On Technological Change in Crop Yields

Tor Tolhurst & Alan P. Ker

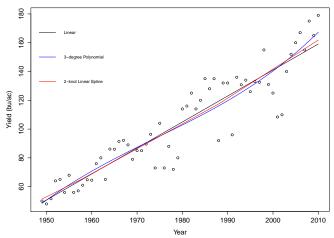
University of Guelph Department of Food, Agricultural and Resource Economics

Havlicek Memorial Seminar

Department of Agricultural, Environmental, and Development Economics The Ohio State University September 9, 2013

Introduction 00000000		Data 000	Conclusion ೧೦೦೦೦ೲೲೲೲೲ೦೦೦೦೦
Technologi	cal Change in Agrie	culture	

Invention, diffusion and adoption of new technology


- Crops and crop varieties
- Tools (irrigation, fertilizer)
- Methods (tillage, rotation)

Impacts of technological change

- Food sustainability
- Economic growth and development
- World hunger
- Energy (i.e. biofuels)
- Mitigation of potential climate change effects

Introduction 0●0000000	Data 000	Results Conclusion
	 	1.

Measuring Technological Change in Agriculture

Chatnam-Kent Corn

Introduction 00000000		Data 000		Conclusion
Measuring T	echnological Chang	ge in Ag	riculture	

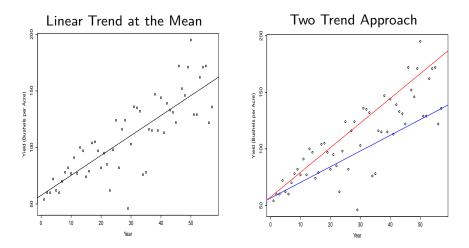
Technologies often target subsets of the yield distribution

Examples from Crop Science Lit.: Barry et al. 2000; Dunwell 2000; Ellis et al. 2000; Badu-Apraku, Menkir and Lum 2007; De Bruin and Pederson 2008; Gosala, Wania and Kang 2009; Edgerton et al. 2012.

Some examples:

- Triple-stacked seeds: increase resilience to pests and high winds (Edgerton et al. 2012)
- *Racehorse* seeds: increase top-end yield under near-optimal conditions (Lauer and Hicks 2005)

Not likely to result in a shift of the mean


Introduction 00000000		Data 000		Conclusion
Measuring T	echnological Chan	ge in Agr	iculture	

- Possible that rates of technological change are different across different subsets of the yield distribution
 - i.e. top subset could increase faster than bottom subset, or vice versa
- Prechnological change could also change the probability of different subsets occurring
 - i.e. ideally top subset would become more likely than than bottom subset

Neither would be captured by estimating a trend only at the mean (i.e. a shift of a location in the mean)

Estimated Technological Trend

On Technological Change in Crop Yields

Introduction 000000000		Data 000	Conclusion
Approaches Technological Trer	from the Literatur	e	

Some examples:

- Simple linear trend
- Piecewise linear splines (Skees & Reed 1986)
- Stochastic Kalman filter (Kaylen & Koroma 1991)
- ARIMA (Goodwin & Ker 1998)
- Polynomial trend (Just & Weninger 1999)
- Spatio-temporal approach (Ozaki & Silva 2009)

(But all these approaches estimate the trend at the mean)

Introduction 000000000		Data 000	Conclusion
	es from the Literatur	re	

Some examples:

- Normal (Botts & Boles 1958; Just & Weninger 1999)
- Lognormal (Day 1965)
- Gamma (Gallagher 1987)
- Beta (Nelson & Preckel 1989)
- Mixture of two normals (Ker 1996)
- Nonparametric kernel densities (Goodwin & Ker 1998)
- Semiparametric (Ker and Coble 2003)
- Logistic (Atwood, Shaik & Watts 2003)
- Weibull (Sherrick et al 2004)

(But all these approaches assume distribution constant over time)

Introduction 000000000		Data 000		Conclusion
Measuring T	echnological Chang	e in Agricı	ulture	

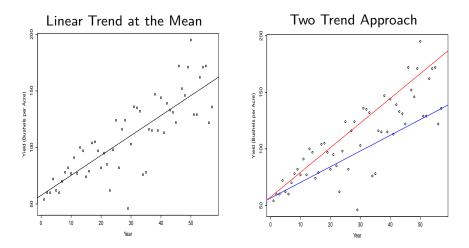
Our approach:

- Empirical model to simultaneously estimate "states" and their parameters (which includes rate of technological change)
- States are weakly-identified subsets of the yield distribution
- Then we can:
 - test for unique rates of technological change across states
 - **2** test to see if probability of states is constant over time

Introduction 00000000●	Data 000	Conclusion
Highlights		

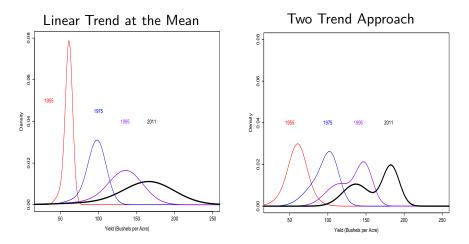
- Estimate rate of technological change in two states ("upper state" and "lower state") using a mixture model
- Test to see if the rates of technological change are different
- Find 78% of cases have statistically different rates of change
- Test to see if the probability of a state is constant but find inconclusive results (specification challenging)

Model Int			0000000000	
	Two-Trend Mixture Model	Data 000	Results	Conclusion


- Producer's output is determined by state of the world
- There are $J \in \mathbb{N}$ finite possible states
- Producer's output (i.e. yield) determined by a two-step process:
 - **(**) Realized state $j \in J$ is determined by a random i.i.d. draw
 - ② Realized yield $y_t \sim \phi(heta_j \,|\, j)$ in another random i.i.d. draw
- Parameters θ_j may change over time (technological change)

In different states there are potentially different trajectories of technological change

11 / 55



Estimated Technological Trend

Estimated Conditional Yield Densities

Tolhurst & Ker (University of Guelph)

On Technological Change in Crop Yields

Introduction	Two-Trend Mixture Model	Data	Results	Conclusion
000000000	000●00000	000	0000000000	೧೦೦೦೦೦ೲೲೲೲ೦೦೦೦೦
An Illustrat	tive Example: Ad	lams County	II Corn	

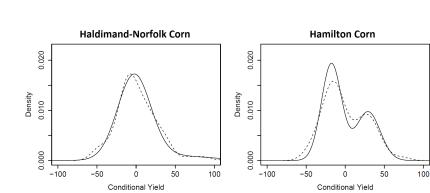
An Economic Application Estimated Crop Insurance Premium Rates

	Coverage Level		
Method	75%	90%	
Traditional Mixture	3.82% 0.70%	6.54% 3.46%	

- Traditional rates and two-trend rates are quite different
- Differences of this magnitude would have significant economic consequences for the actuarial soundness of a crop insurance program

	Two-Trend Mixture Model 0000€0000	Data 000	Conclusion
Two-Tren	d Mixture Model		

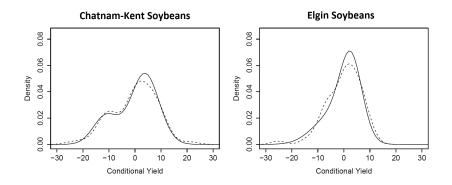
Model to be Estimated:


$$y_t \sim (1 - \lambda) N(\alpha_\ell + \beta_\ell t, \sigma_\ell^2) + \lambda N(\alpha_u + \beta_u t, \sigma_u^2)$$
(1)

- y_t observed crop yields y over time t
- λ probability of the *upper state*
- $lpha_\ell$ intercept for *lower state* technological trend
- β_ℓ slope for *lower state* technological trend
- σ_{ℓ}^2 lower state homoscedastic component variance
- α_u intercept for *upper state* technological trend
- β_u slope for *upper state* technological trend
- σ_{μ}^2 upper state homoscedastic component variance

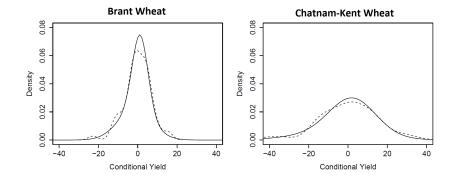
Two-Trend Mixture Model 00000●000	Data 000	Conclusion
ixture Model wo Components?		

