To state
the corresponding inequalities� let us use probabilistic notation and consider
independent random variables Xi� i � �� � � � � n� on some probability space
���A� IP� with values in E �with law �i respectively�
 Write Sn �

Pn
i��Xi

and let also Yi� i � �� � � � � n� be an independent copy of the sequence Xi�
i � �� � � � � n
 Assume that IEkXik� � � for every i � �� � � � � n
 With this
notation� ��
�� implies that

IEkSnk� �
�
IEkSnk

�� � IE
�
sup
k�k��

nX
i��

h��Xi� Yii�
�

� 	 IE
�
sup
k�k��

nX
i��

h��Xii�
�
�

���	�

�Recall the classical Yurinskii bound based on the martingale method � cf

Ledoux and Talagrand ������ � only yields

IEkSnk� �
�
IEkSnk

�� �
nX
i��

IEkXik���

Note that if the Xi�s are centered� ��
	� may be slightly improved to

IEkSnk� �
�
IEkSnk

�� � sup
k�k��

nX
i��

IEh��Xii� � IE
�
sup
k�k��

nX
i��

h��Xii�
�
�

Similarly with ��
��� denote by F �	� � IE�e�kSnk�� 	 � �� the Laplace
transform of kSnk� assumed to be �nite
 Then� for every 	 � ��

	F ��	�� F �	� logF �	� � 	�IE

�
sup
k�k��

nX
i��

h��Xi � Yii�e�kSnk
�
�

Denote by  � the random variable supk�k��
Pn

i��h��Xii�
 Then� for 	 � ��

	F ��	�� F �	� logF �	� � �IE� ��	�F �	� � �	�IE
�
 �e�kSnk

�
� ����

With the same approximation procedure� inequalities ��
	� and ��
�
also hold for more general sums �empirical processes�

Z � sup
f�F

nX
i��

f�Xi� or sup
f�F

����
nX
i��

f�Xi�

���� �����
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where the Xi�s are independent random variables with values in some space
S and F is a countable class of �bounded� measurable functions on S �start
again with a �nite class F�
 In this case�  � � supf�F

Pn
i�� f

��Xi�
 This
point of view slightly generalises the setting of Banach space valued random
variables and we adopt this language below
 We summarise in this notation
the results obtained so far


Proposition ���� Let Z be as above and set  � � supf�F
Pn

i�� f
��Xi��

Then
IE�Z��� IE�Z�� � 	 IE� ��

and� denoting by F �	� � IE�e�Z�� 	 � �� the Laplace transform of Z�

	F ��	�� F �	� logF �	� � �IE� ��	�F �	� � �	�IE
�
 �e�Z

�
�����

for every 	 � ��
The preceding di�erential inequality ��
�� on the Laplace transform

of Z will be the key to the Gaussian bounds on Z
 In order to describe
the Poissonian behavior� it should be completed with a somewhat di�erent
inequality� that is however also obtained via logarithmic Sobolev inequalities

�The reader only interested in Gaussian estimates might want to skip this
sligthly more technical part at �rst reading
� To this end� we simply estimate
in a di�erent way entropy in dimension one
 We start again in a �nite
dimensional setting and recall

f�x� � max
��k�N

nX
i��

xki

on E � IRN � x � �x�� � � � � xn� � En
 We will assume here that the �i�s are
concentrated on ��� ��N � E
 By the variational caracterisation of entropy
��
�� for every i � �� � � � � n and 	 � ��
Z
	fe�fd�i�

Z
e�fd�i log

Z
e�fd�i � inf

c��

Z 	
	fe�f��log c��� e�f�c
d�i

�in which it is understood that we integrate f�x� � f�x�� � � � � xn� with re�
spect to xi with the other coordinates �xed�
 For every x � �x�� � � � � xn�
in En� and i � �� � � � � n� set y � �x�� � � � � xi��� �� xi	�� � � � � xn�
 Now� if
c � e�f�y�� 	 � �� for every x�

	f�x� e�f�x���log c��� e�f�x��c � 	
	
�
f�x��f�y�����e���f�x��f�y��
e�f�x��

If xi � ��� ��N�

f�x� � f�x�� � � � � xn� � f�x�� � � � � xi��� �� xi	�� � � � � xn� � f�y��

Furthermore� by ��
���

� � f�x�� f�y� �
NX
k��

kx
k
i � h� xii�
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The function u � � � e�u is increasing in u � �
 Therefore�
	
