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Abstract

Predicting the prices of cryptocurrencies is a notoriously challenging task due

to high volatility and new mechanisms characterising the crypto markets. In

this work, we focus on the two major cryptocurrencies for market capitalisation

at the time of the study, Ethereum and Bitcoin, for the period 2017-2020. We

present a comprehensive analysis of the predictability of price movements com-

paring four different deep learning algorithms (Multi Layers Perceptron (MLP),

Convolutional Neural Network (CNN), Long Short Term Memory (LSTM) neu-

ral network and Attention Long Short Term Memory (ALSTM)). We use three

classes of features, considering a combination of technical (e.g. opening and

closing prices), trading (e.g. moving averages) and social (e.g. users’ sentiment)

indicators as input to our classification algorithm. We compare a restricted

model composed of technical indicators only, and an unrestricted model includ-

ing technical, trading and social media indicators. We found an increase in ac-

curacy for the daily classification task from a range of 51-55% for the restricted

model to 67-84% for the unrestricted one. This study demonstrates that includ-

ing both trading and social media indicators yields a significant improvement in
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the prediction and accuracy consistently across all algorithms.

Keywords: Cryptocurrencies, Text Analysis, Deep Learning, Social Media

Indicators, Trading Indicators

1. Introduction

During the last decade, the global markets have witnessed an exponential

growth in the number of cryptocurrencies traded and exchanged, reaching a

market capitalization of hundreds of billions of US Dollars globally (reaching ≈

1 trillion as of January 2021).

Recent surveys1 also report a spike in demand and interest for the new

crypto-assets from institutional investors, attracted by the novel features and the

potential rise in value in the current financial turmoil, despite the risk associated

with price volatility and market manipulation.

Boom and bust cycles, often induced by network effects and wider mar-

ket adoption, make prices hard to predict with high accuracy. There is a

large body of literature concerning this issue, proposing a number of quan-

titative approaches for cryptocurrency prices prediction (Karim et al. (2019);

Lahmiri Salim (2019); Jing-Zhi H. (2018); Katsiampa (2017); Lahmiri et al.

(2018)). In particular, Giudici & Polinesi (2019) applied hierarchically clus-

tering on Bitcoin prices gathered from different exchanges to understand the

dynamics of cryptoasset prices and, more specifically, how price information is

transmitted across different Bitcoin exchanges, and between Bitcoin markets

and traditional ones. Akyildirim et al. (2021) analysed the predictability of

twelve cryptocurrencies at the daily- and minute-level frequencies using ma-

chine learning classification algorithms. The average classification accuracy of

four tested algorithms was consistently above the 50% threshold for all cryp-

tocurrencies at all timescales, showing the feasibility of prediction of trends in

1See https://www.fidelitydigitalassets.com/bin-public/060 www fidelity com/documents/FDAS/institutional-

investors-digital-asset-survey.pdf
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prices to a certain degree in cryptocurrency markets. The rapid fluctuations

in volatility, autocorrelations and multi-scaling effects in cryptocurrencies have

also been extensively studied Matta et al. (2015), also concerning their effect on

Initial Coin Offerings (ICOs) (Hartmann et al. (2018, 2019)).

An important consideration that has gradually emerged from the literature

is also the relevance of the “social aspect” and interactions in crypto trad-

ing. For example, the code underlying blockchain platforms is developed in an

open source fashion on GitHub, recent additions to the crypto ecosystem are

discussed on Reddit or specialised channels in Telegram, and Twitter offers a

platform where often heated debates on the latest developments take place. By

analysing interactions on social media, it has been shown that sentiment in-

dex can be used to predict bubbles in prices Chen & Hafner (2019) and that

the sentiment extracted from topic discussions on Reddit correlates with prices

Phillips & Gorse (2018). Open-source development also plays an important role

in shaping the success and value of cryptocurrencies (Ortu (2015); Ortu et al.

(2019); Marchesi et al. (2020)). In particular, a recent work by Bartolucci et al.

(2020) – which this work is an extension of – showed the existence of a Granger

causality between the sentiment and emotions time series extracted from de-

velopers’ comments on GitHub and returns of cryptocurrencies. For the two

major cryptocurrencies – Bitcoin and Ethereum – it has been also shown how

including the developers’ emotions time series in prediction algorithms could

substantially improve the accuracy.

In this paper, we further extend previous investigations on price predictabil-

ity using a deep learning approach and focusing on the two major cryptocurren-

cies by market capitalization, Bitcoin and Ethereum. We predict price move-

ments by mapping the point-wise forecast of price into a classification problem:

our target is a binary variable with two unique classes, upward and downward

movements, which indicate prices rising or falling and compare the performances

and outcome of the following deep learning algorithms: the Multi-Layer Per-

ceptron (MLP), the Multivariate Attention Long Short Term Memory Fully

Convolutional Network (MALSTM-FCN), the Convolutional Neural Network
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(CNN) and the Long Short Term Memory neural network (LSTM).

We will use as input the following classes of (financial and social) indicators: (i)

technical indicators, such as open and close price or volume traded, (ii) trading

indicators, such as the momentum and moving averages calculated on the price,

(iii) social media indicators, i.e. sentiment and emotions extracted from GitHub

and Reddit comments.

For each deep learning algorithm, we consider a restricted and unrestricted data

model at an hourly and daily frequency. The restricted model consists of data

concerning technical variables for Bitcoin and Ethereum. In the unrestricted

model we include, instead, the technical variables, trading and social media in-

dicators from GitHub and Reddit.

A key contribution of this study is the implementation of fine-tuned, deep learn-

ing algorithms with higher classification performances compared to previous

studies (Bartolucci et al. (2020); Uras & Ortu (2021)). A second important

aspect is the construction of a model that includes a unique mix of social me-

dia features, obtained using state-of-the-art techniques for textual analysis and

natural language processing, and trading indicators. Finally, our results demon-

strate the relevance of social media indicators, suggesting that the stakeholders

should pay an increased attention to crypto-related activities on social media

to make informed decisions.

The paper is organised as follows. In Section 2 we describe in detail the hypothe-

ses and the background of the study. In Section 3, we discuss the methodology

of the experiments conducted. In Section 4, we present the main results and in

Section 5 we discuss the implications of this study and outline future directions.

2. Theory, Hypothesis and Context

Stock markets and social media have deep links as witnessed for instance

by the recent chaotic events involving GameStop (Gomez-Carrasco & Michelon

(2017)). GameStop is a Texan video game company, which has unexpectedly
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disrupted the financial markets for several trading sessions in January 2021,

when the GME title registered +400% gain (on the 12th of January 2021 the

value of a GME share was $19.95, while on the 29th of January it reached $325).

The value of the stock skyrocketed after the action of a coordinated (through

the forum WallStreetBets) group of online traders who targeted several hedge

funds that decided to short-sell shares of the video game company (Jones et al.

(2021)). Cryptocurrency markets are in many aspects similar to stock markets,

and the links with social media are even stronger (Keskin Z. (2019); Phillips

& Gorse (2018)). Building upon previous research (Bartolucci et al. (2020)),

which highlighted the potential prediction power of social media features on

cryptocurrencies markets, we hypothesize:

H1: Using a mix of trading and social media indicators leads to

better cryptocurrencies price classification.

The research model is shown in Figure 1. Following the four steps repre-

sented in Figure 1, we constructed a model consisting of only technical indicators

and a model consisting of technical, trading and social indicators.

Figure 1: Experimental design.

