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Abstract We study the problem of classifying images into

a given, pre-determined taxonomy. This task can be ele-

gantly translated into the structured learning framework.

However, despite its power, structured learning has known

limits in scalability due to its high memory requirements

and slow training process. We propose an efficient approx-

imation of the structured learning approach by an ensem-

ble of local support vector machines (SVMs) that can be

trained efficiently with standard techniques. A first theoret-

ical discussion and experiments on toy-data allow to shed

light onto why taxonomy-based classification can outper-

form taxonomy-free approaches and why an appropriately

combined ensemble of local SVMs might be of high practi-

cal use. Further empirical results on subsets of Caltech256

and VOC2006 data indeed show that our local SVM for-

mulation can effectively exploit the taxonomy structure and

thus outperforms standard multi-class classification algo-

rithms while it achieves on par results with taxonomy-based

structured algorithms at a significantly decreased computing

time.
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1 Introduction

In computer vision, one of the most difficult challenges is

to bridge the semantic gap between appearances of image

contents and high-level semantic concepts (Smeulders et al.

2000). While systems for image annotation and content-

based image retrieval are continuously progressing, they are

still far from resembling the recognition abilities of humans

that have closed this gap. Humans are known to exploit tax-

onomical hierarchies in order to recognize general seman-

tic contents accurately and efficiently. Therefore, it remains

important for artificial systems to incorporate extra sources

of information, such as user tags1 (Barnard et al. 2003;

Qi et al. 2009) or prior knowledge such as taxonomical rela-

tions between visual concepts.

There have been a number of studies considering learn-

ing class-hierarchies, for instance on the basis of delayed

decisions (Marszalek and Schmid 2008), dependency graphs

and co-occurrences (Lampert and Blaschko 2008; Blaschko

and Gretton 2009), greedy margin-trees (Tibshirani and

Hastie 2007), by hierarchical clustering (Fan 2005; Griffin

and Perona 2008), and by incorporating additional infor-

mation (Marszalek and Schmid 2007). Unfortunately, few

could so far report significant performance gains in the final

object classification (even though they contributed to other

aspects, for instance, computational efficiency).

When a taxonomy is available, a standard way of using

the hierarchy is sequential greedy decision (Griffin and Per-

ona 2008). Starting from the root node, the strategy selects

1Flickr. http://www.flickr.com.
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only the most probable child at each node and ignores other

possibilities until reaching a leaf node. Therefore, for clas-

sifying an unseen image only the classifiers on one path of

the hierarchy need to be evaluated. Furthermore, since each

node takes only relevant images for current and future de-

cisions during the training phase, such greedy methods are

computationally very attractive. The work in Griffin and Per-

ona (2008) focuses on learning hierarchies and demonstrates

speed gains by the greedy classification schemes compared

to one versus all classifiers (e.g. 5-fold speed gain at the

cost of 10% performance drop). Another greedy walk ap-

proach over a learned hierarchy (Marszalek and Schmid

2008) shows small improvements on the Caltech256 dataset.

In this work, we contribute a tractable alternative to the

structure learning framework which can solve our task in

a sophisticated way, but is less time consuming. We pro-

pose its efficient decomposition into an ensemble of local

support vector machines (SVMs) that can be trained effi-

ciently. Since the primal goal of this paper is to discuss how

much and why pre-determined taxonomies improve classifi-

cation performance, we consider any techniques for speed-

up which degrade performance to be out of the scope of this

paper.2

Our work is similar in spirit to Zweig and Weinshall

(2007) who deployed user-determined taxonomies and

showed that classifiers for super-classes at parents and

grand-parents nodes can enhance leaf-node classifiers by

controlling the bias-variance trade-off. However in Zweig

and Weinshall (2007) the discrimination of images was per-

formed against a small set of common backgrounds, and

thus, all upper-node classifiers share the same negative sam-

ples, i.e. the background images. Performance was mea-

sured for object versus background scenarios. In contrast

to Zweig and Weinshall (2007), we will study a more diffi-

cult problem, namely, multi-task or multi-label classification

between object categories. Since our problem does not con-

tain uniform sets of background, it is an interesting ques-

tion whether an averaging along the leaves of a taxonomy

integrating everything from super-class classifiers until the

lower leaf-nodes can still help to improve the object recog-

nition result, in particular as the negative samples can not

be shared among all classifiers as in Zweig and Weinshall

(2007).

We remark furthermore that we observe from our ex-

periments that greedy strategies as e.g. Griffin and Perona

(2008) are inferior to our novel taxonomy based methods

that we propose in this paper.

2For instance, we use all images for SVM training at every node, which

is of course more costly than the greedy strategy. It may be possible

reducing the large number of negative examples which are inferred ir-

relevant to current and future decisions with high probability without

decreasing classification accuracy.

In contrast to this work the above mentioned approaches

have one aspect common in their methodology: they restrict

performance measurement to flat loss measures which do

not distinguish between different types of misclassification.

In contrast to that humans tend to perceive some confusions

like cat versus fridge to be more unnatural than others like

cat versus dog which can be reflected by a taxonomy. The

hierarchy in Griffin and Perona (2008) learned from features

reflects feature similarities and is as a consequence in part

not biologically plausible: the gorilla is closer to a raccoon

than to a chimpanzee, the grasshopper is closest to penguin,

and more distant to other insect lifeforms. Such problems

can arise generally when the hierarchy is learned from im-

age contents.

This prompts the question whether it is useful to employ

a taxonomy which is based merely on information already

present in the images and which is thus implicitly already in

use through the extracted feature sets that feed the learning

machine. Furthermore basic information derived from the

images only, may not always be coherent with the user’s rich

body of experience and implicit or explicit knowledge.

An example is the discrimination of several Protosto-

mia, sea cucumbers and fish (see Fig. 1). While sea cu-

cumbers look definitely more similar to many Protostomia,

they are much closer to fish sharing the property of be-

longing to Deuterostomia according to phylogenetic sys-

tematics. Equally, horseshoe crabs look more similar to

crabs as both have a shell and live on the coast, but the

horseshoe-crab as a member of Chelicerata is closer to spi-

ders than to crabs. Therefore, this work is focused on pre-

determined taxonomies constructed independently from ba-

sic image features as a way for providing such additional

information rsp. knowledge. This task fits well into the

popular structured learning framework (Taskar et al. 2004;

Tsochantaridis et al. 2005) which has recently seen many

applications among them in particular document classifica-

tion with taxonomies (Cai and Hofmann 2004). Note fur-

thermore that a given taxonomy permits to deduce a tax-

onomy loss function which—in contrast to the common 0/1

loss—allows to weight misclassification unevenly according

to their mismatch when measured in the taxonomy. Thus, it

is rather natural to evaluate classification results according

to the taxonomy losses instead of the flat 0/1 loss, in this

sense imposing a more human-like error measure.

The remainder of this paper is organized as follows. In

Sect. 2 we will explain our novel local procedures with scor-

ing deduced from generalized p-means, along with struc-

ture learning approaches. We discuss in Sect. 3 when and

why our procedures can improve the one-vs-all baseline.

The empirical comparisons between our local approach and

other taxonomical algorithms and taxonomy-free baselines

are presented in Sect. 4. For the present work, we have con-

structed multi-class classification datasets with taxonomy
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Fig. 1 Mismatch between taxonomy and visual similarity: the first column are Protostomia, the second (sea cucumbers) and third row are

Deuterostomia. The difference is based on embryonal development

trees between object categories based on the benchmarks

Caltech256 (Griffin et al. 2007) and VOC2006 (Evering-

ham et al. 2006) as explained in Sect. 4.1. In this section

we discuss why our local approach can improve the one-

vs-all baseline from the viewpoint of averaging processes.

Section 6 gives concluding remarks and a discussion.

2 Learning Machines with Taxonomies for Multi-class

Categorization

2.1 Problem Formulation

We consider the following problem setting: given are n pairs

{(x(i), y(i))}, 1 ≤ i ≤ n, where x(i) ∈ ℜd denotes the vec-

torial representation of the i-th image which can be repre-

sented in higher dimensions by a possibly non-linear map-

ping φ(x(i)). The latter gives also rise to a kernel function

on images, given by KX(x, x′) = 〈φ(x),φ(x′)〉. The set of

labels is denoted by Y = {c1, c2, . . . , ck}. We focus on multi-

class classification tasks, where every image is annotated by

exactly one element of Y .3

In addition, we are given a taxonomy T in form of an

arbitrary directed graph (V ,E) where V = (v1, . . . , v|V |)

and Y ⊂ V such that classes are identified with leaf nodes

(see Fig. 2 for an example). We assume the existence of one

3Some image databases fall into the multi-label setting, where an im-

age can be annotated with several class labels.

unique root node. The set of nodes on the path from the root

node to a leaf node y is defined as π(y). Alternatively, the

set π(y) can be represented by a vector κ(y) where the j -th

element is given by

κj (y) =

{

1 vj ∈ π(y),

0 otherwise,

such that the category sheep in Fig. 2 is represented by the

vector

κ(sheep) = (1,0,0,0,0,0,0,0,1,0,1,1,0,1,0,0,0,

0,0)′.