	
�
f�x��f�y�

����e���f�x��f�y��
e�f�x� � 	
	h� xii���e��h��xii



e�f�x��

Now� if xi � ��� ��N � and thus � � h� xii � �� and if 	 � �
�
�

�� e��h��xii � �

�
h� xii�

Since the �i�s are concentrated on ��� ��
N � it follows from the preceding that�

for every x � En� i � �� � � � � n and 	 � �
�
�

Z
	fe�fd�i �

Z
e�fd�i log

Z
e�fd�i �

�
	� �

�

� Z
h� xiie�f�x�d�i�xi��

Tensorising this inequality as in the proof of Theorem �
� �cf
 Proposition
	
� below� immediately yields� for 	 � �

� thus�

Z
	fe�fdP �

Z
e�fdP log

Z
e�fdP �

�
	� �

�

� nX
i��

Z
h� xiie�f�x�dP �x�

�
�
	� �

�

�Z
fe�fdP

since
nX
i��

h� xii �
nX
i��

NX
k��

kx
k
i � max

��k�N

nX
i��

xki � f�x��

In another words� if F is the Laplace transform of f � and when the �i�s are
concentrated on ��� ��N thus�

F ��	� � �F �	� logF �	�� 	 � �
� �

Note that since u � � � e�u � u�

� for u � �� the preceding argument
shows that ��
�� may be improved in this setting to

Z
	fe�fdP �

Z
e�fdP log

Z
e�fdP

� 	�

�

Z
max

��k�N

nX
i��

�xki �
�e�f�x�dP �x��

�����

For simplicity however� we will not use this below

In probabilistic notation� the preceding argument for example applies

to the case the supremum Z in ��
�� is de�ned with a class F of functions
f such that � � f � �
 We may therefore state

Proposition ���� Let Z be de�ned as in ���	� with a class F of functions
f such that � � f � � and denote by F its Laplace transform� Then

F ��	� � �F �	� logF �	� �����
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for every 	 � �
�
�

The di�erential inequalities ��
�� and ��
�� on Laplace transforms of
Propositions �
� and �
� may thus be used to yield sharp bounds on the
tail of supremum Z over a class F of functions
 �While ��
�� is used for
general classes� ��
�� only applies as we have seen to classes of functions f
such that � � f � �
� More precisely� they will provide precise deviation
inequalities from the mean of statistical interest in which ��
�� will be used
to describe the Gaussian behavior and ��
�� the Poissonian behavior
 The
following statement is a �rst result in this direction
 It has been established
recently by M
 Talagrand ����b�
 The proof here is elementary


Theorem ���� Assume that � � f � �� f � F � Then� for every t � ��

IP
�
Z � IE�Z� � t

� � exp
�
� t

K
log

�
� �

t

IE�Z�

��
�

for some numerical constant K � ��

Proof� We �rst show the main Gaussian bound

IP
�
Z � IE�Z� � t

� � exp
�
� �

K
min

�
t �

t�

IE�Z�

��
� t � �� ������

for some numerical K � �� using the di�erential inequality ��
�� of Propo�
sition �
�
 In the process of the proof� we found it easier to write down
explicitely some numerical constants
 �These constants are not sharp and
we did not try to improve them
 Some sharper constants may however be
obtained through ��
��
� Since � � f � � for every f � F �

 � � sup
f�F

nX
i��

f��Xi� � sup
f�F

nX
i��

f�Xi� � Z�

Hence� ��
�� reads in this case� for every 	 � ��

	F ��	�� F �	� logF �	� � �IE�Z�	�F �	� � �	�F ��	��

Setting� as in Section �� H�	� � �
� logF �	�� we see that

H ��	� � �IE�Z� � � F
��	�

F �	�
�

Therefore� for every 	 � ��

H�	� � H��� � �	IE�Z� � � logF �	��

Since H��� � IE�Z�� we get that� for every 	 � ��

F �	� � IE
�
e�Z

� � e�IE�Z�	���IE�Z�	�� logF ���� ������
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When 	 � �
�
� ��
��� implies that