We compared the price classification performance of these two models using

four different deep learning algorithms, and we found better performance with
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the model including both trading and social features. Consistently, across all

four deep learning algorithms, we are able to show that the unrestricted model

outperforms the restricted model. At hourly data frequency, the inclusion of

trading and social media indicators alongside the classic technical indicators

improves the accuracy of both Bitcoin and Ethereum price prediction. The

accuracy increases from a range of 51-55% for the restricted model, to 67-84% for

the unrestricted one. For the daily frequency resolution, in the case of Ethereum,

the most accurate classification is achieved using the restricted model. For

Bitcoin, instead, the highest performance is achieved for the unrestricted model

including only social media indicators.

H2: Cryptocurrency markets’ price classification is improved using

social media indicators during sub-periods of financial distress.

We considered three different periods of cryptocurrency markets distress and

we applied the H1 model to these sub-periods comparing the distribution of f1-

score of the four algorithms, separating the contribution of trading indicators

from that of social indicators. We found that the use of social media indicators

significantly improved the daily price classification, confirming that social media

are the right place to look at for early signals of financial distress.

2.1. Context

In this study, we collect and analyse price data for the two main cryptocur-

rencies, Bitcoin and Ethereum, from January 2017 to January 2021. The last

four years registered a tumultuous alternation of appreciation and depreciation

of cryptocurrencies, with Bitcoin price at about 3000 USD in early 2017 and at

about 60000 USD at the same time in 2021 (roughly 20 times more). The same

trend holds for Ethereum, whose price was about 150 USD in early 2017 and

went over 1500 USD in early 2021 (and at the time of writing is roughly over

2000 USD). We also collected for the period January 2017 - January 2021 data

from the social media Reddit and the social coding platform GitHub, which

hosts the development of the source code of the two cryptocurrencies. On one

hand, Reddit hosts discussions of users who are investors or that discuss in gen-
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eral about the technology itself. On the other hand, users in GitHub are the

developers of the technology and the ones who are in charge of the main gover-

nance decisions for these platforms. These two social platforms aggregate users

that for several reasons have a direct interest in the cryptocurrency markets

and, therefore, act as stakeholders. Within the considered time period, we have

three main events where the two cryptocurrencies went through speculation

bubbles: from November 2018 to December 2018, from April 2019 to December

2019 and from October 2020 to February 2021. Several factors contributed to

these speculation bubbles and, interestingly, some evidence of these factors can

be directly found in the social platforms analysed.

3. Methodology

In the next sections, we discuss the technical, trading and social media indi-

cators, providing some insights on the data collection and preparation processes.

We also illustrate the deep learning algorithms and how they are designed for

the price classification problem.

3.1. Technical and Trading Indicators

We considered all the available technical variables extracted from the Crypto

Data Download web services2, focusing on the data from the Bitfinex3 exchange

service. We considered the last 4-years period, spanning from 2017/01/01 to

2021/01/01, for a total of 35638 hourly observations. In our analysis, we sepa-

rate the technical indicators into two main categories: pure technical and trading

indicators. Technical indicators refer to “direct” market data such as opening

and closing prices. Trading indicators refer to derived indicators, such as moving

averages. The technical indicators are listed below.

• Close: the last price at which the cryptocurrency traded during the trad-

ing period.

2https://www.cryptodatadownload.com/data/bitfinex/
3https://www.bitfinex.com
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• Open: the price at which the cryptocurrency first trades upon the opening

of a trading period.

• Low : the lowest price at which the cryptocurrency trades over the course

of a trading period.

• High: the highest price at which the cryptocurrency traded during the

course of the trading period.

• Volume: the number of cryptocurrency trades completed.

From the knowledge of these technical indicators, it is possible to calculate

the trading indicators. More precisely, we used the StockStats Python library

to generate them. We used 36 different trading indicators as shown in Table 1,

which are of 8 different types:

• Moving average (MA);

• Exponential moving average (EMA);

• Stochastic oscillator;

• Moving average convergence divergence (MACD);

• Bollinger bands;

• Relative strength index (RSI);

• Fibonacci retracement levels;

• Average directional index.

The lag values represent how previous values (t − 1, . . . , t − n) are used

as input. The window size indicates the number of previous values used to

evaluate the indicator at time t, e.g. to calculate ADXRt at time t we use

ADXt−1, ..., ADXRt−10, ten previous values.

We provide here the definitions of the five main trading indicators.
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Table 1: Trading indicators with associated lags and window sizes. Lags represent how pre-

vious values at (t − 1, . . . , t − n) are used as input. Window size represents the number of

previous values used to compute the indicator at time t, e.g. to calculate ADXRt at time t

we use ADXt−1, . . . , ADXRt−10.

Trading Indicator Lag Window size

SMA: Simple Moving Average - 10

WMA: Weighted Moving Average - 10

RSI: Relative Strength Index - 10

ROC: Price Rate Of Change - 10

Mo: Momentum: - 10

OBV: On Balance Volume 1 -

permutation (zero based) 1 -

log return 1 -

max in range 1 -

min in range 1 -

middle = (close + high + low) / 3 1 -

compare: le, ge, lt, gt, eq, ne 1 -

count: both backward(c) and forward(fc) 1 -

SMA: simple moving average - 10

EMA: exponential moving average - 10

MSTD: moving standard deviation - 10

MVAR: moving variance - 10

RSV: raw stochastic value - 10

RSI: relative strength index - 10

KDJ: Stochastic oscillator - 10

Bolling: including upper band and lower band. 1 -

MACD: moving average convergence divergence - 5

CR: price momentum index 1 -

WR: Williams Overbought/Oversold index 1 -

CCI: Commodity Channel Index 1 -

TR: true range 1 -

ATR: average true range 1 -

line cross check, cross up or cross down. 1 -

DMA: Different of Moving Average (10, 50) 1 -

DMI: Directional Moving Index, including 1 -

DI: Positive Directional Indicator 1 -

ADX: Average Directional Movement Index - 5

ADXR: Smoothed Moving Average of ADX - 10

TRIX: Triple Exponential Moving Average - 10

TEMA: Another Triple Exponential Moving Average - 10

VR: Volatility Volume Ratio 1 -
9



• Simple Moving Average (SMA): calculated as the arithmetic average of

the cryptocurrency closing price over some period (known as time period).

• Weighted Moving Average (WMA): it is a moving average calculation

that assigns higher weights to the most recent price data.

• Relative Strength Index (RSI): it is a momentum indicator that measures

the magnitude of recent price changes. It is normally used to evaluate

whether stocks or other assets are being overbought or oversold.

• Price Rate Of Change (ROC): it measures the percentage change in price

between the current price and the price a certain number of periods ago.

• Momentum: it is the rate of acceleration of a security’s price, i.e. the

speed at which the price is changing. This measure is particularly useful

to identify trends.

• On Balance Volume (OBV ): it is a technical momentum indicator based

on the traded volume of an asset to predict changes in stock price.

3.1.1. Summary statistics: Technical and Trading indicators

Table 2 shows the summary statistics for the technical indicators. In Figure

2 we also show the plot of the historical time series for the technical indicators.

Table 3 shows the statistics of the trading indicators for the considered period

of analysis. Technical and Trading indicators are then input as features for the

price classification model.
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Table 2: Summary statistics for the time series of technical indicators.

Cryptocurrency High Open Low Volume Close

Bitcoin

mean 7972.769 7928.018 7879.276 176.319 7928.894

std 5519.337 5471.592 5416.295 306.62 5472.983

min 769.1 760.38 752 0 760.38

25% 4161.6875 4137.995 4113.822 30.592 4138.475

50% 7459.995 7428.09 7390.47 80.699 7428.41

75% 9790.952 9751.84 9701.427 199.322 9752.37

max 41999.99 41526.95 41000.24 8526.751 41526.95

Ethereum

mean 313.202 310.856 308.253 1658.835 310.896

std 248.731 246.069 242.971 6903.628 246.135

min 8.17 8.15 8.15 0 8.15

25% 161.182 160.202 159.06 192.327 160.21

50% 232.79 231.34 229.765 569.79 231.365

75% 390.0575 388.0075 385.73 1632.640 388.025

max 1440.54 1430.94 1411 903102.685 1431.4

Table 3: Summary statistics for the time series of trading indicators.