The goal is to find a function f that minimizes the general-

ization error R(f ),

R(f ) =

∫

ℜd×Y

δ(y,f (x))dP (x, y),

where P(x, y) is the (unknown) distribution of images and

annotations. The quality of f is measured by an appropri-

ate, symmetric, non-negative loss function δ : Y × Y → ℜ+
0

detailing the distance between the true class y and the pre-

diction. For instance, δ may be the common 0/1 loss, given

by

δ0/1(y, ŷ) =

{

0 y = ŷ,

1 otherwise.
(1)
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Fig. 2 Taxonomy constructed

from VOC2006 labels. The life

subtree is based on biological

systematics

When learning with taxonomies, the distance of y and ŷ

with respect to the taxonomy is fundamental. For instance,

confusing an bus with a cat is more severe than confus-

ing the classes cat and dog. We will therefore also utilize

a taxonomy-based loss function reflecting this intuition by

counting the number of non-shared nodes on the path be-

tween the true class y and the prediction ŷ,

δT (y, ŷ) =

|V |
∑

j=1

|κj (y) − κj (ŷ)|. (2)

This distance can be induced as Hilbert space norm by the

kernel between labels defined as

KY (y, ŷ) =

|V |
∑

j=1

κj (y)κj (ŷ). (3)

For instance, the taxonomy-based loss between cate-

gories horse and cow in Fig. 2 is δT (horse, cow) = 4 because

κ(horse) and κ(cow) differ at the nodes horse, pegasofera,

cetartiodactyla and cow.

2.2 Structure Learning with Taxonomies

The taxonomy-based learning task can be framed as struc-

tured learning problem (Taskar et al. 2004; Tsochantaridis

et al. 2005) where a function

f (x) = arg max
y

〈w,Ψ (x, y)〉 (4)

defined jointly on inputs and outputs is to be learned. The

mapping Ψ (x, y) is often called the joint feature repre-

sentation and for learning taxonomies given by the tensor

product (Cai and Hofmann 2004) with indicator functions

[[vi ∈ π(y)]]

Ψ (x, y) = φ(x) ⊗ κ(y) =

⎛

⎜

⎜

⎜

⎝

φ(x)[[v1 ∈ π(y)]]

φ(x)[[v2 ∈ π(y)]]
...

φ(x)[[v|V | ∈ π(y)]]

⎞

⎟

⎟

⎟

⎠

.

Thus, the joint feature representation subsumes the struc-

tural information and explicitly encodes paths in the taxon-

omy. It leads to a joint kernel

KX,Y ((x1, y1), (x2, y2)) = KX(x1, x2)KY (y1, y2), (5)

where KX(x1, x2) = 〈φ(x1),φ(x2)〉 and the label kernel

KY (y1, y2) is defined according to the taxonomy T as in (3).

The empirical risk can be optimized utilizing condi-

tional random fields (CRFs) (Lafferty et al. 2004) or struc-

tural support vector machines (SVMs) (Taskar et al. 2004;

Tsochantaridis et al. 2005). We will follow structural learn-

ing in the formulation by Weston and Watkins (1999), Har-

Peled et al. (2002). There are two ways of incorporating a

loss ∆(y, ȳ) such as δ0/1 and δT in the structural SVMs.

The optimization problem with margin rescaling is given by

min
w,ξ

1

2
‖w‖2 + C

n
∑

i=1

ξ (i)

s.t. ∀i, ∀ȳ 
= y(i) :

〈w,Ψ (x(i), y(i)) − Ψ (x(i), ȳ)〉 ≥ ∆(y(i), ȳ) − ξ (i),

∀i : ξ (i) ≥ 0.

(6)

The above minimization problem has one constraint for each

image. Every constraint is associated with a slack-variable

ξ (i) that acts as an upper bound on the error ∆ caused by

annotating the ith image with a wrong label. Once, optimal

parameters w∗ have been found, these are used as plug-in es-

timates to compute predictions for new and unseen examples
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using (4). The computation of the argmax can be performed

by explicit enumeration of all paths in the taxonomy.

An alternative formulation (Tsochantaridis et al. 2005)

uses slack rescaling instead of margin rescaling in the con-

straints:

min
w,ξ

1

2
‖w‖2 + C

n
∑

i=1

ξ (i)

s.t. ∀i, ∀ȳ 
= y(i) :

〈w,Ψ (x(i), y(i)) − Ψ (x(i), ȳ)〉 ≥ 1 −
ξ (i)

∆(y(i), ȳ)
,

∀i : ξ (i) ≥ 0.

(7)

In this multiplicative formulation based on a hinge loss

max
(

0,max
ȳ

∆(ȳ, y(i))

× 〈w,Ψ (x(i), ȳ) − Ψ (x(i), y(i))〉
)

(8)

each sample receives the same margin of one. As a draw-

back finding the maximally violated label can be more com-

plicated compared to margin rescaling due to the label ȳ ap-

pearing in both factors of a product. Margin rescaling is also

based on the hinge loss but uses an additive formulation in

∆(ȳ, y(i))

max
(

0,max
ȳ

∆(ȳ, y(i))

+ 〈w,Ψ (x(i), ȳ) − Ψ (x(i), y(i))〉
)

(9)

where it might be easier to find the maximally violated con-

straint but on the other side here the loss function ∆ might

dominate the loss term (9) if it is badly scaled.

Although, (6) and (7) can be optimized with standard

techniques, the number of categories in state-of-the-art ob-

ject recognition tasks can easily exceed several hundreds

which renders the structural approaches inherently slow.

2.3 Assembling Local Binary SVMs

We propose here an efficient alternative to the structural

approaches by decomposing the structural approach from

(6) into several local tasks. The idea is to learn a binary

SVM (e.g. Cortes and Vapnik 1995; Müller et al. 2001;

Schölkopf and Smola 2001) using the original representa-

tion φ(x) for each node vj ∈ V in the taxonomy instead of

solving the whole problem at once with a structured learning

approach. This will help to circumvent the high computa-

tional load typically encountered in structured learning. To

preserve the predictive power, the final ensemble of binary

SVMs from each node need to be assembled in an intelli-

gent manner, i.e. appropriately according to the taxonomy.

We remark that this novel approach is different from greedy

hierarchical classifiers where at each node only categories

(leaf nodes) below it are taken into account. On the contrary,

we are considering all images and categories at each node:

for example, we learn binary SVMs such as ‘Carnivora vs

the others’ and ‘horse vs the others’, while only ‘Carnivora

vs horse’, ‘cat vs dog’ etc. would be used in the greedy hier-

archical classification. As outlined in Sect. 4.7.2, the greedy

approaches perform sub-optimally, because they may rely

on erroneous decisions of upper internal nodes.

Thus essentially, our approach consists of training |V |

independent binary support vector machines (which can

be done highly efficiently in parallel!) such that the score

fj (x) = 〈w̃j , φ(x)〉 + b̃j of the j -th SVM centered at node

vj serves as an estimate for the probability that vj lies on

the path y of instance x, i.e., Pr(κj (y) = 1). An image x(i)

is therefore treated as a positive example for node vj if this

very node lies on the path from the root to label y(i) and as

a negative instance otherwise, which amounts to the sign of

2κj (y
(i)) − 1.

We resolve our local-SVM optimization problem that can

be split into |V | independent optimization problems, effec-

tively implementing a one-vs-all classifier for each node.

min
w̃j ,b̃j ,ξ̃j

1

2

|V |
∑

j=1

‖w̃j‖
2 +

|V |
∑

j=1

C̃j

n
∑

i=1

ξ̃
(i)
j

s.t. ∀i, ∀j : (2κj (y
(i)) − 1)(〈w̃j , φ(x(i))〉 + b̃j )

≥ 1 − ξ̃
(i)
j ,

∀i, ∀j : ξ̃
(i)
j ≥ 0.

(10)

At test phases, the prediction for new and unseen examples

can be computed similarly to (4). Denote the local-SVM for

the j -th node by fj , then the score for class y is simply the

sum of all nodes lying on the path from the root to the leaf y,

fy(x) =

∑

j :κj (y)=1 fj (x)
∑

j κj (y)
. (11)

The normalization is required due to varying path lengths in

our taxonomies which is a difference compared to the tax-

onomies considered in Cai and Hofmann (2004). The class y

which has the maximum score fy over all classes is selected

as the final prediction.

Note that since the entire problem decomposes into |V |

binary classification tasks, parallelization becomes possible

and thus, the training time of our approach is considerably

shorter compared to the structural SVMs. Another advan-

tage is that our local procedures can be directly extended to

multi-label problems without taking the maximum operation

at the end, but by setting thresholds only which determine

whether object categories are included in images or not.
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Although our initial motivation was to construct an effi-

cient approximation of the structural SVMs, we would like

to remark that there exists a fundamental difference between

the structural SVMs and our local-SVM procedure with re-

spect to their optimization target. The constraints of the

structure learning in (6) aim to order the set of all class la-

bels correctly for each image in the sense that the SVM score

for the correct class label is highest. For our local-SVM ap-

proach the SVM constraints aim at ordering the set of all

images correctly for each node with respect to the binarized

learning problem whether an image belongs to a class ly-

ing on a path passing through this taxonomy node or not.