F �	� � e�IE�Z�	���IE�Z�F �	����

so� when � � 	 � �
�
�

F �	� � e��IE�Z�	���IE�Z� � e��IE�Z�� ������

Taking this estimate back in ��
��� yields� always for � � 	 � �
� �

IE
�
e��Z�IE�Z�

� � e���IE�Z�	���IE�Z� � e
��IE�Z��

Now� by Chebyshev�s inequality�

IP
�
Z � IE�Z� � t

� � e��t	
��IE�Z��

Choose 	 � t
��IE�Z� if t � 	IE�Z� and 	 � �
� if t � 	IE�Z� so that� for

every t � ��

IP
�
Z � IE�Z� � t

� � exp
�
��
�
min

�
t �

t�

	IE�Z�

��

and ��
��� is established

We now prove� using Proposition �
�� that

IP�Z � t� � exp
�
� t

K
log

t

IE�Z�

�
������

for every t � KIE�Z� for some large enough numerical constant K
 This
inequality together with ��
��� yields the full conclusion of Theorem �
	

Integrating ��
�� shows that

F �	� � elog F �����e�� � 	 � �
� �

Furthermore� by ��
���� log F ��
	� � IE�Z�
 By Chebyshev�s inequality� we
get that� for every 	 � �

� and t � ��

IP�Z � t� � e��t	IE�Z�e�� �

Choose then 	 � �

 log�t
IE�Z�� provided that t � �IE�Z�
 The claim ��
���

easily follows and the proof of Theorem �
	 is thus complete
 tu
Bounds on general sums are a little more involved but noch much


Theorem ���� Under the previous notation� assume that jf j � C for every
f � F and recall  � � supf�F

Pn
i�� f

��Xi�� Then� for every t � ��

IP
�
Z � IE�Z� � t

� � � exp
�
� �

K
� t
C
log

�
� �

Ct

IE� �� � CIE�Z�

��
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for some numerical constant K � ��

As is classical in Probability in Banach spaces �cf
 Ledoux and Tala�
grand ������� Lemmas �
� and �
��� if IEf�Xi� � � for every f � F and
i � �� � � � � n�

IE� �� � �� � �CIE�Z�

where �� � supf�F
Pn

i�� IEf
��Xi� and Z � supf�F

��Pn
i�� f�Xi�

�� �if Z is
de�ned without absolute values�
 Hence Theorem �
 immediately yields
the following corollary
 This type of estimate corresponds to the classical
exponential bounds for sums of independent real valued random variables�
with a Gaussian behavior for the small values of t and a Poissonian behavior
for the large values
 It is as general and sharp as possible �besides numer�
ical constants� to recover all the vector valued extensions of classical limit
theorems and bounds on tails for sums of independent random variables �cf

Ledoux and Talagrand ������� Chapters � and ��


Corollary ���� Assume that jf j � C� f � F � and that IEf�Xi� � � for
every f � F and i � �� � � � � n� Recall �� � supf�F

Pn
i�� IEf

��Xi�� Then�
for every t � ��

IP
�
Z � IE�Z� � t

� � � exp
�
� �

K
� t
C
log

�
� �

Ct

�� � CIE�Z�

��

for some numerical constant K � ��

As announced� Theorems �
	 and �
 were obtained recently by M

Talagrand ����b� as a further development of his abstract investigation of
isoperimetric and concentration inequalities in product spaces
 �Talagrand�s
formulation of Theorem �
 actually only involves IE� �� in the logarithmic
factor rather than IE� �� �CIE�Z�
 For the applications through Corollary
�
�� this however does not make any di�erence
� The self�contained proofs
presented here are much simpler
 The main interest of these statements lies
in the exact control of the deviation from the mean� that is the Gaussian
estimate for the small values of t
 The previous known bounds only con�
cerned t � KIE�Z� where K � � is some numerical constant
 They were
obtained by M
 Talagrand as a consequence of either his abstract control by
a �nite number of points� or� but with some more e�orts� of the convex hull
approximation �cf
 Talagrand ������� ����	a�� ����a��
 The new feature
of Theorems �
	 and �
 is that they allow deviation inequalities exactly
from the mean� a result of strong statistical interest
 That such bounds may
be obtained is considered by M
 Talagrand in his recent paper Talagrand
����b� as !a result at the center of the theory"