Cryptocurrency SMA WMA RSI ROCP MOM OBV

Bitcoin

mean 7924.974 7926.275 51.797 0.0013 8.685 126972.751

std 5465.393 5467.642 14.484 0.027 298.311 33544.231

min 767.801 766.912 2.426 -0.321 -5260.55 18811.069954

25% 4135.225 4134.525 42.374 -0.0083 -53.64 110336.0947

50% 7427.187 7427.521 51.877 0.001 4.97 126464.383

75% 9753.094 9751.604 61.151 0.011 70.732 147814.358

max 40996.6 41106.93 98.641 0.314 4069.26 213166.214

Ethereum

mean 310.723 310.78 51.18 0.002 0.378 6.776e+05

std 245.768 245.87 14.246 0.035 16.607 5.739e+05

min 8.147 8.163 3.797 -0.317 -239.48 -4.993e+04

25% 160.202 160.252 42.063 -0.012 -2.8 9.864e+04

50% 230.916 230.962 51.038 0.000934 0.09 5.185e+05

75% 388.081 388.125 60.338 0.016 3.67 1.246e+06

max 1404.89 1411.776 95.799 0.333 262.36 1.667e+06

3.2. Social Media Indicators

In this section, we discuss how the time series of social media indicators are

constructed from Ethereum and Bitcoin developers comments on GitHub and

users’ comments on Reddit, respectively.

11



Figure 2: Technical metrics for Bitcoin and Ethereum Time Series.

(a) Plot of the time series of Bitcoin’s technical indicators.

(b) Plot of the time series of Ethereum’s technical indicators.
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The social media platform Reddit is an American social news aggregation,

web content rating, and discussion website that reaches about 8 billion page

views per month. Reddit is built over multiple subreddits, where each subreddit

is dedicated to discussing a particular topic. In this paper, we analyse two

subreddits for each cryptocurrency, one discussing technical aspects and one

trading-related. The chosen subreddits are listed in Tab. 4. For each subreddit,

we fetched all comments from January 2017 to January 2021.

Table 4: List of sub-Reddit channels considered in the analysis.

Cryptocurrency Technical Discussions Trading Discussions

Bitcoin r/Bitcoin r/BitcoinMarkets

Ethereum r/Ethereum r/EthTrader

An example of a user’s comment extracted from Reddit r/Ethereum can be

seen in Table 5. Quantitative measures of sentiment and emotions associated

with the comments, as reported in this example, are computed using state-

of-the-art textual analysis tools (further details are discussed in the following

sections). The social media indicators computed for each comment are emotions

as love (L), joy (J), anger (A), sadness (S), VAD (valence (Val), dominance

(Dom), arousal (Ar)) and sentiment (Sent). Similar comments and associated

social media indicators can be extracted for developers’ comments from GitHub

(Bartolucci et al. (2020)).

Concerning the activity on Github, as both the Bitcoin and Ethereum projects

are open-source, we can extract all the interactions among contributors (Ortu

et al. (2018)). Active contributors are continuously opening, commenting, and

closing the so-called “issues”. An issue is an element of the development pro-

cess, which carries information about discovered bugs, suggestions on new func-

tionalities to be implemented in the code, new features, or new functionalities

being developed. An issue can be “commented”, meaning that developers can

start sub-discussions around it. They usually add comments to a given issue to

13



Table 5: Example of Reddit comment and corresponding emotions (love (L), joy (J), anger (A),

sadness (S)), VAD (valence (Val), dominance (Dom), arousal (Ar)), politeness and sentiment

(Pol and Sent respectively).

Comment L J A S Val Dom Ar Sent

All the tosspots focusing on

Vitaliks wealth completely

miss the point. If the crypto

you are supporting has a

purpose it will garner inter-

est in the real world there-

fore the capital will flow to

it. All is measured on the

merit and proper fundamen-

tals and not twitterbot pump

and dumps...

0 0 0 0 2.13 1.98 2.26 -1

highlight the actions being undertaken or provide suggestions on the possible

resolution.

In the next sections, we will briefly describe the algorithm used to extract

emotions and sentiment features from Github’s and Reddit’s comments. We

will provide summary statistics of the time series extracted that will be used as

features in the deep learning algorithms for price classification.

3.2.1. Extracting social media indicators

We extracted the social media indicators using deep, pre-trained, neural net-

works called Bidirectional Encoder Representations from Transformers (BERT)

(Devlin et al. (2018)). BERT and other Transformer encoder architectures

have been successful in performing various tasks in natural language process-

ing (NLP) and represent the evolution of Recurrent Neural Network (RNN)

typically used in NLP.

Transformers are based on the Attention Mechanism where RNN units would

encode the input up until timestamp t into one hidden vector ht. The latter

would then be passed to the next timestamp (or to the decoder in the case of a
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sequence-to-sequence model). By using the attention mechanism, one no longer

tries to encode the full source sentence into a fixed-length vector. Instead, one

allows the decoder to attend to different parts of the source sentence at each

step of the output generation. Importantly, we let the model learn what to

attend to, based on the input sentence and what it has produced so far.

Figure 3: Scheme of the general bidirectional encoder representation from Transformer.

The Transformer architecture allows for the creation of NLP models trained

on very large datasets, as we have done in this work. Training such models

on large datasets is relatively feasible thanks to pre-trained language models,

which can be, then, simply fine-tuned on the particular dataset. This means

that the weights learnt by the extensively pre-trained models can be later reused

for specific tasks by simply tailoring the weights to the specific dataset.

In this analysis, we used Tensorflow and Keras Python libraries with the

Transformer package to leverage the power of these pre-trained BERT-base-case

neural networks (NNs). Figure 3 shows the architectural design used to train
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the three NNs classifiers that extract the social media indicators. The three gold

datasets used to train our final models are GitHub, Stack Overflow and Reddit.

We used the BERT tokenizer to preprocess raw text and the datasets as input

for the pre-trained BERT layer (dashed blue square). This phase produces the

word-embedding vector (Mikolov et al. (2013)) along with the tokens IDs. The

output of the pre-trained BERT layer becomes the input of the last layer of our

deep learning architecture, i.e., the Keras Layer.

In particular, we used a sentiment-labelled dataset consisting of 4423 posts

mined from Stackoverflow users’ comments to train the sentiment model for

GitHub: comments on both platforms are written using the technical jargon

language of software developers and engineers. We also used an emotion-labelled

dataset of 4200 sentences from GitHub (Murgia et al. (2018)). This dataset is

particularly suited for our analysis as the algorithm for emotion detection has

been trained on developers’ comments extracted from the Jira Issue Tracking

System of the Apache Software Foundation, hence within the Software Engi-

neering domain and context of the GitHub and Reddit comments analysed in

this paper.

Valence, Arousal and Dominance (VAD) represent conceptualised affective

dimensions that describe the interest, alertness and control an individual feels

in response to a particular stimulus. In the context of software development,

VAD measures may indicate the involvement of a developer in a project as

well as their confidence and responsiveness in completing tasks. Warriner et

al. (Warriner et al. (2013)) has created a reference lexicon containing 14,000

English words with VAD scores for Valence, Arousal, and Dominance, that

can be used to train the classifier. In Mäntylä et al. (2016) they extracted

the valence-arousal-dominance (VAD) metrics from 700,000 Jira issue reports

containing over 2,000,000 comments and showed that issue reports of different

type (e.g., feature request vs bug) had a fair variation of valence. In contrast,

an increase in issue priority typically increased arousal.