We remark further that the constraints of the structural op-

timization problems do not imply necessarily that the set of

all images is ordered correctly for the binary classification

problem at each taxonomy node. In order to foster a bet-

ter intuitive understanding, the difference between both ap-

proaches are illustrated in Fig. 3.

2.4 Scoring with Generalized p-means

When we combine the binary classification scores at the

nodes along a path, it is not necessary to take their arith-

metic mean as in (11). Instead, our procedures permit more

general scoring methods such as the generalized p-means of

outputs

Mp(z1, . . . , zm) =

(

1

m

m
∑

i=1

z
p

i

)1/p

(12)

after scaling to [0,1]. This includes the geometric mean as

the limit p → 0 and the harmonic mean for p = −1 as well

as the minimum as the limit p → −∞. Tuning of this ex-

tra degree of freedom p may improve classification perfor-

mance. To see this note that the geometric mean and gen-

eralized means with negative norms of scores in [0,1] are

upper bounded by a power of the smallest element.

si ∈ [0,1] ⇒

n
∏

i=1

s
1/n

i ≤ min
i

s
1/n

i ,

p < 0 ⇒

(

1

n

n
∑

i=1

s
p

i

)1/p

≤
1

n1/p
min

i
si .

For positive norms the generalized mean is upper bounded

instead by a power of its largest element. In that sense gen-

eralized means with non-positive norms are more sensitive

to negative outliers and more robust against strong positive

outlier votes from nodes than generalized means with pos-

itive norms where the distortion by strong positive outliers

can be arbitrarily large. The selection of an optimal p-norm

thus adjusts the sensitivities to very small votes close to 0

versus very large votes close to 1. The usage of generalized

Fig. 3 Differences between one vs all (top), structure learning (mid-

dle) and local approach (bottom). The one vs all procedure ignores

internal nodes of taxonomies and takes the maximum of the SVM out-

puts at leaf nodes. The structured approach takes paths as a whole into

account, maximizes the margin between correct and wrong paths in

training and returns as a predictor the label of the path with the max-

imum score. The local procedures optimize each binary problem of

passing through a path independently and then combine the outputs of

the local SVMs into a score with generalized p-means
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means with arbitrary norms requires the scores to be non-

negative and SVM outputs to be scaled.4

In order to scale SVM outputs into [0,1], we deploy a

logistic function with fixed parameters

s(y) =
1

1 + exp(−10y)
.

Experimentally we have seen that learning the logistic re-

gression parameters from data (Platt 1999) did not further

improve performance of image categorization.

Scaling with logistic functions is closely linked to a prob-

abilistic interpretation of a classification procedure. While

this is common for greedy hierarchical classification, our

current approach does not immediately permit a probabilis-

tic interpretation fitting to a taxonomy graph. This is because

we so far have chosen to always consider classification be-

tween a part of the categories and all remaining others at

each node, instead of conditioning on its parent nodes, for

efficiency reasons.

2.5 Baselines

In our experiments, we will use additionally two kinds of

classification methods. One is the standard one-vs-all classi-

fication: we train one binary SVM for each class which uses

the samples of this class as positive labeled data and all the

other class data as negative examples. The multi-class la-

beling is obtained by the class maximizing the scores of all

binary SVMs. This is a completely taxonomy-free approach.

The second is structured multi-class SVMs which uses the

joint feature representation ignoring the taxonomy graph

Ψ (x, y) = φ(x) ⊗ ι(y) =

⎛

⎜

⎜

⎜

⎝

φ(x)[[y = c1]]

φ(x)[[y = c2]]
...

φ(x)[[y = ck]]

⎞

⎟

⎟

⎟

⎠

,

where ι(y) is the vector of the indicator functions [[y = ci]].

This leads to the 0/1 loss from the label kernel

2 − 2KY (y1, y2) = δ0/1(y1, y2),

instead of the taxonomical one in the structured taxonomical

SVMs. No taxonomy information is used, if the 0/1 loss is

deployed as the loss function ∆ in (6) and (7), while it is

incorporated indirectly into the learning process, when ∆ is

the taxonomy loss δT .

4While there exist convex mappings of R
1 to the interval [0,∞) we are

not aware of the existence of a monotonous and continuous mapping

of R
1 onto a bounded nontrivial interval which is everywhere concave

or convex. This implies that a model using scaling of unbounded in-

ner products cannot be optimized by applying convex methods in the

structured output framework.

3 Insights from Synthetic Data

In this section, we discuss when and why the taxonomical

approaches might outperform the one-vs-all baseline. Fur-

thermore we can observe differences in AUC scores between

leaf and internal nodes which can be linked to flat losses in

later experiments on real data. We remark that the one-vs-all

baseline can be regarded as a classification procedure only

with leaf nodes, while the taxonomy-based learning com-

bines classification results of leaf and internal nodes, namely

by generalized p-means in the local-SVM approach and by

implicit arithmetic mean integrated in the structural SVMs.

3.1 Experimental Results

To illustrate our claim, we consider a 16 class example with

the taxonomy being a binary balanced tree with 16 leaf

nodes. Each class is generated from one Gaussian distri-

bution in 15 dimensions. The variances are equal for all

Gaussian and are varied to give seven datasets with σ = 1,

0.5, 0.3725, 0.25, 0.1875, 0.125, 0.0625. The means are dis-

tributed such that their Euclidean distance matrix equals the

normalized taxonomy loss matrix which has values i/4, i =

0, . . . ,4. Our intention is to illustrate that taxonomy-based

learning reduces taxonomy loss, if the data is aligned to the

taxonomy. For the sake of computation speed we compare

the one-vs-all baseline versus a local algorithm with scoring

based on the geometric mean of logistically scaled scores

of 19200 data points each independently, where we use 200

samples per class for training and the remaining 1000 per

class for testing. We deployed Gaussian kernels here, set the

width to be the mean of squared distances and normalized

all kernels to have standard deviation one in Hilbert space.

Table 1 shows the 0/1 and taxonomy losses of one-vs-

all and our local SVM procedure with the scaled geometric

mean over different noise levels. The standard deviations are

computed between the 15 draws.

The local algorithm improved the one-vs-all baseline sig-

nificantly under the taxonomy loss in all cases. The relative

Table 1 Synthetic data perfectly aligned to the taxonomy: Losses of

the one-vs-all baseline (left) versus local procedure with taxonomy

(right) for different label noise levels

σ One-vs-all Local-SVM approach

δ0/1 δT δ0/1 δT

1 89.10±0.32 67.09±0.34 88.59±0.34 65.69±0.35

1/2 78.24±0.32 51.37±0.31 77.84±0.39 50.27±0.35

3/8 69.30±0.38 41.29±0.28 68.94±0.39 40.21±0.29

1/4 51.61±0.52 25.05±0.26 51.26±0.52 24.17±0.22

3/16 37.32±0.46 14.94±0.23 36.91±0.48 14.24±0.23

1/8 19.49±0.39 6.05±0.11 19.12±0.41 5.70±0.12

1/16 2.41±0.13 0.61±0.03 2.38±0.13 0.60±0.03
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Table 2 Synthetic data perfectly aligned to the taxonomy: AUC scores

in the taxonomy for σ = 1/4 at different levels

Level in taxonomy 1 2 3 4 (leaf)

AUC 99.21 97.78 95.42 92.40

Table 3 Synthetic data perfectly aligned to the taxonomy: At which

level does misclassification occur for σ = 1/4?

Level in taxonomy 1 2 3 4 (leaf)

Differences of Error Rates −1.55 −0.68 0.48 1.74

improvements are more than 2% with the maximum above

5% for σ = 1/8. We also conducted Wilcoxon’s signed rank

test, which showed that all performance gains are significant

with p-values of orders 10−4 or 10−5. Surprisingly, the local

SVM procedure the taxonomy compares favorably with the

baseline under the flat 0/1 loss as well.

There is an intuitive explanation why hierarchical ap-

proaches do improve losses consistent with the hierarchy

compared to one versus all classifiers. One versus all classi-

fiers attempt to rank the images belonging to positive class

highest. Classifiers from superclasses in a hierarchy attempt

to rank the images belonging to the positive class and simi-

lar classes to be highest. Averaging many versus all classi-

fiers from superclasses with one versus all classifiers at the

leafs achieves a tradeoff between both aims. At the same

time such an averaging can potentially harm the zero-one-

loss which does not consider similarities encoded in a tax-

onomy.

Table 2 shows the AUC score at different levels in the

hierarchy. It allows to judge how difficult the learning prob-

lems are at the internal nodes compared to leaf nodes. Note

that we observe on this synthetic dataset a higher AUC score

on internal nodes compared to leaf nodes and a decrease in

the flat zero-one-error compared to the one versus all base-

line. This implies that the learning problems are easier on

superclass level than at the leaf nodes. This might explain

why we observe here an improvement in the flat zero one

loss as well. It is not straightforward in a statistical sense that

optimizing for one loss improves another loss as well. As an

explanation we propose that in this synthetic case the fea-

tures allow a good generalization at superclass level because

the given taxonomies are perfectly aligned to the similarities

between classes at the feature level. The higher AUC score

at internal nodes compared to leaf nodes supports this view.