Now� we turn to the proof of Theorem �

 It is similar to that of
Theorem �
	

Proof of Theorem ��
� We may assume by homogeneity that C � �
 We
start again with the main Gaussian bound

IP
�
Z � IE�Z� � t

� � � exp
�
� �

K
min

�
t �

t�

IE� �� � IE�Z�

��
����	�
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for every t � � and some numerical constant K � �
 We use the di�erential
inequality ��
��

	F ��	�� F �	� logF �	� � �IE� ��	�F �	� � �	�IE
�
 �e�Z

�
� 	 � ��

We �rst study the term IE� �e�Z�
 We can write� for every � � 	 � �

 �

IE
�
 �e�Z

� �
Z
f����IE����	Zg

 �e�ZdIP �

Z
f����IE����	Zg

 �e�ZdIP

� �IE� ��F �	� � F ��	� � e��IE��
���
IE

�
 �e�

��

�

� �IE� ��F �	� � F ��	� � � e��IE��
����IE

�
e�

���
�
�

Since  � � supf�F
Pn

i�� f
��Xi� and � � f� � �� f � F � by Theorem �
	�

more precisely ��
��� of the proof of Theorem �
	�

IE
�
e�

���
� � e�IE�������

We thus obtained that for every � � 	 � �


�

	F ��	�� F �	� logF �	� � �
�	IE� �� � ��

�
	�F �	� � �	�F ��	�� �����

From here� the argument is exactly the same as the one used in the proof of
Theorem �
	
 The di�erential inequality ��
�� yields� for � � 	 � �


 �

F �	� � e�IE�Z�	���IE����	�����	�� logF ���� ������

In particular�

F �	� � e�IE�Z�	���IE����	�����F �	����

and thus �	 � �


�

F �	� � e��IE�Z�	����IE����	����� � e��IE�Z�	������IE����	���

Coming back to ��
����

F �	� � e�IE�Z�	���IE����	�����	���IE�Z�	���IE����	
�� �

Hence� for every � � 	 � �

 �

IE
�
e��Z�IE�Z�

� � � e����IE����	���IE�Z��

Optimising in 	 � �

 together with Chebyshev�s inequality� it follows that�

for every t � ��

IP
�
Z � IE�Z� � t

� � � exp
�
��
	
min

�
t

	
�

t�

��IE� �� � 	IE�Z�

��
�

Inequality ��
�	� is thus established
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We turn to the Poissonian bound

IP�Z � t� � � exp
�
� t

K
log

�
t

IE� ��

��
������

for t � K�IE� �� � IE�Z�� with some numerical constant K
 Together with
��
�	�� the proof of Theorem �
 will be complete
 We follow the truncation
argument of Talagrand ����b�
 For every t � ��

IP�Z � �t� � IP�Z	 � �t� � IP�W � t�

where

Z	 � sup
f�F�

nX
i��

f�Xi� or sup
f�F�

����
nX
i��

f�Xi�

����
with F	 � ffIfjf j�	g� f � Fg� � � � to be determined� and

W � sup
f�F

nX
i��

��f�Xi�
��Ifjf�Xi�j�	g�

We use ��
�	� for Z	 to get that� for some constant K� and by homogeneity�

IP
�
Z	 � IE�Z	� � t

� � � exp�� t

K��

�
������

provided that t � IE� ��
� � IE�Z	�
 We may apply Theorem �
	� more
precisely ��
���� to W to get

IP�W � t� � exp
�
� t

K�
log

t

IE�W �

�
������

if t � K�IE�W � for some constant K� which we may assume � 	
 Let now t
be �xed such that t � K�

� �IE� 
���IE�Z�� and choose � � ��t� �

p
IE� ��
t


Then� since W �  �
��

t � K�

p
t IE� �� � K�

IE� ��

�
� K�IE�W �

and ��IE�Z	�� IE�Z��� � IE�W � �
p
t IE� �� � t

K�
� t

	

so that IE�Z	� � t
� since t � 	IE�Z�
 Therefore ��
��� and ��
��� hold and�
by the choice of ��

IP�Z	 � �t� � IP
�
Z	 � IE�Z	� � t

�

� � exp
�
� t���

K�

p
IE� ��

�
� � exp

�
� t

K�
log

t

IE� ��

�
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and

IP�W � t� � exp
�
� t

K�
log

t

IE�W �

�
� exp

�
� t

�K�
log

t

IE� ��

�
�

��
��� follows and Theorem �
 is therefore established
 tu

�� Deviation inequalities for chaos

In this section� we come back to the setting of the �rst part� but we will
be interested in sharp deviation inequalities for chaos in the spirit of ��
��

Assume thus we are given independent random variables �i� i � �� � � � � n
such that j�ij � � almost surely for every i
 Let also aij � i� j � �� � � � � n� be
elements in some Banach space �E� k�k� such that aij � aji and aii � �
 We
are interested in the deviation of the random variable Z � kPn

i�j�� aij�i�jk
from its mean
 We are thus dealing with the function on IRn de�ned by

f�x� �

����
nX

i�j��

aijxixj

����� x � �x�� � � � � xn��

To study functional inequalities for such a function� we make advantage of
the fact that Theorems �
� and �
� hold for separately convex functions�
which is precisely the case with this f �aii � ��
 Let

 � sup
k�k��

� nX
i��

� nX
j��

h�� aiji�j
������

� sup
k�k��

sup
j�j��

nX
i�j��

i�jh�� aiji

where  � ��� � � � � n� � IRn and jj denotes its Euclidean norm
 �Without
the symmetry assumption on the aij �s� we would need to consider also the
expression symmetric in i and j
� Set also

� � sup
k�k��

sup
j�j��

sup
j
j��

nX
i�j��

i�jh�� aiji�

Deviation inequalities for chaos have been obtained e
g
 in Ledoux and
Talagrand ������� Chapter 	
 Again� they concern deviation from a multiple
of the medianM and allow only a control of the probabilities IP�Z � �M�t�

A somewhat more precise version of the following statement for symmetric
Bernoulli random variables is established in Talagrand ����b�


Theorem ���� Under the preceding notation� for every t � ��

IP
�
Z � IE�Z� � t

� � � exp
�
� �

K
min

�
t

�
�

t�

�IE�Z� � IE� ��

��

for some numerical constant K � �� Furthermore� there is a numerical
K � � such that� for every � � � � � and every t � ��

IP
�
Z � �� � ��IE�Z� � t

� � � exp
�
� �

K
min

�
�t

�
�

t�

IE� ��

��
�
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Proof� Denote by F �	� � IE�e�Z�� 	 � �� the Laplace transform of Z

Since as we have seen Z is given by a separately convex function� the basic
inequalities of Section � apply
 In particular ��
�� implies that �recall j�ij �
��� for every 	 � ��

	F ��	�� F �	� logF �	� � �	�IE� �e�Z
�
� �����

We may and do assume by homogeneity that � � �
 Observe that  is also
given by a separately convex function with furthermore a Lipschitz constant
less than or equal to � � �
 Therefore� by ��
���

IP
�
 � IE� � � t

� � e�t��
� t � �� �����

We have now just� more or less� to properly combine ��
�� and ��
��
 As in
the proof of Theorem �
� one may write� for every � � 	 � 	��

IE
�
 �e�Z

� �
Z
f���
IE����	Zg

 �e�ZdIP �

Z
f���
IE����	Zg

 �e�ZdIP

� �IE�Z��F �	� � F ��	� � e�
��IE���
�

IE
�
 �e���

��
�

Now� by the integration by parts formula�

IE
�
 �e���

�� � �

	�
IE
�
e����

��

� �

	�
e
��IE���

�

�
	

	�

Z 	

�IE���

IP� � t� t e���t
�

dt

� �

	�
e
��IE���

�

�
	

	�

Z 	

�

t e���t
��t����dt

where we used ��
��
 Set 	� � �
���
 Calculus shows that

e�
��IE���
�

IE
�
 �e���

�� � K � ��� � �����

The di�erential inequality ��
�� then reads�

	F ��	��F �	� logF �	� � �	IE� ��	�F �	���	�F ��	���K	�� � � 	 � 	��

Its integration gives

F �	� � e�IE�Z�	���IE����	
K���	
� log F ���� �����

Arguing as in the proofs of Theorems �
	 and �
� we get that� for every
� � 	 � 	��

IE
�
e��Z�IE�Z�

� � � eK��IE�Z�	IE�������

where K� is some further numerical constant
 A simple use of Chebyshev�s
inequality then yields the �rst part of Theorem �
�
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If ��	 � �
� � � for some � � � small enough� ��
�� implies that

IE
�
e�Z

� � e��	��IE�Z��	��	�����IE����	
K���

from which the second part of the statement follows
 The proof of Theorem
�
� is complete
 tu

�� Iteration and concentration for the Hamming distance

In the last part of this work� we �rst isolate the basic iteration pro�
cedure for functions on a product space
 We learned the argument in its
full generality from S
 Bobkov
 We adopt a somewhat general formulation
in order to include in the same pattern Poincar�e and logarithmic Sobolev
inequalities
 The statement we present is the general iteration result which
reduces to estimates in dimension one
 At least in case of variance and
entropy� it is a well�known statement


Let # be a convex function on some closed interval of IR
 If � is a
probability measure� consider the non�negative functional

E����g� �

Z
#�g�d�� #

�Z
gd�

�

�under appropriate range and integrability conditions on g�
 We consider
convex functions # such that E��� de�nes a convex functional for every �
in the sense that

E���

�X
k

kgk

�
�
X
k

kE����gk� �	���

for every k � � with
P

k k � � and functions gk
 A �rst example of such
convex functionals is the variance �#�x� � x�� since

Z
g�d��

�Z
gd�

��

�
�

�

Z Z ��g�x�� g�y�
���d��x�d��y��

Another one is entropy �#�x� � x log x on ������ since�
Z
g log gd��

Z
gd� log

Z
gd� � sup

Z
fgd�

where the supremum is running over all f �s with
R
efd� � �
 Further exam�

ples of interest have been described by S
 Bobkov �private communication�
via analytical conditions on #


Now� consider ��i�Ai� �i�� i � �� � � � � n� arbitrary probability spaces

Denote by P � Pn the product probability �� � � � � � �n on the product
space � � �� � � � � � �n
 A generic point in � is denoted x � �x�� � � � � xn�

If g is a function on the product space �� for every � � i � n� let gi be the
function on �i de�ned by

gi�xi� � g�x�� � � � � xi� � � � � xn�
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with xj � j 
� i� �xed


Proposition ���� Let # be convex satisfying ������ Then� for any g and
any product probability P � �� � � � � � �n on ��

E��P �g� �
nX
i��

Z
E���i�gi�dP�

Proof� By induction on n
 The case n � � is of course trivial
 Assume
the proposition holds for Pn�� and let us prove it for Pn � P 
 Write� by
Fubini�s theorem and the induction hypothesis�

Z
#�g�d� �

Z
d�n�xn�

�Z
#
�
g�z� xn�

�
dPn���z�

�

�
Z
d�n�xn�

�
#

�Z
g�z� xn�dPn���z�

�

�
n��X
i��

Z
E���i

�
gi��� xn�

�
dPn��

�

where� as usual� z � �x�� � � � � xn���
 Now� by the convexity property �	
���

Z
d�n�xn�

�
#

�Z
g�z� xn�dPn���z�

��
� #

�Z
gdPn

�
�

Z
E���n�gn�dPn

from which the result follows
 tu
As an application we get for example� for any non�negative function g

on � �or equivalently for g���

Z
g log gdP�

Z
gdP log

Z
gdP

�
nX
i��

Z �Z
g log gd�i �

Z
gd�i log

Z
gd�i

�
dP�

�	���

This reduces to estimates of the entropy in dimension one
 In Sections �
and �� we present some gradient one�dimensional bounds for convex func�
tions and perform there the tensorisation directly on the gradient estimates
�a procedure that is somewhat simpler than to go through Proposition 	
��

However� once �	
�� has been isolated� the proofs reduce to dimension one
in a really straightforward manner
 As an application� we next observe that
a trivial one�dimensional estimate similarly yields the classical concentra�
tion for the Hamming metric
 This example was an important step in the
development of the abstract general inequalities �cf
 Talagrand ����a��


On � � �� � � � � � �n� consider the Hamming distance given by

d�x� y� � Cardf� � i � n� xi 
� yig� x� y � ��

It was shown in Milman and Schechtman ������ �in a particular case that
however trivially extends to the general case� and Talagrand ����a� that
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for every Lipschitz function f on ��� d� with Lipschitz constant kfkLip � �
and every product probability P on ��

P
���f � R

fdP
�� � t

� � � e�t���n �	���

for every t � �

To deduce this inequality from our approach� we apply �	
�� to e�f with

	 � IR and kfkLip � � with respect to the Hamming metric
 We are then

reduced to the estimate of the entropy of e�f in dimension one
 Let thus
�rst n � �� and f on � with jf�x�� f�y�j � c for every x� y and some c � �

By Jensen�s inequality�

Z
fefdP �

Z
efdP log

Z
efdP

� �

�

Z Z 	
f�x�� f�y�


	
ef�x� � ef�y�
dP �x�dP �y��

For every x� y�

	
f�x�� f�y�


	
ef�x� � ef�y�
 � �

�

��f�x�� f�y�
���	ef�x� � ef�y�


� c�

�

	
ef�x� � ef�y�




where we used that �u� v��eu� ev� � �
� �u� v���eu�ev� for every u� v � IR


Therefore�

Z
fefdP �

Z
efdP log

Z
efdP � c�

�

Z
efdP� �	�	�

Let thus f on the product space � � �� � � � �� �n such that kfkLip � �

with respect to d
 Applying �	
�� to e�f � 	 � IR� and then �	
	��

	

Z
fe�fdP �

Z
e�fdP log

Z
e�fdP � n	�

�

Z
e�fdP�

That is� setting F �	� �
R
e�fdP �

	F ��	�� F �	� logF �	� � n	�

�
F �	�� 	 � IR�

This is the basic di�erential inequality of this work
 As in Section �� its
integration shows that� for every 	 � IR�

Z
e�fdP � e�

R
fdP	n�����

By Chebyshev�s inequality� for every t � ��

P
�
f � R

fdP � t
� � e�t���n� �	��
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Together with the same inequality for �f � we �nd again �	
��� with a
somewhat better constant
 �This is however not quite the optimal bound
obtained with the martingale method in McDiarmid ������� see also Ta�
lagrand ����a�
� The same argument works for the Hamming metricsPn

i�� aiIfxi 
�yig� ai � �

The preceding development has also some interesting consequences to

the concept of penalties introduced by M
 Talagrand in Talagrand ����a�

Assume for simplicity that all the probability spaces ��i�Ai� �i�� i � �� � � � � n�
are identical
 Let h be non�negative symmetric on �� � �� and equal to �
on the diagonal� and consider a function f on the product space � such that

��f�x�� f�y�
�� �

nX
i��

h�xi� yi�� x� y � ��

Then� if F �	� �
R
e�fdP � we get as before

	F ��	�� F �	� logF �	� � 	�
nX
i��

Z Z
h�xi� yi�

�e�f�x�dP �x�dP �y�� 	 � IR�

Set khk	 � sup jh�x� y�j and khk�� �
R R

h�x� y��d���x�d���y�
 Then� argu�
ing as in the proofs of Theorem �
 or Theorem �
�� we easily obtain that�
for some numerical constant K � �� and every t � ��

P
�
f � R

fdP � t
� � � exp

�
� �

K
min

�
t

khk	
�

t�

nkhk��

��
�

This inequality resembles the classical Bernstein inequality and was obtained
by M
 Talagrand ����a� as a consequence of the study of penalties in this
context


Further work in the directions explored in this paper is still in progress


Acknowledgements

I thank M
 Talagrand for presenting and explaining to me over the years his
work on product measures that �nally led to the ideas developed here
 I am
grateful to S
 Bobkov for his numerous observations and kind permission
to include here Proposition 	
�
 Thanks are also due to S
 Kwapie�n� P

Massart� L
 Salo��Coste for several helpful comments and remarks and to
P
�M
 Samson for a careful reading of the manuscript