Finally, sentiment is measured using the BERT classifier trained with (i)

the public dataset used in similar studies (Calefato et al. (2018, 2017)) for
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the GitHub data and (ii) a public gold dataset containing 33K labelled Reddit

users’ comments available from Kaggle, the largest and well-known web platform

for sharing datasets 4 for Reddit data. The algorithm extracts the sentiment

polarity expressed in short texts in three levels: positive (1), neutral (0) and

negative (-1) sentiment.

Tables 6 and 7 show the performance of sentiment and emotion classification

on the Github and Reddit dataset. The classifier can detect love, anger, joy and

sadness with an f1-score5 close to 0.89 for all the emotions. Note that the

accuracy reported is the global accuracy as it is evaluated for all classes, i.e.,

negative, neutral and positive sentiment.

In the next sections (see Sec. 3.1.1, 3.2.2), we discuss how we construct

the time series of social and technical indicators and we provide the summary

statistics.

Table 6: Sentiment Classifier Evaluation.

Cryptocurrency precision recall f1-score

Bitcoin

negative 0.92 0.89 0.90

neutral 0.97 0.98 0.98

positive 0.95 0.95 0.95

accuracy 0.95

macro avg 0.95 0.94 0.94

weighted avg 0.95 0.95 0.95

Ethereum

negative 0.98 0.85 0.91

neutral 0.84 0.94 0.89

positive 0.96 0.97 0.96

accuracy 0.92

macro avg 0.93 0.92 0.92

weighted avg 0.93 0.92 0.92

4https://www.kaggle.com/cosmos98/twitter-and-reddit-sentimental-analysis-dataset
5The f1-score tests the accuracy of a classifier. It is calculated as the harmonic mean of

precision and recall.
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Table 7: Emotion Classifier Evaluation For GitHub.

precision recall f1-score

anger 0.83 0.77 0.80

sadness 0.89 0.89 0.89

joy 0.86 1.00 0.92

love 1.00 1.00 1.00

accuracy 0.89

macro avg 0.89 0.91 0.90

weighted avg 0.89 0.89 0.89

3.2.2. Summary statistics: Social Media Indicators on GitHub and Reddit

Our analysis focuses on three main classes of affect metrics: emotions (love,

joy, anger, sadness), VAD metrics (valence, arousal, dominance) and Sentiment.

Once numerical values of the affect metrics are computed for all comments

(as shown in the example in Table 5), we consider the comments timestamps

(i.e. dates when the comments was posted) to build the corresponding social

media indicators time series. The affect time series are constructed by aggre-

gating sentiment and emotions of multiple comments for each hour and day,

depending on the time resolution considered (hourly and daily). For a given so-

cial media emotion indicator, e.g., anger, and for a specific temporal resolution,

we construct the time series by averaging the values of the affect metric over all

comments posted on the same day.

In Table 8, we report in more details the summary statistics of the social

indicators’ time series for both cryptocurrencies. Table 9 shows the summary

statistics for the social indicators of the two Bitcoin and two Ethereum subreddit

channels considered.
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Table 8: Summary statistics of GitHub affect metrics.

Cryptocurrency sentiment arousal valence dominance joy love sadness anger

Bitcoin

mean 0.141 2.273 3.321 3.365 0.0729 0.056 0.227 0.109

std 0.774429 2.953897 4.324653 4.376877 0.293435 0.248373 0.566562 0.393479

min -11 0 0 0 0 0 0 0

25% 0 0 0 0 0 0 0 0

50% 0 1.27 1.85 1.87 0 0 0 0

75% 0 3.29 4.8 4.87 0 0 0 0

max 15 38.88 60.78 62.28 6 4 11 17

Ethereum

mean 0.0842 0.7934 1.1405 1.147 0.0182 0.0761 0.0961 0.0356

std 0.6754 1.7082 2.4653 2.477 0.1407 0.5284 0.3570 0.2052

min -4 0 0 0 0 0 0 0

25% 0 0 0 0 0 0 0 0

50% 0 0 0 0 0 0 0 0

75% 0 1.08 1.54 1.62 0 0 0 0

max 31 35.19 52.5 54.35 3 31 6 4

3.3. Price Movement Classification

We, then, map the price regression problem into a classification task where

we predict the direction of the price movement (up or down). The caveat here

is that we only predict the direction of price movement and not its magnitude.

The target variable is a binary variable with two unique classes:

• Upward movements: This class, labelled with up and encoded with 1,

represents the condition of increasing prices.

• Downward movements: This class, labelled down and encoded with 0,

represents the condition of falling prices.

Table 10 shows the details about the instances of classes down and up, with

48, 5% and 51.5% respectively for Bitcoin and 49, 8% and 50, 2% for Ethereum

with and hourly frequency. For daily frequency we have 44, 8% and 55.2% for

Bitcoin and 48, 5% and 51, 5% for Ethereum of down and up class instances.

For Bitcoin daily frequency we have a slightly unbalanced distribution towards

up classes, in this case we will consider f1-score along with accuracy to better

assess the model’s performance.
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Table 9: Summary Statistics of Reddit Social Media Indicators.

Subreddit sentiment arousal valence dominance joy love sadness anger

r/Bitcoin

mean 1.8582 8.6046 12.0466 11.7412 0.6492 0.2509 0.5579 2.2197

std 4.3498 17.3895 24.4038 23.7624 1.7040 0.8278 1.4223 4.7780

min -9 0 0 0 0 0 0 0

25% 0 0 0 0 0 0 0 0

50% 0 1.09 1.54 1.51 0 0 0 0

75% 2 10.25 14.22 13.88 1 0 0 2

max 101 492.99 680.41 662.39 42 27 34 133

r/Bitcoinmakets

mean 0.9264 4.0327 5.6617 5.5688 0.2419 0.1059 0.3383 1.0095

std 2.7650 10.7106 14.9023 14.6243 0.8616 0.4553 1.0275 2.8993

min -9 0 0 0 0 0 0 0

25% 0 0 0 0 0 0 0 0

50% 0 0 0 0 0 0 0 0

75% 0 2.32 3.2925 3.26 0 0 0 0

max 52 245.32 332.84 329.4 34 15 22 88

r/Ethereum

mean 0.0842 0.7934 1.1405 1.147 0.0182 0.0761 0.0961 0.0356

std 0.6754 1.7082 2.4653 2.477 0.1407 0.5284 0.3570 0.2052

min -4 0 0 0 0 0 0 0

25% 0 0 0 0 0 0 0 0

50% 0 0 0 0 0 0 0 0

75% 0 1.08 1.54 1.62 0 0 0 0

max 31 35.19 52.5 54.35 3 31 6 4

r/Ethtraders

mean 0.8150 2.8479 4.0716 4.0046 0.2123 0.0855 0.2072 0.5983

std 2.1528 6.1395 8.7652 8.6220 0.6807 0.3959 0.6641 1.577632

min -6 0 0 0 0 0 0 0

25% 0 0 0 0 0 0 0 0

50% 0 0 0 0 0 0 0 0

75% 1 3.25 4.65 4.6 0 0 0 1

max 62 138.39 207.38 191.95 28 23 13 37
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Table 10: Class instances counts and percentages for Bitcoin and Ethereum at an hourly or

daily frequency.

Frequency Cryptocurrency Class Counts Percentage

Hourly

Bitcoin
up 17246 48,5%

down 18271 51,5%

Ethereum
up 16844 49,8%

down 16956 50,2%

Daily

Bitcoin
up 665 44,8%

down 817 55,2%

Ethereum
up 684 48,5%

down 727 51,5%

3.3.1. Time Series Processing

Since we are analysing a supervised learning problem, we prepare our data

to have a vector of x inputs and a y output with temporal dependence. In this

case, the input vector x is called regressor. The x inputs include the model’s

predictors, i.e. one or several values from the past, the so-called lagged values.

Inputs correspond to the values of the selected features discussed in the previous

sections. The target variable y is a binary variable, which can be either 0 or 1.

The 0 (down) instance represents downward price movements. A 0 instance at

time t is obtained when the difference between the close price at time t and the

open price at time t+1 is less than or equal to 0. The 1 (up) instance represents

upward price movements. A 1 instance is obtained when the difference between

the close price at time t and the open price at next time step t + 1 is greater

than 0. We considered two time series models:

• Restricted : the input vector x consists of only technical indicators (open,

close, high, low, volume).

• Unrestricted : the input vector x consists of technical, trading and social

indicators.
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For both the restricted and unrestricted model we used 1 lagged value for

each indicator. The purpose of considering two distinct models is to ascertain

and quantify whether the addition of trading and social indicators to the regres-

sor vector leads to an effective improvement in the Bitcoin and Ethereum price

changes classification.

3.4. Deep Learning Algorithms

In the next section, we briefly discuss the deep learning algorithms used in

our experiments. To conduct this analysis, we used the Keras framework for

deep learning (Chollet et al. (2015)).

The selected architectures are particularly suitable for time series manipu-

lation and forecasting (Brownlee (2018)). Although MLP is not a deep learning

algorithm by definition, we included it for the following reasons. If we consider

the two most common characteristics of DL architectures, i.e., the presence of

multiple hidden layers and the use of non-linear activation functions, we can

broadly classify the MLP algorithm as a deep feed-forward artificial neural net-

work. Moreover, the MLP architecture represents one of the simplest neural

networks and can be used as a baseline for comparisons. The other three ar-

chitectures, namely LSTMs, CNNs and MALSTM-FCNs are also deep learning

state-of-the-art tools for time series forecasting with increasing underlying archi-

tectural complexity. Testing the classification tasks on multiple DL algorithms

allows us to ensure the robustness of our findings.

3.4.1. Multilayer Perceptron

A multilayer perceptron (MLP) Ivakhnenko et al. (1967) is a class of feed-

forward artificial neural networks (ANNs), characterised by multiple layers of

perceptrons and a typical activation function.

When composed of a single hidden layer, as shown in Figure 4, MLPs are

called “vanilla” neural networks (in jargon and for practical use). In general,

MLPs refer to neural network architectures with two or more hidden layers.

A MLP comprises three main node categories: input layer nodes, hidden layer
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Figure 4: Scheme of the Multilayer Perceptron architecture.

nodes and output layer nodes. All nodes of the neural network are perceptrons

that use a nonlinear activation function, except for the input nodes.

In general, MLP neural networks are resilient to noise and can also support

learning and inference when values are missing. Moreover, neural networks do

not make strong assumptions about the mapping function and readily learn

both linear and nonlinear relationships. An arbitrary number of input features

can be specified, providing direct support for multidimensional forecasting. An

arbitrary number of output values can also be specified, providing direct support

for multi-step and even multivariate forecasting (Sutskever et al. (2014)). For

these reasons, MLP neural networks may be particularly useful for time series

forecasting (Brownlee (2018)).

In Fig. 4, the output of the i-th node (neuron) is indicated by Oi, and

the weighted sum of the input connections is vi. The most common activation

functions are the following:

O(vi) = tanh(vi) and O(vi) = (1 + e−vi)−1 . (1)

MLPs differ from linear perceptrons because of their multiple layers and

nonlinear activation functions.
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3.4.2. Long Short Term Memory

Long Short-Term Memory networks are a specialised version of Recurrent

Neural Networks (RNNs), which are able to capture long-term dependencies in

a sequence of data (Hochreiter & Schmidhuber (1997)). RNNs are a type of

artificial neural networks with a particular topology specialised in the identifi-

cation of patterns in different types of data sequences: natural language, DNA

sequences, handwriting, word sequences, or numerical time series data streams

from sensors and financial markets, to mention a few (Goldberg (2017); Quang

& Xie (2016); Tsang et al. (2018)).

An LSTM neural network is organised in units called cells, performing trans-

formations of the input sequence as shown in Fig. 5. An internal state variable

is retained by an LSTM cell when forwarded from one cell to the next and is

updated by the so-called Operation Gates (forget gate, input gate, output gate).

All three gates have different and independent weights and biases, so that the

network learns how much of the previous output and current input to retain

and how much of the internal state to pass to the output. In an LSTM cell unit,

the cell state brings information along the entire sequence and represents the

memory of the network.

Figure 5: Scheme of an LSTM cell gate.

First, the input is passed to the forget gate, taking as input lagged values and

deciding which fraction of the past information should be retained. The input
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from the previous hidden state ht−1 and the current input xt are transferred

through the sigmoid function to the output gate:

f(t) = σ(x(t) ∗ Uf + h(t− 1) ∗Wf ) . (2)

An f(t) output is close to 0 when a given piece of information can be forgotten,

and 1 vice versa. The matrices Wf and Uf contain, respectively, the weights of

the input and recurrent connections (the subscript f indicates the forget gate).

The second gate is the input gate. The previous hidden state and the current

input are presented as inputs to a sigmoid activation function. To boost the

network-tuning, they are also passed to the tanh function to compress values

between −1 and 1. Then the output of the tanh and of the sigmoid are multiplied

element by element (in Eq. (3) the symbol ∗ indicates the element by element

multiplication of two matrices):

i1(t) = σ(x(t) ∗ Ui + h(t− 1) ∗Wi) ,

i2(t) = tanh(x(t) ∗ Ug + h(t− 1) ∗Wg) ,

i(t) = i1(t) ∗ i2(t) .

(3)

At this stage, the cell state is updated. Finally, the output gate specifies the

value of the next hidden state including a certain amount of the information

contained in the previous input. At this stage, the current input and the

previous hidden state are summed up and forwarded to the sigmoid function:

C(t) = σ(f(t) ∗ C(t− 1) + i(t)).

Our model consists of one stacked LSTM layer and a densely connected

output layer with one neuron.

3.4.3. Attention Mechanism Neural Network

The attention mechanism is one of the key aspects of Deep Learning algo-

rithms, specifically developed to improve the output on long input sequences

(Niu et al. (2021)). Figure 6 shows the key idea behind the Attention Mecha-

nism Neural Network (AMNN), which is to allow the decoder, during decoding,

to access encoder’s information selectively. This is achieved by creating new
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context vectors for each decoder step, computed according to the previous hid-

den state as well as all encoder’s hidden states, and assigning trainable weights

to them. In this way, the attention technique assigns a higher priority to the

most important inputs.

Figure 6: Attention Mechanism Neural Network scheme.

In the encoding step, the representation of each input sequence is determined

as a function of the hidden state at the previous time step and the current input.

The final hidden state h(t) includes all encoded information from the previous

hidden representations as well as the previous inputs.

Using the attention mechanism at each decoding step t, a new background

vector c(t) is computed. To compute c(t), one calculates the so-called alignment

scores e(j, t):

e(j, t) = Va ∗ tanh(Ua ∗ s(t− 1) +Wa ∗ h(j)) , (4)

where Wa, Ua and Va are learning weights, also referred to as attention weights.

The Wa weights are linked to the encoder’s hidden states, the Ua weights to the

decoder’s hidden states, and the Va weights determine the function that com-

putes the alignment scores. The scores e(j, t) are normalized at each time step
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using the softmax function, obtaining the attention weights α(j, t) as follows:

α(j, t) =
exp(e(j, t))∑M
j=1 exp(e(j, t))

. (5)

The contextual vector c(t) is now forwarded to the decoder to calculate the

probability distribution of the next possible output. The softmax function is

then used to calculate the output of the decoder.

Compared to LSTMs, the attention mechanism provides better results when

processing long input sequences, thanks to the use of attention weights.

Figure 7: Attention LSTM cells to construct the MALSTM-FCN architecture (Karim et al.

(2019)).

In this study, we specifically use a Multivariate Attention LSTM with Fully

Convolutional Network (MALSTM-FCN) proposed and used in (Karim et al.

(2019)) and (Karim et al. (2017)). Figure 7 shows the architecture for the

MALSTM-FCN and specifies the number of neurons per layer. The input se-

quence is processed in parallel by a fully convolutional layer and an Attention

LSTM layer, and it is concatenated and passed to the output layer via a softmax

activation function for binary classification.

The fully convolutional block contains three temporal convolutional blocks of

128, 256 and 256 neurons respectively, used as feature extractors. Each convolu-

tional layer is succeeded by batch normalisation, before the concatenation. The

dimension shuffle transposes the temporal dimension of the input data, so that

the LSTM is given the global temporal information of each variable at once.
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As a result, the dimension shuffle operation reduces the computational time

for training and inference without losing accuracy in time series classification

problems Karim et al. (2019).

3.4.4. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a specific class of neural networks

most commonly used for deep learning applications concerning image process-

ing, image classification, natural language processing and financial time series

analysis (Chen et al. (2016)).

The most critical part of the CNN architecture is the convolutional layer.

This layer performs a convolution, i.e. a linear operation that involves a multi-

plication between a matrix of input data and a two-dimensional array of weights,

known as a filter. These networks use the convolution operation in at least one

of their layers.

Figure 8: Convolutional Neural Network architecture for time series forecasting.

Convolutional neural networks share a similar architecture with traditional

neural networks, including an input and an output layer and multiple hidden

layers. The main feature of a CNN is that its hidden layers typically consist

of convolutional layers. Figure 8 depicts the general architecture of CNNs for

time series analysis. We use a one-dimensional convolutional layer instead of

the typical two-dimensional convolutional layer used in image processing tasks.

This first layer is then normalised with a polling layer and later flattened so that
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the output layer can process the whole time series at each step t. In this case,

many one-dimensional convolution layers can be combined in a deep learning

network.

Our model consists of two or more stacked 1-dimensional CNN layers, one

densely connected layer with N neurons for polling, one densely connected layer

with N neurons for flattening, and finally the densely connected output layer

with one neuron.

3.5. Hyper-parameters tuning

The hyper-parameters tuning is a method for the optimisation of the hyper-

parameters of a given algorithm. It is used to identify the optimal configuration

of the hyper-parameters, within the given searching intervals, which would allow

the algorithm to achieve the best performance, evaluated in terms of a specific

prediction error. For each algorithm, the hyper-parameters to be optimised

are selected, and for each hyper-parameter an appropriate searching interval is

defined, including all values to be tested. The algorithm with the first chosen

configuration of the hyper-parameters is, then, fitted on a specific portion of

the dataset. The fitted model is tested on a portion of data that has not been

previously used during the training phase. This testing procedure returns a

specific value for the chosen prediction error.

The optimisation procedure via the Grid Search procedure (Lerman (1980))

ends when all possible combinations of hyper-parameter values have been tested.

The hyper-parameter configuration yielding the best performance in terms of

the selected prediction error is therefore chosen as the optimised configuration.

Table 11 shows the hyper-parameters’ searching intervals for each implemented

algorithm. Since MALSTM-FCN is a deep neural network-specific architecture,

the number of layers, neurons per layer and activation function of each layer are

already pre-specified (as explained in Section 3.4.3).

To ensure the robustness of the hyper-parameter optimisation procedure,

we use a model validation technique to assess how the performance achieved

by a given model would generalise to an independent dataset. This validation
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Table 11: Hyper-parameter searching intervals for different neural network architectures.

Algorithm Parameter Searching Interval

MLP

epochs 100, 250, 500, 1000

hidden layers 1, 2, 3, 4, 5

batch size 32, 64, 128, 256, 512

optimizer adam, Nadam, Adamax, RMSprop, SGD

activation relu, tanh, softmax

neurons 16, 32, 64, 128, 256

LSTM

epochs 100, 250, 500, 1000

hidden layers 1, 2, 3, 4, 5

batch size 32, 64, 128, 256, 512

optimizer adam, Nadam, Adamax, RMSprop, SGD

activation relu, tanh

neurons 16, 32, 64, 128, 256

MALSTM-FCN

epochs 100, 250, 500, 1000

hidden layers -

batch size 32, 64, 128, 256, 512

optimizer adam, Nadam, Adamax, RMSprop, SGD

activation -

neurons -

CNN

epochs 100, 250, 500, 1000

hidden layers 1, 2, 3, 4, 5

batch size 32, 64, 128, 256, 512

optimizer adam, Nadam, Adamax, RMSprop, SGD

activation relu, tanh, softmax

neurons 16, 32, 64, 128, 256
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technique involves the partition of a data sample into a training set, used to fit

the model, a validation set used to validate the fitted model, and a test set to

assess the final optimised generalisation power of the model. In our analysis, we

implemented the Boostrap Method (Efron & Tibshirani (1985)) with 37.8% of

out-of-bag samples and 10000 iterations to validate the final hyper-parameters.

3.5.1. Hyper-Parameters For The Restricted Model

We briefly discuss here the fine-tuning of the hyper-parameters of the four

deep learning algorithm mentioned in Section 3.5 considering the hourly fre-

quency resolution. Table 12 shows the best results obtained for the different

neural networks models, using the Grid Search technique in terms of the clas-

sification error metrics. The best identified parameters with the related results

obtained for the MALSTM-FNC and MLP models are reported in Table 12.

The neural network that achieved the best accuracy is MALSTM-FNC, with

an average accuracy of 53.7% and a standard deviation of 2.9%. Among the

implemented machine learning models, the one that achieved the best f1-score

is again MALSTM-FNC, with an average accuracy of 54% and a standard devi-

ation of 2.01% (the LSTM obtained the same f1-score but we observe a higher

variance).

3.5.2. Hyper-Parameters For The Unrestricted Model

Table 13 shows the best results obtained for the Neural Networks models,

via the Grid Search technique with respect to the classification error metrics.

The best identified parameters with the related results obtained for the CNN

and LSTM models are reported in Table 13.

4. Results

In this section, we report the main results of the analysis. In particular,

we discuss the outcome of the classification task for both the restricted and

unrestricted model. These results are evaluated in terms of the standard classi-

fication error metrics: accuracy, f1 score, precision and recall.
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Table 12: Restricted model - Neural networks optimal parameters.

Algorithm Parameter Values Accuracy (µ± σ) Prediction (µ± σ) Recall (µ± σ) f1-score (µ± σ)

MLP

epochs 250

0.537 ± 0.029 0.472 ± 0.143 0.511 ± 0.025 0.495 ± 0.027

hidden layers 2

batch size 256,

optimizer Nadam

activation relu

neurons 128

LSTM

epochs 250

0.535 ± 0.034 0.456 ± 0.200 0.485 ± 0.082 0.503 ± 0.285

hidden layers 2

batch size 256,

optimizer Adamx

activation tanh

neurons 256

MALSTM-FCN

epochs 250

0.542 ± 0.034 0.456 ± 0.200 0.485 ± 0.082 0.503 ± 0.201

hidden layers -

batch size 256,

optimizer Adamx

activation -

neurons -

CNN

epochs 250

0.435 ± 0.024 0.486 ± 0.210 0.485 ± 0.082 0.453 ± 0.265

hidden layers 2

batch size 128,

optimizer Nadam

activation tanh

neurons 128
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Table 13: Unrestricted model - Neural networks optimal parameters.