This good alignment might be also the case when learning

similarities from visual features and explain results for flat

losses in Marszalek and Schmid (2008), Zweig and Wein-

shall (2007) but it cannot be expected to hold in general

when a taxonomy is provided independent of visual features.

We will return to this observation in the forthcoming Sect. 4

on experiments on real data.

Table 3 shows another aspect of hierarchical averaging:

given a pair consisting of true and predicted label we can

ask where in the hierarchy the error did occur. This leads

to two histograms, for the taxonomy-based and for the one

versus all classifier. The table shows the difference between

both histograms. Negative values imply a reduction of errors

at this level for the taxonomic method. We see that under

our taxonomy based approach the classification errors are

moved to lower levels in the hierarchy compared to a flat

one versus all classification implying that confusions occur

more often between taxonomically closer classes.

3.2 Robustness by p-means

The parameter p of the generalized controls robustness

against outlying classifier outputs. Negative p’s make the

mean robust against upper extremes while in the opposite

cases lower extremes are suppressed. To see this we con-

ducted an experiment on controlled perturbation of SVM

outputs over the toy data. We fixed a priori a set of 10% of

the samples to be perturbed and for each sample one node in

the taxonomy to be perturbed. We applied these fixed sets to

values of perturbation factors {+8,+4,−4,−8}. The per-

turbation is computed for a sample by adding to the SVM

output of this sample the factor times the standard deviation

of the outputs of the SVM corresponding to the taxonomy

node. The negative factors allow to simulate large negative

outliers, the positive factors large positive outliers. Table 4

shows the results.

We can see that for large positive distortions both positive

means perform lower than geometric mean and a negative

mean.

For large negative distortions the first ranks are held by

the non-scaled arithmetic mean and a scaled positive mean.

These two methods suffer less from negative outliers than

negative means. Furthermore we observe in both settings

that unscaled variants are less robust than scaled ones.

Finally the last part of the Table 4 shows a result where

80% of the perturbed samples are modified by a factor of +4

and 20% by −4. Here the geometric mean turns out to be the

best choice which corresponds well to our empirical findings

in Sect. 4.5. We conclude that the geometric mean is well

suited to deal with SVM outputs which suffers from positive

and negative outliers in taxonomy nodes coming from noisy

classification problems.

In summary, we would like to emphasize that classifica-

tion techniques with taxonomies can improve the one-vs-all

baselines, under the taxonomical loss and the flat zero one

loss.
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Table 4 Synthetic data perfectly aligned to the taxonomy: Differences

in taxonomy loss and 0/1 loss to unperturbed SVM outputs and ab-

solute ranks between all four methods

Unperturbed Nonscaled M1 sc M2 sc M0 sc M−2

Rank δT 1 3 2 4

Rank δ0/1 1 3 1 4

Perturb = +8 Nonscaled M1 sc M2 sc M0 sc M−2

Diff. δT 1.8 0.14 0.04 0.05

Rank δT 4 3 1 2

Diff. δ0/1 1.91 0.27 0.15 0.15

Rank δ0/1 4 3 1 2

Perturb = +4 Nonscaled M1 sc M2 sc M0 sc M−2

Diff. δT 0.47 0.14 0.04 0.05

Rank δT 4 3 1 2

Diff. δ0/1 0.81 0.26 0.15 0.15

Rank δ0/1 4 3 1 2

Perturb = −4 Nonscaled M1 sc M2 sc M0 sc M−2

Diff. δT 0.26 0.03 0.42 0.75

Rank δT 2 1 3 4

Diff. δ0/1 0.34 0.13 0.49 0.73

Rank δ0/1 1 2 3 4

Perturb = −8 Nonscaled M1 sc M2 sc M0 sc M−2

Diff. δT 0.68 0.03 0.7 0.75

Rank δT 2 1 3 4

Diff. δ0/1 0.73 0.12 0.74 0.74

Rank δ0/1 2 1 3 4

80% +4, 20% −4 Nonscaled M1 sc M2 sc M0 sc M−2

Diff. δT 0.41 0.09 0.11 0.12

Rank δT 4 3 1 2

Diff. δ0/1 0.53 0.21 0.2 0.23

Rank δ0/1 4 3 1 2

4 Experiments on Real World Multiclass Data

4.1 Datasets

For the present work, we constructed multi-class classifi-

cation datasets with taxonomy trees between object cate-

gories by modifying the benchmarks Caltech256 (Griffin et

al. 2007) and VOC2006 (Everingham et al. 2006).

Caltech256 all classes The Caltech256 dataset (Griffin et

al. 2007) contains 256 classes of objects and one clutter

class. For an initial experiment allowing comparison to re-

sults from other publications we have taken 50 images from

each of the object classes and employed the taxonomy as

provided in the report (Griffin et al. 2007). The only changes

we made were to add pisa-tower to the taxonomy graph as

it seemed to be missing and moved iris to flowers from air

animals. Unfortunately, using 50 · 256 · 0.9 = 11520 sam-

ples for training using ten-fold crossvalidation is beyond the

scope of the structured prediction baselines on our hardware.

Therefore we considered subsets of classes which will be

described below. The result for all 256 object classes can be

looked up in Sect. 4.7.5.

Caltech256 animals We consider all 52 real world animal

classes from the Caltech256 dataset (Griffin et al. 2007)

which yields 5895 data points (see Fig. 4). They form a

multi-class problem with mutually exclusive classes. We

used a taxonomy based on a recherche of biological (phylo-

genetic) systematics consisting out of 92 nodes constructed

a priori. We have chosen this subset for two reasons. Firstly,

it is a natural multiclass dataset in the multimedia image do-

main. Secondly, it allows to define a taxonomy in an undis-

putable way prior to looking at image content, namely via

biological systematics. For the remaining 204 classes from

Caltech256 we would have to rely on human experience of

some sort which might lead to some kind of unintentional

appearance-based optimization of when choosing a taxon-

omy. The technical report on the Caltech256 dataset (Griffin

et al. 2007) contains a hierarchy. We have chosen not to use

its construction principle because it is somewhat arbitrary

as stated by the authors of the technical report themselves

and from our own point of view is not biologically plau-

sible. It groups all animals in four flat subgroups: insects,

land, air and water based lifeforms. As stated in the intro-

duction the usage of phylogenetic systematics resulted in a

taxonomy which is indeed not fully consistent to the sub-

jective visual similarities of the authors which diverge for

example for crabs and horseshoe crabs but also as shown in

Fig. 1 potentially for superclasses in the taxonomy. The hi-

erarchy contains in contrast to many preceding works paths

with varying lengths. We omitted fantasy animals like Mino-

taurs and Unicorns from the Caltech256 set, as there is no

objective way to incorporate them into biological systemat-

ics. The full taxonomy is given in Fig. 10 in the Appendix.

Caltech256 animals thirteen classes subset For further ex-

periments, we select 13 classes—all Protostomia (praying-

mantis, grasshopper, cockroach, house-fly, butterfly, trilo-

bite, centipede, crab, spider, scorpion, horseshoe-crab, oc-

topus, snail) from the Caltech256 animals dataset. This cor-

responds to one subtree in the original taxonomy over all 52

classes. The total number of the images is reduced to 1308.

This allows us faster experimentation with the structural ap-

proaches which was the main reason for choosing this sub-

set. We deploy as taxonomy the corresponding subtree with

21 nodes of that of Caltech256 animals which is still chal-

lenging in its topology due to non-balanced tree structure

and varying path lengths.
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VOC2006 multi-class data We use the VOC2006 dataset

(Everingham et al. 2006) consisting of 10 object classes and

5301 images (see Fig. 5). We have modified the VOC2006

labels in order to obtain a multi-class problem with mutu-

ally exclusive classes. To achieve such exclusive labeling,

for each image all positive labels except for a randomly cho-

sen one are suppressed. We remark that this process induces

additional label noise.

4.2 Image Features

For the following experiments, we used bag of words (BoW)

representations based on the SIFT descriptors (Lowe 2004)

as image features. The BoW features were constructed in

a standard way: using the code from van de Sande et al.

(2010), the SIFT descriptors were computed on a dense grid

of step size six over the color channel triples {red, green,

blue} and {grey, opponent color 1, 2}. Then, for both triples,

8192 visual words (prototypes) were generated by using

ERCF clustering (Moosmann et al. 2008) via 16 trees with

512 leaves each based on large sets of SIFT descriptors se-

lected randomly from the training images following (van de

Sande et al. 2010). For each image, each SIFT feature was

assigned to one leaf for each of the 16 trees. We have cho-

sen the supervised ERCF procedure over k-means as it does

greatly reduce the time necessary for clustering of visual

words and bag of word computation while having compa-

rable performance. The sum of these mappings resulted in

one histogram for each image within each cell of the spa-

tial tilings 1 × 1, 2 × 2 and 3 × 1 (Lazebnik et al. 2006;

Bosch 2007). Finally, we obtained 6 BoW features (2 colors

× 3 pyramid levels) with dimensionalities 8192, 4 × 8192

and 3 × 8192 depending on the spatial tiling. For Caltech

256 data we omitted the two kernels based on tilings 2 × 2

as they did degrade the one-vs-all baseline performance al-

ready. We do not aim here at the best possible baseline per-

formance which might be achieved by adding carefully se-

lected sets of additional features. Instead we focus on the

effect of a given hierarchy and non-flat loss functions. We

note however that high-dimensional bag of words models

have been able to achieve superior performance in recent

object categorization challenges (van de Sande et al. 2010;

Everingham et al. 2007, 2008, 2009; Tahir et al. 2008) which

motivates our choice of these features.