- Mixture model of two normals is quite flexible and can accomodate:
 - O Symmetrical unimodal densities
 - Skewed unimodal densities
 - 8 Bimodal densities
- Typically the literature considers only (1) and (2)
- Some examples with real data



Full lines illustrate EM-estimated normal mixture model

Dashed lines illustrate nonparametric kernel density estimate for comparison



Full lines illustrate EM-estimated normal mixture model

Dashed lines illustrate nonparametric kernel density estimate for comparison

Full lines illustrate EM-estimated normal mixture model

Dashed lines illustrate nonparametric kernel density estimate for comparison

	Two-Trend Mixture Model 00000000	Data ●00	Results 0000000000	Conclusion
Data: Two	Caveats			

- Realized yields are a function of adopted technologies not necessarily set of possible technologies
 - Therefore our conclusions concern rate of *adopted* rather than *possible* technological change

- Ø Must use county-level data (farm-level data would be ideal)
 - Relevant for area-yield insurance programs (GRP, GRIP, GRIPH, proposed shallow loss programs)

<u> </u>	C 11 11		
		000	തതതത്താറററററ
	Two-Trend Mixture Model	Data	Conclusion

Crop-county Combinations

Region	Source	Period	Corn	Soybean	Wheat
Ontario	OMAF	1949 - 2010	32	6	25
Illinois Indiana Iowa	NASS "	1955 - 2011 "	97 79 99	97 82 98	- -
Kansas Nebraska Texas	NASS "	1968 - 2011 "	- - -	- - -	93 50 96
Total			307	283	264

• 854 total crop-county combinations

• All counties with incomplete yield histories excluded

Introduction	Two-Trend Mixture Model	Data	Results	Conclusion
000000000	000000000	00●	0000000000	೧೦೦೦೦ೲೲೲೲೲ೦೦೦೦೦
Importance	e of Selected State	-Crops		

U.S. Data: Share and Rank of National Production

	Co	rn	Soybean		Wheat	
State	Share	Rank	Share	Rank	Share	Rank
Illinois Indiana	15.6% 7.2% 17.3%	2 5 1	13.7% 7.8% 15.4%	2 5 1		
lowa Kansas Nebraska Texas	17.3%	I	15.4%	I	24.2% 4.3% 8.6%	1 6 2

In corresponding data set's most recent reporting year.

Ontario: three most important field crops (> \$2 billion in 2010)

	Data 000	Results ●000000000000000	Conclusion

Two Empirical Questions

Question

Is there a statistically significant difference between the rate of technological change in the upper and lower states?

Question

Is the probability of being in the upper state stable over time?

Maximum likelihood approach to incomplete data (Dempster, Laird & Rubin, 1977)

- We want to know the parameters of each state
- \bullet Assume there exists an identity variable vector $\ensuremath{\mathbb{Z}}$ that identifies the states
- If we knew \mathbb{Z} it would be easy to estimate θ_i
- However $\mathbb Z$ is latent and we only observe yields y_t
- Let $\gamma \in [0,1]$ be a **weakly-assigned** estimate of $\mathbb Z$ called the "expectations vector"
- We can use y_t to estimate γ and the respective parameters of each state in an iterative algorithm (the EM algorithm)

		Data 000	Results 00●00000000	Conclusion 0000@@@@000000
Expectatio	on-Maximization Al	gorithm		

Overview of the EM Algorithm

- Name from its two steps
 - E Expectation Step
 - M Maximization Step
- Convergence problems of direct likelihood maximization with mixture models and therefore must use EM algorithm
- EM Algorithm is heuristic
 - parameter estimates improve at each iteration
- Limitation: may converge on local maxima

		Data 000	Results 000●0000000	Conclusion
Expectation The EM Algorith	n-Maximization Alg	gorithm		

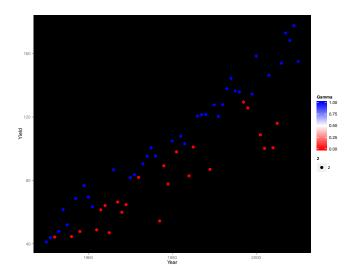
Expectation (E-)Step

- Estimate the expectations
- O Maximization (M-)Step
 - Use expectations to analytically update parameter estimates

26 / 55

With updated parameter estimates repeat E-step to calculate new expectations vector, and so on, until convergence criteria are fulfilled

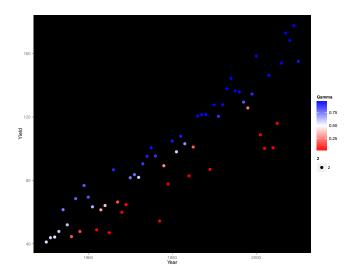
		Data 000	Results 0000●0000000	Conclusion
Expectatio	n-Maximization Al	gorithm		