Algorithm Parameter Values Accuracy (µ± σ) Prediction (µ± σ) Recall (µ± σ) f1-score (µ± σ)

MLP

epochs 500

0.81 ± 0.025 0.984 ± 0.180 0.541 ± 0.060 0.698 ± 0.908

hidden layers 3

batch size 256

optimizer Nadam

activation relu

neurons 128

LSTM

epochs 1000

0.86 ± 0.027 0.918 ± 0.033 0.873 ± 0.228 0.895 ± 0.175

hidden layers 3

batch size 256

optimizer Adamx

activation tanh

neurons 256

MALSTM-FCN

epochs 500

0.73 ± 0.027 0.75 ± 0.241 0.611 ± 0.175 0.673 ± 0.060

hidden layers -

batch size 256

optimizer Adamx

activation -

neurons -

CNN

epochs 1000

0.87 ± 0.027 0.782 ± 0.175 0.913 ± 0.060 0.842 ± 0.228

hidden layers 2

batch size 256

optimizer Nadam

activation relu

neurons 256
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H1: Using a mix of trading and social media indicators leads to

better cryptocurrencies price classification.

The results obtained for the unrestricted model highlight that the addition

of trading and social media indicators to the model leads to an effective im-

provement in average accuracy. This result is consistent across all implemented

algorithms. We can, therefore, rule out that this result is merely due to statis-

tical fluctuations or that it may be an artefact of the particular classification

algorithm implemented. The best result obtained with the unrestricted model

is achieved using the CNN architecture, with a mean accuracy of 87% and a

standard deviation of 2.7%.

Table 14 shows the results obtained using the four deep learning algorithms

for the hourly frequency price movements classification task. This table presents

the results for both the restricted (upper part) and unrestricted (lower part)

model. First, it can be noted that for all four deep learning algorithms, the

unrestricted model outperforms the restricted model in terms of accuracy, pre-

cision, recall and f1-score. The accuracy ranges from 51% for the restricted

MLP to 84% for CNNs and LSTMs.

The fact that the result is consistent across all four classifiers, further con-

firms that this outcome is indeed due to the higher predictive power of the

unrestricted model. For Bitcoin, the highest performances are obtained using

the CNN architecture and for Ethereum by the LSTM.

We have also further explored the classification via the unrestricted model at

hourly frequency considering two sub-models: a sub-model including technical

and social indicators and the other including all the indicators (social, technical

and trading). In this way, it is possible to disentangle the impact of social

and trading indicators on the models’ performance. We used a statistical t-

test on the distributions of accuracy, prediction, recall and f1-score for the two

unrestricted sub-modules finding that adding social indicators does not add a

significant improvement to the unrestricted model. For this reason, in Table

14 we omitted the unrestricted model including social and technical indicators

only.
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Table 14: Accuracy, Precision, Recall, F1 score for Restricted and Unrestricted models for

each Deep Learning Algorithm at Hourly Frequency.

Model Algorithm Cryptocurrency Class Accuracy Precision Recall F1-score

Restricted

MLP

Bitcoin

down 0.57 0.28 0.38

up 0.54 0.80 0.64

average 0.55 0.56 0.55 0.51

Ethereum

down 0.52 0.77 0.62

up 0.55 0.29 0.38

average 0.53 0.54 0.53 0.50

MALSTM-FNC

Bitcoin

down 0.52 0.50 0.51

up 0.55 0.57 0.56

average 0.54 0.54 0.54 0.54

Ethereum

down 0.52 0.80 0.63

up 0.57 0.26 0.36

average 0.53 0.54 0.53 0.50

LSTM

Bitcoin

down 0.49 0.29 0.37

up 0.53 0.73 0.61

average 0.52 0.51 0.52 0.49

Ethereum

down 0.51 0.70 0.59

up 0.51 0.31 0.39

average 0.51 0.51 0.51 0.49

CNN

Bitcoin

down 0.52 0.65 0.57

up 0.56 0.42 0.48

average 0.53 0.54 0.53 0.53

Ethereum

down 0.50 0.75 0.60

up 0.56 0.31 0.40

average 0.52 0.53 0.52 0.49

Unrestricted

MLP

Bitcoin

down 0.87 0.57 0.69

up 0.70 0.92 0.79

average 0.75 0.78 0.75 0.74

Ethereum

down 0.80 0.79 0.80

up 0.80 0.80 0.80

average 0.80 0.80 0.80 0.80

MALSTM-FNC

Bitcoin

down 0.97 0.32 0.48

up 0.61 0.99 0.75

average 0.67 0.78 0.67 0.62

Ethereum

down 0.98 0.15 0.27

up 0.54 1.00 0.70

average 0.58 0.76 0.58 0.49

LSTM

Bitcoin

down 0.79 0.90 0.84

up 0.88 0.76 0.82

average 0.83 0.84 0.83 0.83

Ethereum

down 0.79 0.91 0.84

up 0.90 0.76 0.83

average 0.84 0.84 0.84 0.83

CNN

Bitcoin

down 0.82 0.87 0.84

up 0.87 0.82 0.85

average 0.84 0.84 0.84 0.84

Ethereum

down 0.72 0.97 0.83

up 0.95 0.61 0.74

average 0.79 0.83 0.79 0.78
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Table 15: Accuracy, Precision, Recall, F1 score for Restricted and Unrestricted models for

each Deep Learning Algorithm at Daily Frequency.

Model Features Algotithm Cryptocurrency Class Accuracy Precision Recall F1-score

down 0.00 0.00 0.00

up 0.59 0.96 0.73Bitcoin

average 0.58 0.36 0.58 0.44

down 0.96 1.00 0.98

up 1.00 0.96 0.98

MLP

Ethereum

average 0.98 0.98 0.98 0.98

down 0.51 0.47 0.49

up 0.56 0.59 0.58Bitcoin

average 0.54 0.54 0.54 0.54

down 1.00 0.99 0.99

up 0.99 1.00 0.99

MALSTM-FNC

Ethereum

average 0.99 0.99 0.99 0.99

down 0.00 0.00 0.00

up 0.57 1.00 0.73Bitcoin

average 0.57 0.33 0.57 0.41

down 0.98 0.98 0.98

up 0.99 0.99 0.99

LSTM

Ethereum

average 0.99 0.99 0.99 0.99

down 0.38 0.10 0.16

up 0.60 0.89 0.72Bitcoin

average 0.58 0.51 0.58 0.50

down 0.88 1.00 0.94

up 1.00 0.88 0.94

Restricted technical

CNN

Ethereum

average 0.94 0.94 0.94 0.94

down 0.59 0.21 0.31

up 0.61 0.90 0.72Bitcoin

average 0.60 0.60 0.60 0.55

down 0.79 0.95 0.87

up 0.95 0.79 0.87

MLP

Ethereum

average 0.87 0.88 0.87 0.87

down 0.41 0.41 0.41

up 0.51 0.51 0.51Bitcoin

average 0.46 0.46 0.46 0.46

down 0.72 0.70 0.71

up 0.77 0.78 0.77

MALSTM-FNC

Ethereum

average 0.75 0.75 0.75 0.75

down 0.44 0.10 0.17

up 0.47 0.86 0.60Bitcoin

average 0.46 0.45 0.46 0.38

down 0.88 0.83 0.85

up 0.87 0.91 0.89

LSTM

Ethereum

average 0.87 0.87 0.87 0.87

down 0.42 0.47 0.44

up 0.56 0.52 0.54Bitcoin

average 0.50 0.50 0.50 0.50

down 0.77 0.83 0.80

up 0.85 0.79 0.82

technical

+ social

CNN

Ethereum

average 0.81 0.81 0.81 0.81

down 0.59 0.20 0.30

up 0.47 0.84 0.60Bitcoin

average 0.49 0.54 0.49 0.43

down 0.84 0.91 0.87

up 0.91 0.84 0.87

MLP

Ethereum

average 0.87 0.88 0.87 0.87

down 0.41 0.41 0.41

up 0.62 0.62 0.62Bitcoin

average 0.54 0.54 0.54 0.54

down 0.79 0.88 0.83

up 0.91 0.83 0.87

MALSTM-FNC

Ethereum

average 0.85 0.86 0.85 0.85

down 0.44 0.31 0.36

up 0.43 0.58 0.49Bitcoin

average 0.44 0.44 0.44 0.43

down 0.92 0.87 0.89

up 0.86 0.91 0.88

LSTM

Ethereum

average 0.89 0.89 0.89 0.89

down 0.52 0.55 0.54

up 0.62 0.59 0.60Bitcoin

average 0.57 0.57 0.57 0.57

down 0.92 0.85 0.89

up 0.87 0.93 0.90

Unrestricted

technical

+ social +

trading

CNN

Ethereum

average 0.89 0.90 0.89 0.89
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Table 15 shows the results obtained by the four deep learning algorithms

price movements’ classification at the daily frequency. This table presents re-

sults for both the restricted (upper part) and unrestricted (lower part) model.

The unrestricted model is further divided in technical-social and technical-social-

trading sub-models to better highlight the contribution of social and trading

indicators to the model separately.

The MALSTM-CNF achieves the best classification performance for Ethereum

with 99% of accuracy using the restricted model composed of only technical in-

dicators. For Bitcoin, the best results are achieved by MLP with an f1-score

of 55% and accuracy of 60% with the unrestricted model with only social

media indicators and technical indicators. In this case, we consider f1-score

and accuracy for Bitcoin because of the presence of a slightly unbalanced class

distribution as described in Section 3.3.

For the daily frequency classification, we can see that, in general, technical

indicators alone performs best in the classification of next day price movement.

The more indicators we add to the model, the more the performance decreases.

Another general result is that the accuracy, precision, recall and f1-score for the

daily classification of Ethereum price movements are far better than those of

Bitcoin. The results for price classification are in line with other recent studies

(Akyildirim et al. (2020)) for both the hourly and daily classification, with a

significant improvement when considering the hourly unrestricted model. The

social media indicators turn out to be particularly relevant at the daily frequency

for the Bitcoin case. This result is in agreement with the recent findings on the

impact social media sentiment on cryptocurrency markets (Bartolucci et al.

(2020)): the effects of social media on markets show a long lag, which is not

captured nor relevant at an hourly frequency.

H2: Cryptocurrency markets’ price classification are improved us-

ing social media indicators during sub-periods of financial distress.

We split the price classification problem in three sub-periods of known crypto

markets distress for both Bitcoin and Ethereum. We constructed the differences

in f1-score distributions for the four algorithms between technical-trading indi-
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cators versus technical-social indicators.

For the H2 hypothesis we constructed the following test, using the Wilcoxon

Signed Rank Test for validation at 5% level of significance:

– H0 : the median difference of f1-scores is zero.

– H1 : the median difference of f1-scores is negative.

Table 16 shows the selected sub-periods of financial distress and the observed

p-values along with the test statistics. For the selected sub-periods we reject the

null hypothesis at 5% level of significance, i.e., we observe an improvement in

f1 score using technical and social indicators. Although the introduction social

media indicators did not induce a significant improvement when considering the

whole period of analysis, we can clearly see a significant improvement when we

restrict to known periods of financial distress in the crypto markets.

Table 16: Wilcoxon Signed Rank Test results for f1-score distribution differences of technical-

trading versus technical-social indicators.

Cryptocurrency From To W-Statistic p-value

Bitcoin

2018/06 2018-12 36.0 0.005

2019/04 2019/12 1.0 0.008

2020/11 2021/02 1.0 0.0058

Ethereum

2018/09 2018/12 9.0 0.0058

2019/04 2019/12 32.0 0.027

2017/11 2018/06 30.0 0.027

5. Discussion and conclusion

Several attempts have been made in the most recent literature to model and

predict the erratic behaviour of prices or other market indicators of the major

cryptocurrencies. Notwithstanding massive efforts devoted to this goal by many

research groups, the analysis of cryptocurrency markets still remains one of the
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most debated and elusive tasks. Several aspects make grappling with this issue

so complicated. For instance, due to its relatively young age, the cryptocurrency

market is very dynamic and fast-paced. The emergence of new cryptocurrencies

is a routine event, resulting in unexpected and frequent changes in the makeup

of the market itself. Moreover, the high price volatility of cryptocurrencies

and their ‘virtual’ nature are at the same time a blessing for investors and

traders, and a curse for any serious theoretical and empirical modelling, with

huge practical implications. The study of such a young market, whose price

behaviour is still largely unexplored, has fundamental repercussions not only in

the scientific arena but also for investors and main players and stakeholders in

the crypto-market landscape.

In this paper, we aimed to assess whether the addition of social and trad-

ing indicators to the “classic” technical variables would lead to practical im-

provements in the classification of price changes of cryptocurrencies considering

hourly and daily frequencies. This goal was achieved implementing and bench-

marking a wide array of deep learning techniques, such as Multi-Layer Per-

ceptron (MLP), Multivariate Attention Long Short Term Memory Fully Con-

volutional Network (MALSTM-FCN), Convolutional Neural Network (CNN)

and Long Short Term Memory (LTMS) neural networks. We considered in our

analysis the two main cryptocurrencies, Bitcoin and Ethereum, and we analysed

two models: a restricted model, considering only technical indicators, and an

unrestricted model that includes social and trading indicators.

In the restricted analysis, the model that achieved the best performance,

in terms of accuracy, precision, recall, and f1-score, is MALSTM-FCN with an

average f1-score of 54% for Bitcoin, and the CNN for Ethereum with hourly

frequency. For the unrestricted case, the best result is achieved by the LSTM

neural network for both Bitcoin and Ethereum with an average accuracy of 83%

and 84% respectively. The most important finding for the hourly frequency clas-

sification for the unrestricted model is that the addition of trading and social

indicators to the model leads to an effective improvement in the average accu-

racy, precision, recall, and f1-score. We have verified that this finding is not the
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result of a statistical fluctuation, since all the implemented models yielded the

same achievements. For the same reason, we can exclude that the results depend

on the particular implemented algorithm. Finally, for the daily classification,

the best classification performance – in line with recent research (Akyildirim

et al. (2020))– has been achieved by MALSTM-CNF for Ethereum with 99% of

accuracy when using the restricted model including only technical indicators.

The only caveat here is that we predict the direction of price movement and

not its magnitude. For Bitcoin, the best results are achieved by MLPs with

f1-score of 55% and accuracy of 60% with the unrestricted model including so-

cial media indicators and technical indicators: in this case, we consider f1-score

and accuracy for Bitcoin because of the slightly unbalanced class distribution.

For the daily frequency classification, we can see that in general technical indi-

cators alone perform better in the classification of next day price movements.

The more indicators we add to the model, the more the performance decreases.

Another general result is that the accuracy, precision, recall, and f1-score for

daily classification of Ethereum price movements are far better than those for

Bitcoin.

Our results show that with a specific design and fine-tuning of deep learn-

ing architecture, it is possible to achieve high performance in the classification

of price changes of cryptocurrencies. We have also shown the importance and

effect of social media indicators in the context of cryptocurrency price predic-

tion, providing further evidence of the strong links between markets and social

communities in the crypto ecosystem.
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