4.3 Image Kernels and Regularization of SVMs

We used the Chi2-Kernel for comparing the image feature

histograms (Zhang et al. 2007)

kσ (v,w) = exp

(

−σ
∑

d|wd+vd>0

(wd − vd)2

2(wd + vd)

)

.

The kernel width was fixed to be the mean of all Chi2-

distances. All kernels have been normalized to standard de-

viation in Hilbert space set equal to one which in practice

limits the range where to search for an optimal regulariza-

tion constant. We combined all kernels via addition.

In the local-SVM procedure, we used two regularization

constants (one per class) for all binary problems in order to

compensate for the unbalanced ratios between positive and

negative classes. The regularization constant of the smaller

class was obtained by multiplying that of the larger class5 by

the ratio between the two samples. For the structured SVMs

we used as regularization parameter C̃ = 16|V | for the tax-

onomical procedures and C̃ = 16k for the multi-class ones,

where |V | and k are the number of nodes and classes, re-

spectively.

This is motivated by comparing the main objective of one

local SVM

min
w̃j ,b̃j ,ξ̃j

1

2
‖w̃j‖

2 + C̃j

n
∑

i=1

ξ̃
(i)
j

to the one from a structured SVM

min
w̃,ξ̃

|V |
∑

j=1

1

2
‖w̃j‖

2 + C̃

n
∑

i=1

ξ̃ (i).

We note that the ratio between the weight norm ‖w‖2 and

the slacks ξ (i) is roughly up-scaled by a factor equal to the

number of nodes. We have checked experimentally that us-

ing much lower regularization constants damages the per-

formance of the structural SVMs, while much higher reg-

ularization constants did not improve the results anymore.

Since the sizes of the object categories are balanced, we do

not have to assign one regularization constant for each class

separately.

4.4 Comparison Methodology

All considered methods can be divided into structured and

structure-free as well as taxonomical and taxonomy-free ap-

proaches (Table 5). Due to limited space, we will use the

abbreviations listed in Table 6 to in our experimental results.

There are three ways to use the taxonomy. The taxonomy

loss as performance measure is used on all methods. The

taxonomy loss as part of the training procedure is used in all

structured SVMs according to (6). The taxonomy structure

is incorporated in all taxonomical approaches but not in the

structured multi class procedures.

5The regularization constant of the larger class was fixed to 16 which

corresponds to our experience that high-dimensional Bag-of-words

features perform better under hard margin training.
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Fig. 4 Caltech 256 animals example images

Fig. 5 VOC2006 example images

Table 5 Classification of methods

Structure-free Structured

Taxonomy-free One vs all Struct multi-class SVMs

(Sect. 2.5) (Sect. 2.5)

Taxonomical Local taxonomy Struct taxonomy SVMs

(Sect. 2.3) (Sect. 2.2)

We will use as baselines the structure-free one-vs-all

classification and taxonomy-free multi class SVMs with

margin and slack rescaling trained using zero-one loss δ0/1

or taxonomy loss δT . The taxonomy-based algorithms to

be tested consist of the structured SVMs with nontrivial

taxonomies in margin (6) and slack rescaling formulation

(7) and of structure-free methods scoring via the arithmetic

mean over the component SVM outputs and via generalized

means of them scaled using logistic functions.

We used SVMmulticlass (Joachims 1999) and modified

versions thereof for the structured approaches. The non-

structured methods have been implemented using shogun

toolbox (Sonnenburg et al. 2010) with the SVMlight solver.

Table 6 Abbreviations for compared methods

Structured multi-class baseline

Struct mc mr With margin rescaling

Struct mc sr With slack rescaling

Taxonomical structural learning

Struct tax mr With margin rescaling (6)

Struct tax sr With slack rescaling (7)

The local procedure with taxonomy

Local tax AM With arithmetic mean (11)

Local tax scaled GM With geometric mean after scaling

Mp With p-mean after scaling

We note that SVMlight is also deployed in the optimization

procedures of the SVMmulti-class implementations.

The error measurement is done for the multi-class prob-

lems using the 0/1- and taxonomy loss from (2). For all

multi-class problems we use 20 splits into training and test

data with 50 images per class in each split. This greatly re-

duces the dataset size compared to cross-validation and the

training time for the structured methods.
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Table 7 One-vs-all performance on multi-class datasets

Dataset 0/1 loss AP score

Cal256 animals 62.56 34.34

Cal256 13 class subset 57.04 43.69

VOC2006, multi-class, 20 splits 50.54 54.75

VOC2006, multi-class, 20-fold crossval 33.56 70.50

4.5 Experimental Results: Performance Comparisons

At first, we would like to remark the difficulty inherent in

the datasets. Table 7 shows the 0/1 loss and the average pre-

cisions (AP score) of the one-vs-all baselines for the three

multi-class datasets.

The AP score is a rank-based measure which was de-

ployed as the performance criterion in the recent Pascal

VOC challenges. For VOC2006 the results for 20 splits per-

form worse due to sample size effects as they use only 500

training data in each split as compared to over 5000 points

for the 20-fold cross-validation.

The comparisons for Caltech256 animals and its 13 class

subset are shown in Tables 8 and 9. For simplicity, we

present only the best result among all options for each of

structural multi-class, local taxonomy-based and structural

taxonomy-based procedures. The full Tables listing all re-

sults can be found in Appendix (Tables 17–19). As expected,

the taxonomy-based methods outperform the taxonomy-free

baselines in terms of the taxonomy loss by 3–5% relatively.

For both datasets, our local SVM procedure improves struc-

ture learning with taxonomy by 2–3% relatively. The gains

of the taxonomy-based approaches under the taxonomy loss

are achieved at the cost of slightly increasing the 0/1 loss. It

is notable from Table 9 that merely including the taxonomy

loss in a structured multi-class algorithm (as an intermedi-

ate step of incorporating taxonomical information) does not

yield sufficient performance gain under the taxonomy loss.

Optimization for taxonomy loss comes at the cost of perfor-

mance deterioration under the 0/1 loss. This is not surpris-

ing, because the baselines, one vs all and structured multi-

class models directly optimize for the flat hinge loss which

is more closely related to the 0/1 loss than to the taxonomy

loss. Since this problem occurs for all hierarchical methods

including the structured prediction based methods it does

point out the considerable difference between the canonical

flat loss and what a user might desire. From an optimiza-

tion viewpoint minimizing a different loss leads to a differ-

ent model. Therefore merely the scale of change might be

surprising. The relation of 0/1 loss to AUC scores at internal

nodes across datasets will be discussed in Sect. 4.7.3.

Table 10 shows the performance comparison for the

VOC2006 multi-class problem. Similar to the Caltech ani-

mals datasets, the taxonomy-based methods outperform the

one-vs-all baseline in terms of the taxonomy loss by 5%

Table 8 Performance on Caltech256 animals (52 classes), 20 splits

Method Taxonomy loss 0/1 loss

One vs all 30.66 ± 0.46 62.56±0.67

Best local tax: scaled GM 29.62±0.34 76.19±0.57

Best struct tax: mr 30.58±0.31 81.19±0.53

Table 9 Performance on Caltech256 animals 13 class subset data, 20

splits

Method Taxonomy loss 0/1 loss

One vs all 42.49 ± 1.46 57.04 ± 1.98

Best struct mc: sr, ∆ = δ0/1 42.48 ± 1.50 57.06 ± 2.00

Best local tax: scaled GM 40.58 ± 1.15 58.33 ± 1.50

Best struct tax: mr 41.48 ± 1.22 61.54 ± 1.55

Table 10 Performance on VOC2006 as multi-class problem, 20 splits

Method Taxonomy loss 0/1 loss

One vs all 27.09 ± 1.88 50.54 ± 2.51

Best struct mc: mr, ∆ = δT 26.37 ± 1.77 51.04 ± 2.53

Best local tax: scaled GM 25.86 ± 1.56 50.10 ± 2.29

Best struct tax: mr 25.78 ± 1.67 50.17 ± 2.17

relatively. On the other hand, there are some differences

from the previous cases. At first, our local SVM proce-

dure were rather on par with the structural counterpart.

Secondly, the intermediate step, the structure multi-class

procedure with the taxonomy loss δT improved the one-

vs-all baseline significantly under the taxonomy loss. Fi-

nally, the taxonomy-based approaches improved slightly the

taxonomy-free baselines under the 0/1 loss as well as was

the case for the synthetic example.

As a sanity check for structured implementations we re-

mark that the structure-free methods perform approximately

equally well to their structured counterparts for both tax-

onomy and 0/1 losses. Since for the flat 0/1 loss setting we

used SVMstruct in its unmodified formulation, this is clearly

a property of the data rather than a potentially faulty imple-

mentation of structured approaches.