References

Aida� S�� Masuda� T� and Shigekawa� I� �		��� Logarithmic Sobolev inequalities and

exponential integrability� J� Funct� Anal� ��� �������

ESAIM � P�S July ����� Vol��� pp���	
�



ON TALAGRAND�S DEVIATION INEQUALITIES ��

Bobkov� S� �		��� Some extremal properties of Bernoulli distribution� Theory Prob�

Appl� to appear�
Bobkov� S� �		
�� On Gross� and Talagrand�s inequalities on the discrete cube� Vestnik

of Syktyvkar University Ser� �� � ����	 in Russian��
Bobkov� S� Private communication�
Davies� E� B� and Simon� B� �	���� Ultracontractivity and the heat kernel for Schr�odinger

operators and Dirichlet Laplacians� J� Funct� Anal� 	
 ��
��	
�
Dembo� A� �		
�� Information inequalities and concentration of measure� Ann� Proba�

bility� to appear�
Dembo� A� and Zeitouni� O� �		
�� Transportation approach to some concentration in�

equalities in product spaces� Preprint�

Gromov� M� and Milman� V� D� �	���� A topological application of the isoperimetric

inequality� Amer� J� Math� ��	 �����
��
Gross� L� �	�
�� Logarithmic Sobolev inequalities� Amer� J� Math� 
� ����������

Holley� R� and Stroock� D� �	���� Logarithmic Sobolev inequalities and stochastic Ising
models� J� Statist� Phys� � ��
	���	��

Johnson� W� B� and Schechtman� G� �	���� Remarks on Talagrand�s deviation inequality

for Rademacher functions� Longhorn Notes Texas�
Kwapie�n� S� and Szulga� J� �		��� Hypercontraction methods in moment inequalities for

series of independent random variables in normed spaces� Ann� Probability �

��	���	�

Ledoux� M� �		
�� Remarks on logarithmic Sobolev constants� exponential integrability
and bounds on the diameter� J� Math� Kyoto Univ� �	 ��������

Ledoux� M� �		��� Isoperimetry and Gaussian Analysis� Ecole d�Et�e de Probabilit�es de

St�Flour Lecture Notes in Math�� Springer�Verlag� to appear�

Ledoux� M� and Talagrand� M� �		��� Probability in Banach spaces Isoperimetry and

processes�� Ergebnisse der Mathematik und ihrer Grenzgebiete Springer�Verlag�
McDiarmid� C� �	�	�� On the method of bounded di�erences� Surveys in Combinatorics�

London Math� Soc� Lecture Notes �� ������� Cambridge Univ� Press�
Marton� K� �		
a�� Bounding �d�distance by information divergence� a method to prove

measure concentration� Ann� Probability� to appear�

Marton� K� �		
b�� A concentration of measure inequality for contracting Markov chains�

Geom� and Funct� Anal�� to appear�
Maurey� B� �		��� Some deviations inequalities� Geometric and Funct� Anal� � �����	��

Milman� V� D� and Schechtman� G� �	���� Asymptotic theory of �nite dimensional
normed spaces� Lecture Notes in Math� ���� Springer�Verlag�

Talagrand� M� �	���� An isoperimetric theorem on the cube and the Khintchine�Kahane

inequalities� Proc� Amer� Math� Soc� �� 	�
�	�	�
Talagrand� M� �	�	�� Isoperimetry and integrability of the sum of independent Banach

space valued random variables� Ann� Probability �� �
����
���
Talagrand� M� �		�a�� Sharper bounds for Gaussian and empirical processes� Ann�

Probability �� ������

Talagrand� M� �		
a�� Concentration of measure and isoperimetric inequalities in prod�

uct spaces� Publications Math�ematiques de l�I�H�E�S� �� �����
�
Talagrand� M� �		�b�� A new look at independence� Ann� Probability to appear�

Talagrand� M� �		
b�� New concentration inequalities in product spaces� Invent� math�

to appear�

c Soci�et�e de Math�ematiques Appliqu�ees et Industrielles

D�epartement de Math�ematiques� Laboratoire de Statistique et Probabil�

it�es associ�e au C�N�R�S�� Universit�e Paul�Sabatier� ���� route de Narbonne�

��	
� Toulouse Cedex� France� E�mail� ledoux�cict�fr�

ESAIM � P�S July ����� Vol��� pp���	
�


