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ABSTRACT

Several research efforts address the challenge of having users
incrementally teach or demonstrate a task to a robot. We
are interested in an autonomous robot that persists over
time and the problem of teaching it an additional task. We
believe that the assumption that a user would know all the
tasks previously taught to the robot does not hold. We
hence investigate the problem of recognizing when a user is
teaching a task similar to one the robot already knows and
performing task autocompletion. In this extended abstract,
we briefly discuss our approach, and report the results of an
experiment run with human teachers.
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1. INTRODUCTION

The CoBots are autonomous mobile service robots that
operate in office settings [1]. Baxter is a manipulator robot
used for factory automation, especially in environments with
people. We use the Instruction Graph [3] framework to teach
tasks to both robots through natural language interaction.
This framework represents hierarchical tasks with condition-
als and loops as a combination of robot actuation and sens-
ing primitives, conditionals, and loop structures.

We are interested in the problem of teaching an additional
task to these robots. Specifically, we investigate how task
generalization and autocompletion can be applied to assist
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users who do not remember all of the tasks a robot has
previously acquired. We first discuss our approach to gen-
eralize graph-based tasks with similar structures of robot-
primitives, but possibly different parameters. Then, we ex-
plain our algorithm for task autocompletion.

First, we generalize over structurally similar tasks, con-
taining the same primitives instantiated with different pa-
rameters. Since our task representation is graph-based, gen-
eralization requires us to find frequently occurring common
subgraphs, which is NP-Hard. We relax the problem by
creating a tree representation of each task. We then use
frequent labeled subtree mining to extract generalized para-
metric tasks from the trees.

In future teaching episodes, the robot checks if the task
it is learning is similar to a generalized task. If so, the
robot proposes the remaining steps to the user, performing
task autocompletion. In other domains, this form of auto-
completion has helped users when they have trouble exactly
expressing a command [5].

Some other work has been done to allow a user to teach
complex tasks by combining pre-existing robot action prim-
itives |4} [3]. As an alternative to generalization, some ap-
proaches [2] allow the user to specify parameterized tasks.
However, they require the user to describe tasks at an ab-
stract level. Instead, our approach creates parameterized
tasks by learning from specific instances.

In the following sections we first briefly describe our ap-
proach to task generalization and autocompletion. Then, we
report on an experiment run with human teachers.

2. APPROACH

Our tasks are represented as Instruction Graphs (IGs) [3].
Vertices represent action and sensing primitives of the robot,
conditionals, or loops. Edges define the transitions between
these vertices during execution. Each graph G is a tuple
(V, E), where each vertex v € V is a tuple:

v = (id, InstructionType, f, P)

where id and InstructionType are parameters of the task
execution framework. Together, the function f and the set
of parameters P represent a robot primitive.

Our goal is to generalize a set of IGs to learn paramet-
ric tasks. We define these tasks as Generalized Instruction
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Graphs (GIGs). In GIGs, some parameters in P are un-
grounded, with a type such as Angle, or Distance, but no
value. Given a library of IGs, our goal is to extract a library
of GIGs. We use this library to perform task autocomple-
tion in future teaching episodes. Our approach consists of
the following steps:

Frequent Subgraph Mining Since finding subgraph iso-
morphisms is NP-Hard, we first relax the problem by cre-
ating a labeled spanning tree for each IG. Each label corre-
sponds to the vertex’s robot-primitive and instruction type.
We provide the trees to a frequent labeled subtree mining al-
gorithm, which returns tree patterns with an occurrence fre-
quency greater than a threshold. The occurrence frequency
of a tree pattern is typically called the support. Each pat-
tern corresponds to a subgraph that appears in multiple IGs,
possibly with different robot primitive parameters.

General Task Creation Next, the tree patterns are fil-
tered to eliminate any with corresponding IGs that are not
executable. The remaining patterns are further filtered to
remove any that are subtrees of one another. Without this
filter, we note that for any tree pattern, all of its subtrees
are also found because their support is at least as large. This
leads to an explosion in the number of patterns found.

Finally, we create one GIG from each tree pattern, by
determining which robot-primitive parameters should be in-
stantiated, and which should be left ungrounded. A param-
eter is instantiated if it has the same value in a threshold
percent of the IGs. Otherwise, it is left ungrounded, to be
defined by the user at the task-teaching time.

Task Autocompletion During task teaching, the agent
learns a task by building an IG through user interaction.
After each interaction, the agent compares its partial task
to the GIGs. If a predefined percentage of the two match,
the robot requests permission to demonstrate the GIG. If
the user accepts the suggestions, they are asked to instan-
tiate any ungrounded parameters in the GIG. Finally, the
instantiated GIG is appended to the partial task. If multiple
GIGs match the same partial task, we break ties randomly.

3. SELECTED EXPERIMENTS

This task generalization and autocompletion approach has
been run on a Baxter manipulator and a CoBot mobile base.
Specifically the generalization algorithm has been applied to
a library of 1000 tasks with 20 unique classes composed by
12 different primitives. The number of task examples for
each class varied from 10 to 100. Users taught 2 to 10 tasks
for each class, and the others were generated by taking the
same structures and generating different parameters.

In this experiment we compared the number of GIGs found
versus different minimum support thresholds. Figure 1 shows
the results of the experiment. The algorithm extracted 18
out of 20 classes in less than 700ms on a quad-core intel i7
machine. Notably, for the optimal support, the algorithm
was unable to generalize two classes, which were subclasses
of other classes. This was an expected behavior due to the
adopted filtering policy.

4. CONCLUSION

Our approach generalizes collections of tasks taught to a
long-term deployed robot. In future teaching sessions, these
tasks are proposed to the user to perform task autocomple-
tion. Our approach is scalable enough to run online with
task libraries on the order of thousands of tasks in size.
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