In summary, we observed that the taxonomical ap-

proaches outperform the taxonomy-free baselines under the

taxonomy loss, as was the case for the synthetic data. Un-

like in the synthetic data the zero-one error was slightly in-

creased by optimization of taxonomy based losses for both

Caltech datasets. The choice of the loss function determines

the algorithm to be used. It is not expectable in a statis-

tical sense that a taxonomical model improves a flat loss

under all circumstances, however there is a tendency for re-

latedness of zero one loss and differences of AUC scores
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(see also discussion in Sect. 4.7.3). The local taxonomy-

based methods are slightly worse than structured taxonomy

ones on VOC2006 dataset, but considerably better on both

Caltech256 animals problems. We would like to emphasize

that the way of averaging is important to achieve better per-

formance. Note that the scaled geometrical mean compares

favorably with the arithmetic mean. Indeed, when we ex-

amined the generalized p-means in a wide rage of the para-

meter p, parameters close to 0 (i.e. the geometrical mean)

achieved the minimum values both under the 0/1 and taxon-

omy losses.

4.6 Training Time

In all three data sets the local SVMs are much faster to train

when compared to structured taxonomy approaches (cf. Ta-

ble 11). The local SVMs can be parallelized by training each

node as a separate optimization problem, an advantageous

property when scaling the number of object categories. An-

other beneficial scaling characteristic when increasing the

number of samples is the possibility to reduce the training

set for each node individually since it is sufficient to control

the performance of the binary classification problem at each

node separately. Certain steps in the structural approaches

like finding the most violated constraints can be parallelized

to e.g. multicore machines which typically accounts for four

or at most eight cores. The used code may have potential

for further problem-specific optimizations. The speed gains

by using local SVMs are large factors of over 10. Thus we

do not expect the advantage of the local svms to disappear

against a multicore-parallelization of structural support vec-

tor machines. Furthermore the parallelization of local svms

into optimization problems restricted to single nodes can be

achieved generically over more than 8 cores. Another perfor-

mance reducing factor was excessive main memory usage of

structural algorithms of up to 16 Gigabyte per task which in

practice leads to additional slowdowns compared to many

small tasks as solved by the local SVMs.

4.7 Discussion

4.7.1 Confusion Between Object Categories

Figures 7 and 8 provide example images where the results

from the local taxonomy approach differs compared to the

one versus all baseline. Each image comes with a graph on

the taxonomy. The ground truth label is green. The choice

by one versus all is marked in magenta and the path to the

choice by hierarchical classification is given in blue. All rel-

evant paths have attached the SVM outputs to them (see

also Fig. 3). Figure 7 shows typical cases when the hier-

archic approach fails. It is caused by false positive outlier

Table 11 Training times, the multiplier for local models shows sepa-

rability into independent jobs

Method Dataset Training time

One vs all Cal256 animals, 52 classes 3.69 s × 52

Local tax Cal256 animals, 52 classes 3.69 s × 92

Struct. tax Cal256 animals, 52 classes 35.13 h

One vs all Cal256 animals, 13 classes 0.5 s × 13

Local tax Cal256 animals, 13 classes 0.5 s × 21

Struct multi-class Cal256 animals, 13 classes 15.1 min

Struct tax Cal256 animals, 13 classes 44.9 min

One vs all VOC2006 <0.5 s × 10

Local tax VOC2006 <0.5 s × 19

Struct multi-class VOC2006 9.4 min

Struct tax VOC2006 28.7 min

Fig. 6 Confusion differences between our local SVM with taxonomy

and the one-vs-all classification (y-axis) versus the taxonomy losses

(x-axis) for (a) bus and (b) cat from VOC 2006 categories (bic = bi-

cycle, hor = horse, mot = motorbike, per = person, she = sheep).

Positive values denote more confusions by the proposed method. Sig-

nificances of the differences are checked by Wilcoxon signed-rank test

whose p-values are summarized in (c) (row: true classes, column: pre-

dicted classes)
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Fig. 7 (Color online) Example images where the hierarchical classi-

fier is inferior to the one versus all baseline on Caltech animals, 13

classes. Boxed green denotes the ground truth label, dashed blue the

path to the choice by hierarchical classifier and dashdotted magenta

the decision by one versus all

votes at internal nodes which are too strong in order to be

averaged out. Figure 8 shows cases when the hierarchical

approach improves over a flat one versus all baseline. Typ-

ically the votes from internal nodes can average out and

thus overrule false positive and too negative votes at the leaf

nodes. The upper part of Fig. 8 shows a case when a tax-

onomically more plausible result can be achieved by using

a hierarchy even when the classifier for the leaf node be-

longing the ground truth gives a too negative vote. In the

lower part the hierarchic approach classifies the image cor-

rectly.

By comparing the confusion pattern of our taxonomy

based procedure with that of the one-vs-all baseline, we ob-

serve clear qualitative differences. Figure 6 shows confu-

sion differences between the two approaches (y-axis) ver-

sus the taxonomy losses (x-axis) for (a) bus and (b) cat

of the VOC 2006 data. As expected, we can find the gen-

eral tendency that the taxonomy based method confused

more with the categories with lower taxonomy losses, while

it can reduce the error with those with higher taxonomy

losses. We also checked significances of all confusion dif-

ferences by a Wilcoxon signed-rank test from 20 random

repetitions. Its p-values are summarized in the panel (c)

(row: true classes, column: predicted classes). For instance,

for (a) bus class, more images were correctly classified as

bus (p-value = 0.06%) and confusion with person reduced

significantly (0.16%) at the cost of increasing the error by

prediction of cars (0.09%) which is in the taxonomy the

closest category to bus. Similar relations hold for (b) cat

class: confusions with the closer categories dog and horse

increased, which brought improvements in confusions with

farther away classes cow (0.4%), bicycle (3.1%) and motor-

bike (5.1%).

It is worth to point out that the improvement of taxonomy

losses by hierarchical classification which was observed in

Sect. 3 (see Table 3) and Sect. 4.5 implies that erroneous

decisions are moved to lower levels in the hierarchy com-

pared to baselines. This yields a more plausible, i.e. more

human-like, result based on the taxonomy.
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Fig. 8 (Color online) Example images where the hierarchical clas-

sifier outperforms the one versus all baseline on Caltech animals, 13

classes. Boxed green denotes the ground truth label, dashed blue the

path to the choice by hierarchical classifier and dashdotted magenta

the decision by one versus all

4.7.2 Comparison with Greedy Walks

We also analyzed the performance for local taxonomy ap-

proaches with hierarchical classification using greedy path-

walks (Griffin and Perona 2008). We regard this direction

rather as a side topic with respect to our comparison of struc-

tured versus local models. In this approach for each node in

the taxonomy the set of negative examples is restricted to

those with the class labels of the parent node. For example,

for the class cat in the taxonomy from Fig. 2, a binary SVM

is trained only with samples of classes Carnivora, i.e. cats

and dogs. Such greedy walks lead to performance decrease.

This is not surprising. Since the binary SVM at the leaf node

‘cat’ takes only images annotated with dog as negative sam-

ples, it may give highly positive scores to images contain-

ing horses or motorbikes. It is possible that the classifiers at

the upper nodes, e.g. the nonlife-versus-life or the carnivora-

versus-classifier misjudge some of these images and that the

cat-versus-dog classifier finally annotates them as cat with

very high confidence.

We have found that the greedy walks strategy itself is

detrimental. We obtain for both datasets a moderate rise in

0/1 loss and a sharp rise in taxonomy loss. In that sense

the local approach adopted here is superior to other possi-

ble simpler local solutions. Performances of greedy walks

can be found in Appendix.

The greedy approach has two advantages in running

times compared to the local approach presented here. Dur-

ing training it deals at each node only with classifiers work-

ing on subsets of all categories which leads to a reduced

amount of training data. During testing we have to follow

only one path for each sample. The local approach presented

here can be, in principle, modified by subsampling from the

set of negative classes during training so that it uses the same

amount of training data as the greedy approach. It would

still retain the advantage of being able to suppress votes

for outlier images as described above, i.e. when a car im-
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Table 12 Mean AUCs on leaf nodes versus internal nodes for the

local-SVM methods

Dataset AUC leaf AUC internal nodes

Caltech256 52 animals 88.49 84.82

Caltech256, 13 class subset 84.00 78.55

VOC2006 multi-class 86.38 91.40

age is tested in a cat versus dog classifier in a greedy walk

scheme. While the greedy approach is the fastest option dur-

ing test time, the local approach introduced here can be in-

terpreted as a compromise between the structured SVMs and

the greedy walks in terms of training and testing time. It

achieves a trade-off between speed and precision.

4.7.3 AUC Scores at Leaf and Internal Nodes

We see from the real (Table 12) and synthetic datasets (see

Sect. 3) a link between AUC scores at internal versus leaf

nodes and the performance of flat zero one losses. When

AUC scores are better on internal nodes as happened for

VOC2006 and the synthetic data then the averaging in the

hierarchical approach between them and the one versus all

classifiers in the leaf nodes seems to improve flat zero one

losses as well. This might be linked to alignment between

visual similarities and taxonomy structure. With respect to

taxonomy structure we note that half of the VOC2006 tree

(see Fig. 2), namely the non life part, is constructed by sub-

jective intuition of the authors and thus might be more simi-

lar to visual features. To give an example, the horse is part of

odd-toed ungulates in a group with cats and dogs while the

background appearance of horses, meadows, might be more

similar to those of even-toed ungulates as cows and sheep.

Thus this dataset might be more similar to our synthetic data

where the visual features were perfectly aligned to the given

taxonomy.

4.7.4 Generalization Ability for Learning of Superclasses

in Taxonomies

The task of learning with taxonomies can be divided into

two aspects. The first aspect is the optimization of a non

flat loss via the taxonomy structure. We have seen in the

preceding sections that taxonomy based methods do reduce

taxonomy-induced losses.

The second aspect is that taxonomy based learning is

an averaging with classifiers constructed by forming su-

perclasses, in contrast for example to alternative learn-

ing approaches based on attributes (Farhadi et al. 2009;

Lampert et al. 2009). We can conjecture in accordance to

Fig. 1 that these superclasses can have larger variance in ap-

pearance compared to the single classes at the leafs. We may

ask about the generalization capability of the used features

to superclasses used in internal nodes of the taxonomy. This

aspect is in our opinion also linked to the question whether

the usage of taxonomic models can reduce the flat zero one

loss at all and how much the taxonomy loss can be reduced

by taxonomic models.

Humans are able to generalize higher level categories

very well, seemingly not worse or even better than more

specific low level categories. For example humans can la-

bel cars very well even if their optical appearance is quite

diverse as with old-timers, converted cars in strange shapes

or rare car models, whereas identifying a specific car brand

constitutes a more difficult task. This generalization capa-

bility seems to be uncommon for the current state of the

art BoW feature extraction as we can see that false nega-

tive rates do increase considerably on intermediate nodes.

We conjecture that classification with the BoW features suf-

fers under the larger variability in appearance of high level

concepts, which practically leads to a decreased SNR and an

increase in nuisance dimensions. This might explain the dif-

ferences between the ability of the taxonomy-based systems

considered here and the assumed human performance.

One reason might be that we use in the classification sce-

nario one bag of word feature which incorporates the base

features from whole image in an unweighted manner. While

this gives a state of the art in object classification compe-

titions (Everingham et al. 2007, 2008, 2009) it might not

be optimal for generalization to superclasses. Classical al-

ternatives are part models (Ommer et al. 2006; Ommer and

Buhmann 2010; Fergus et al. 2007) which are conceptually

very appealing but do not seem to be widely used in com-

petition systems for object recognition while being com-

petitive in object localization scenarios (Dollár et al. 2008;

Felzenszwalb et al. 2009). Their application is based on the

assumption that the generalization to superclasses could be

achieved by sharing parts. There exist potential but seem-

ingly computationally more costly remedies in classification

with good classification performances which learn a weight-

ing in the space of base features of bag of word represen-

tations. Yang et al. (2008) cast classification a whole new

learning problem directly in the space of base features and

achieves very good scores for small sample sizes. Shahbaz

Khan et al. (2009) achieve good classification performances

by a weighting based on additional color features.

4.7.5 Outlook—Larger Numbers of Classes: Caltech256

Full

Here we consider the results for all 256 object classes from

Caltech256. We omitted the clutter class and computed one

k-means prototyped Bag of Words kernel based on 1000

words over the rgb color channel. We used 50 images per

class and ten-fold crossvalidation which resulted in a train-

ing set size of 11520 samples. We were not able to compute
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Table 13 Performance on Caltech256 all classes except for clutter, 10

splits

Method Taxonomy loss 0/1 loss

One vs all 34.31 ± 0.74 68.93 ± 1.23

Local tax AM 33.04 ± 0.7 72.91 ± 1.16

Local tax scaled GM 32.77 ± 0.6 72.55 ± 1.14

Local tax greedy path-walk 37.81 ± 0.71 77.96 ± 1.3

the solutions from structured prediction methods however

we are still able to compare one versus all against our lo-

cal SVM approach. We observe in Table 13 qualitatively the

same results as for the other, smaller, datasets. The taxon-

omy based approach improves on the taxonomy loss at the

cost of setbacks in the zero one loss when compared to one

versus all. The one versus all baseline performance ranges

between the baseline used in Marszalek and Schmid (2008)

and the best kernel from Gehler and Nowozin (2009).

5 Experiments on Real World Multilabel Datasets

Clearly the local SVM approach can also be used in a multil-

abel setting. Here in each image each concept can be present

or absent independent of all other concepts.

We would like to emphasize that the target function eval-

uated here differs form the multiclass case as confusions be-

tween concepts are not well defined anymore. The idea of

averaging classifiers is used here to enforce for each con-

cept separately an ordering of images such that images of

the concept in question and taxonomically close concepts

are ranked highest.

Technically we replace confusion matrix based losses by

threshold-independent ranking losses. A standard flat loss

function used in the Pascal VOC challenge is Average Pre-

cision (AP) (Kishida 2005) and its mean over all classes. We

assume that the pairs of SVM outputs and ground truth la-

bels (z, y) are sorted according to the descending order of

their output scores zk over the sample index k. The average

precision score is defined as

AP((zk, yk)
n
k=1) :=

1

n

n
∑

i=1

1

i

i
∑

k=1

I{yk = 1}. (13)

The AP score is maximized when the images of the class

in question are ranked first. It is invariant against permu-

tation of the ordering of images from all other classes as

long as the ranks of images from the class in question are

untouched. However given relations from a taxonomy, we

would prefer a ranking where images from taxonomically

close classes are ranked in front of images from taxonom-

ically far classes. To measure this difference we will use a

second score, the Atax score.

The Atax score can be defined by replacing the hierarchy-

unaware precision score in the AP measure by one minus

the taxonomy loss to the taxonomy-nearest present class

in the ground truth of the image and serves as a mea-

sure for binary problems which incorporates taxonomy in-

formation. For the multilabel taxonomy extension we con-

sider instead of one binary label yk a set along each class

{y
(r)
k ∈ {0,1}, r ∈ {1, . . . ,C}}. Since we know for which

class c of the multilabel problem we measure we can re-

place in the original AP score the 0/1-loss-based precision

measurement by the minimal taxonomy distance δ between

the measured class c and all positive labels in the ground

truth {y
(r)
k , r ∈ {1, . . . ,C} | y

(r)
k = 1}.

Again, we assume that the ground truth labels for class

r , y
(r)
k are sorted according to the descending order of the

SVM outputs z
(c)
k for class c.

ATax(c)((z
(c)
k , {y

(i)
k , i = 1, . . . ,C})nk=1)

:=
1

n

n
∑

i=1

1

i

i
∑

k=1

1 − min
r∈{1,...,C}|y

(r)
k =1

δT (c, r). (14)

Since the taxonomy distance δT from (2) is scaled to lie

in [0,1] and a correct prediction leads to scores of yk = 1

respectively (1 − min
r∈{1,...,C}|y

(r)
k =1

δ(c, r)) = 1, the ATax

score is never smaller than the AP score. The precision used

in AP scores can be interpreted as a zero-one discretization

of the taxonomy score (1−min
r∈{1,...,C}|y

(r)
k =1

δ(c, r)). Both

scores have the advantage of being invariant against the clas-

sification threshold and evaluate the ranking of images. We

do not use the ranking based scores for the multiclass prob-

lem. Inspecting the constraints of the structured prediction

formulation from (6) shows that it aims at classifying each

image correctly in the sense of obtaining a correct ranking

of classes for each image. Its optimization does not aim at

obtaining a correct ranking of images for each class. Thus,

using a ranking score would be a biased measure against the

structured approaches.

Note that for multilabel data the structured algorithms

cannot be applied in their current form as the multi-class

constraints are not well-defined anymore. Therefore we will

compare one versus all versus local hierarchical approaches.

As this frees us of time and memory consumption prob-

lems related to the structured algorithms we will use 20-fold

crossvalidation. We will use the same features and kernels

as described in Sects. 4.2 and 4.3 and measure with AP and

ATax scores.

5.1 Datasets

VOC2006 multi-label data We use the VOC2006 dataset

(Everingham et al. 2006) consisting of 10 object classes and

5301 images with its original, unmodified labels. The full

taxonomy is given in Fig. 2.
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Table 14 Performance on VOC06 as multilabel problem, 20 fold

crossvalidation

Method ATax AP

One versus all 90.10 ± 3.46 80.13 ± 7.21

Local tax. scaled geometric mean 91.29 ± 3.34 79.96 ± 7.23

Local tax. scaled, harmonic mean 90.85 ± 3.28 80.61 ± 7.06

Table 15 Performance on VOC09 as multilabel problem, 20 fold

crossvalidation

Method ATax AP

One versus all 79.02 ± 8.72 55.92 ± 15.91

Local tax. scaled geometric mean 80.68 ± 8.20 54.62 ± 16.08

Local tax. scaled, harmonic mean 80.03 ± 8.33 56.43 ± 15.77

VOC2009 multi-label classification task data This dataset

consists of 20 classes with 7054 labeled images. It serves as

a second multilabel setting for the local algorithms. The full

taxonomy is given in Fig. 11 in the Appendix.

5.2 Experimental Results

Tables 14 and 15 show that even for a multilabel setting, in-

troducing a taxonomy can improve taxonomy based as well

as flat ranking scores, despite we have no notion of avoiding

confusions anymore.

This may become relevant when using classifier scores

for ranking images for retrieval. A higher ATax score im-

plies that the desired class and similar classes are ranked

higher than more distant classes which in effect leads to a

subjectively improved ranking result from a human view-

point. When looking for cats humans tend to be more im-

pressed by results which return erroneously other pets than

cars. Highly ranked images from very distant categories tend

to be perceived as strong outliers.

Figure 9 shows examples where the hierarchical classifier

is able to improve rankings simultaneously for classes which

are far apart in the taxonomy given in Fig. 2. This shows

that taxonomy learning for multilabel problems does not

lead necessarily to mutual exclusion of taxonomy branches.

In both images, the classes under consideration are sepa-

rated already at the top level. We observe that images can

be reranked to top positions despite average rankings at all

nodes. For the upper image this occurs for the cow class, for

the lower image this occurs for the motorbike class as can

be seen from the rankings given along the paths. This can be

explained by the property of the nonpositive p-means to be

upper-bounded by the smallest score (see Sect. 2.4). Many

images which achieved higher scores and ranks at some

nodes along the considered path were effectively ranked

lower because they received very low scores at least one

Table 16 Scaling of scores is important for multilabel problems, 20

fold crossvalidation

Method: local tax. arith. mean ATax AP

VOC06, unscaled 84.59 ± 6.73 60.31 ± 15.08

VOC06, scaled 89.58 ± 3.89 74.85 ± 8.51

VOC09, unscaled 73.35 ± 9.40 35.87 ± 14.73

VOC09, scaled 77.30 ± 9.45 46.58 ± 16.61

node in the same path. Note that the observed improvement

in ranking is independent of the ranking loss.

Table 16 compares for both multilabel problems the per-

formance of scaled versus unscaled combinations of scores.

We see clearly that scaling of scores onto a compact interval

contributes to the good performance of the local models. The

good performance of scaled scores is not surprising as one

can expect the SVM outputs to have different distribution

statistics like variances across the nodes. Please note that for

one versus all classification the scaling has no influence on

the ranking scores as it is monotonous and rank-preserving

and the score computation is done for each class separately.

6 Conclusions

When classifying complex data such as objects, humans are

first of all much better than learning machines and most im-

portantly human and machine errors diverge considerably.

Among others, a reason for both findings is the impress-

ing ability of humans to generate abstract representations

that implicitly organize hierarchical knowledge and thus to

create appropriate task relevant factorizations of the envi-

ronment, put in one word humans generalize. One aspect of

such abstract representation can be captured by taxonomies.

In this paper we have demonstrated that taxonomy-based

learning using structured SVMs and local-SVM-based ap-

proaches on real world data yields improved results when

measured with taxonomy-based losses. Local algorithms

with generalized means voting perform on par to structured

models while being considerably faster in training. The geo-

metric mean appears to be a good a priori choice as a sen-

sitivity tradeoff against small and large outliers. Successful

minimization of taxonomy losses implies the reduction of

confusions between distant categories, i.e. a step towards

more human-like decision making. Note, however, that an

improved result measured with taxonomy-based losses does

not necessarily translate into a better result in a flat loss such

as 0/1-loss since more meaningful confusions, i.e. improved

quality of decision making does not necessarily come with

overall quantitative improvements as other more meaningful

confusions may come in addition—as a side effect. In the lo-

cal SVM framework this can be checked by the AUC scores

on the internal nodes compared to the leaf nodes.
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Fig. 9 Example images where

the hierarchical classifier

improves rankings for

taxonomically distant classes

compared the one versus all

baseline on VOC2006

multilabel problem. (Upper) car

from 216 to 133, cow from 197

to 31. (Lower) motorbike from

108 to 52, person from 125 to 38

Experiments on synthetic data show, somewhat expect-

edly, that taxonomy based algorithms work better than the

taxonomy-free baseline, when the data is aligned to the tax-

onomy. They suggest that performance gains are achieved

for local procedures by combining classifiers with different

trade-offs of false positive versus false negative rates. Inter-

estingly but in fact to be expected, taxonomy based learners

tend to make their errors rather close to the leaf-nodes of the

taxonomy tree thereby confusing ‘close’ categories, whereas

learners based on flat losses incur classification errors uni-

formly across the tree. The latter behaviour is one of the

reasons to consider the decisions of flat loss trained learn-

ing machines more non-human than their taxonomy based

counterparts.

The local as well as structured approaches can be com-

bined with methods which learn taxonomies. The differ-

ence to previous approaches would be to measure taxonomy

based errors instead of flat losses and rely in case of local

algorithms on vote combination instead of reduced kernels

and greedy path-walks. It is open in such case how much of

the interpretation of a taxonomy is retained as a weak prior

knowledge to define loss functions which penalize dissimi-

larities as they are perceived by humans.

A further direction was to compare the local-SVM proce-

dures versus taxonomy-free multi-task learning approaches

on multi-label problems. In these problems we are interested

to rank the set of images for each class which demands

for threshold-invariant measures like the average precision

scores for comparison or the Atax score. Our simulation

study on VOC 2006 and 2009 shows encouraging results.

An overall challenge of the field would be to further the

generic understanding of the different decision making be-

tween human and learning machine, ultimately combining

low level machine precision, attribute based features and

human abstraction optimally towards a truly cognitive au-

tomated decision making machinery.
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Appendix

A.1 Detailed Experimental Results

The full comparison for Caltech256 animals 13 class subset

and VOC2006 is shown in Tables 18 and 19.
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Table 17 Performance on Caltech256 52 animals classes, 20 splits

Method Taxonomy loss 0/1 loss

One vs all 30.66 ± 0.46 62.56 ± 0.67

Struct mc mr ∆ = δT 32.29 ± 0.35 66.91 ± 0.64

Struct mc sr ∆ = δT 33.48 ± 0.39 68.86 ± 0.60

Struct mc sr ∆ = δ0/1 34.09 ± 0.38 68.05 ± 0.64

Local tax AM 30.01 ± 0.31 79.82 ± 0.55

Local tax scaled GM 29.62 ± 0.34 76.19 ± 0.57

Local tax greedy path-walk 40.31 ± 0.34 77.65 ± 0.46

Struct tax mr ∆ = δT 30.58 ± 0.31 81.19 ± 0.53

Struct tax sr ∆ = δT –a ± – – ± –

struct tax sr ∆ = δ0/1 39.16 ± 0.45 76.85 ± 0.59

aDid not terminate after over seven days. Jobs consume over 20 GB

Table 18 Performance on Caltech256 animals 13 class subset data, 20

splits

Method Taxonomy loss 0/1 loss

One vs all 42.49 ± 1.46 57.04 ± 1.98

Struct mc mr ∆ = δT 42.76 ± 0.96 64.35 ± 1.40

Struct mc sr ∆ = δT 42.49 ± 1.49 57.06 ± 2.01

Struct mc sr ∆ = δ0/1 42.40 ± 1.29 57.05 ± 1.77

Local tax AM 41.78 ± 1.16 62.57 ± 1.42

Local tax scaled GM 40.58 ± 1.15 58.33 ± 1.50

Local tax greedy path-walk 47.65 ± 1.13 63.33 ± 1.57

Struct tax mr ∆ = δT 41.48 ± 1.22 61.54 ± 1.55

Struct tax sr ∆ = δT 41.55 ± 1.65 58.21 ± 2.20

Struct tax sr ∆ = δ0/1 44.32 ± 1.07 59.22 ± 1.51

Table 19 Performance on VOC2006 as multi-class problem, 20 splits

Method Taxonomy loss 0/1 loss

One vs all 27.09 ± 1.88 50.54 ± 2.51

Struct mc mr ∆ = δT 26.37 ± 1.77 51.04 ± 2.53

Struct mc sr ∆ = δT 27.20 ± 1.89 50.73 ± 2.54

Struct mc sr ∆ = δ0/1 27.18 ± 1.87 50.70 ± 2.41

Local tax AM 26.02 ± 1.66 50.48 ± 2.34

Local tax scaled GM 25.86 ± 1.56 50.10 ± 2.29

Local tax greedy path-walk 27.15 ± 1.65 51.85 ± 2.28

Struct tax mr ∆ = δT 25.78 ± 1.67 50.17 ± 2.17

Struct tax sr ∆ = δT 27.24 ± 1.61 52.55 ± 2.23

Struct tax sr ∆ = δ0/1 27.63 ± 1.71 51.73 ± 2.50

Fig. 10 Taxonomy on 52 Animals Classes from Caltech256, the 13

class subset taxonomy is contained in the lower left quadrant from oc-

topus to butterfly

Fig. 11 Taxonomy on 20 Classes from Pascal VOC2009
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