- $\bullet ~\gamma$ is the vector of expectations calculated in the E-step
- λ is the scalar mean of γ
- Given current iteration's parameter estimates E-step calculates probability of being in the upper distribution
- Therefore "lower" and "upper" years are not chosen but relatively defined estimation parameters of the model (and hence the quotation marks)

27 / 55

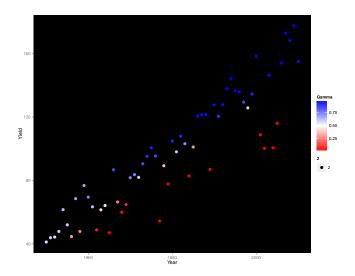
Two-Trend Mixture Moc

Data


Results Conclusion

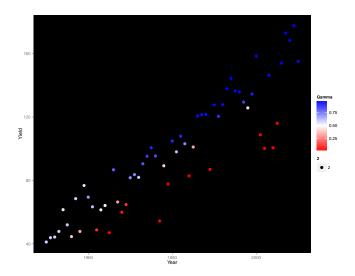
Two-Trend Mixture Mod

Data


Results Conclusion

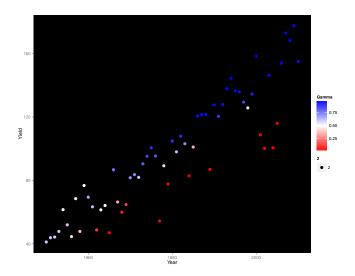
Two-Trend Mixture Mod

Data


Results Conclusion

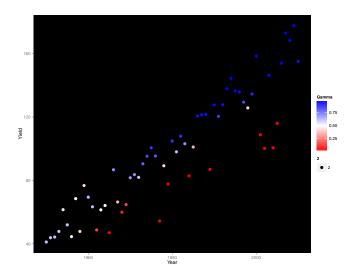
Two-Trend Mixture Mod

Data


Results Conclusion

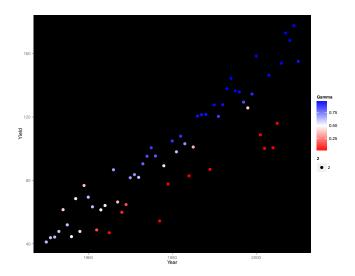
Two-Trend Mixture Mod

Data


Results Conclusion

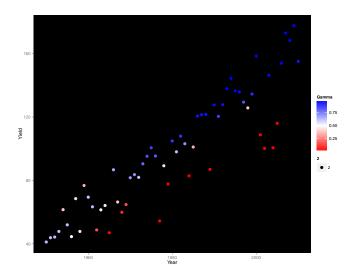
Two-Trend Mixture Mod

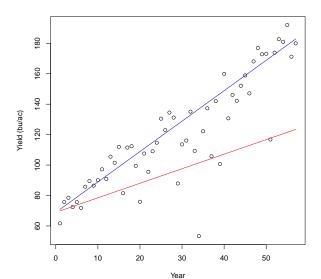
Data


Results Conclusion

Two-Trend Mixture Mod

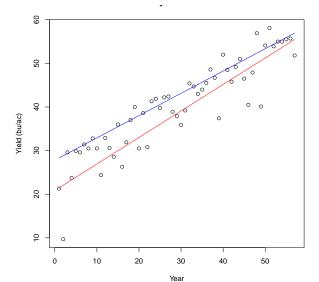
Data


Results Conclusion


Two-Trend Mixture Mod

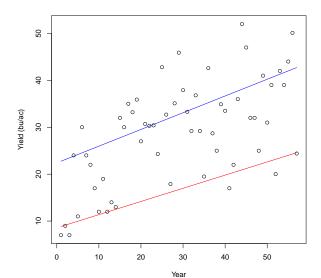
Data

Results Conclusion


		Data 000	Results 00000000000	Conclusion ⊃⊃⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙
Representa Clinton IA Corn	ative Estimate			

Tolhurst & Ker (University of Guelph)

On Technological Change in Crop Yields


	Data 000	Results 00000000000	Conclusion
Atypical E			

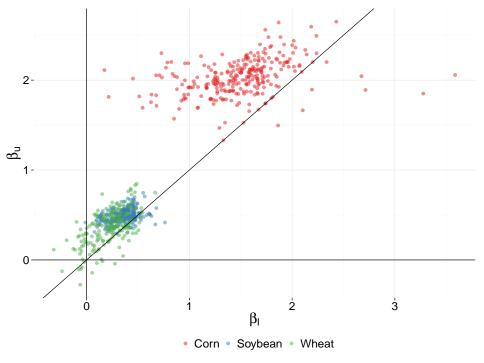
Tolhurst & Ker (University of Guelph)

On Technological Change in Crop Yields

	Data 000	Results 00000000000	Conclusion 000●@@@@@000000
Atypical E Hodgeman KS			

Tolhurst & Ker (University of Guelph)

On Technological Change in Crop Yields


	Two-Trend Mixture Model	Data	Results	Conclusion
	00000000	000	0000000000	000000000000000000000000000000000000
Different T	rends in Two State	s?		

Evidence

- 8.6% have faster rate of technological change in *lower state*
- 4.6% have equal rate of technological change in *upper state*
- 81.5% upper state trend is greater 110% of lower state trend
- 68.4% upper state trend is greater 125% of *lower state* trend
- 37.9% upper state trend is greater 150% of lower state trend

39 / 55

• 16.7% *upper state* trend is **double** the *lower state* trend

00000000 0000000 000	000000000000000000000000000000000000000
Introduction Two-Trend Mixture Model Data	Results Conclusi

Hypothesis Test One:

$$H_o^1 : \beta_\ell = \beta_u$$
$$H_a^1 : \beta_\ell \neq \beta_u$$

Using likelihood ratio test.

Rejection rates (5% significance level):

Corn	Soybean	Wheat	Total
84.4%	82.7%	65.5%	78.0%

Majority reject equivalent rate of change in two states

		Data 000	Results 000000000000000	Conclusion
Stable Proba	ability of "Belonging	to" Uppe	er State?	

Hypothesis Test Two:

Where δ is the estimated slope coefficient from a linear regression of $\gamma = h(t)$

$$H_o^2 : \delta = 0$$
$$H_a^2 : \delta \neq 0$$

Using a *t*-test with robust standard errors.

Rejection rates (5% significance level):

Corn	Soybean	Wheat	Total
10.8%	5.3%	6.0%	7.5%

Majority fail to reject stable expectations vector

Introdu 00000		Two-Trend Mixture Model 000000000		sults Conclusion
Cor	n Hypoth	nesis Rejection Ra	tes (5% Signifi	icance Level)
			Null Hy	pothesis
		Number	One	Two
		of Counties	$\hat{\beta}_{P} = \hat{\beta}_{R}$	$\delta = 0$
	Ontario	32	87.50%	0.00%
	Illinois	97	81.40%	16.50%
	Indiana	79	84.80%	15.20%
	Iowa	99	85.90%	5.10%
	Sub-total	307	84.36%	10.77%
	Total	854	77.99%	7.49%

Note: H_o^1 evaluated using a likelihood ratio test. H_o^2 evaluated using a *t*-test with robust standard errors where δ is the estimated slope coefficient of a linear regression $\hat{\gamma}_i = f(t)$.

Tolhurst & Ker (University of Guelph) On Technological Char

		Data 000	Results 00000000000	Conclusion
Soybean H	Hypothesis Rejection	n Rates (5	% Sign. Lev	vel)

		Null Hypothesis		
	Number	One	Two	
	of Counties	$\hat{\beta}_P = \hat{\beta}_R$	$\delta = 0$	
Ontario	6	100.00%	0.00%	
Illinois	97	83.50%	4.10%	
Indiana	82	80.50%	4.90%	
lowa	98	82.70%	7.10%	
Sub-total	283	82.70%	5.28%	
Total	854	77.99%	7.49%	

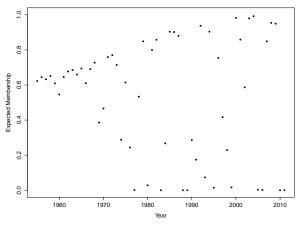
Note: H_o^1 evaluated using a likelihood ratio test. H_o^2 evaluated using a *t*-test with robust standard errors where δ is the estimated slope coefficient of a linear regression $\hat{\gamma}_i = f(t)$.

Tolhurst & Ker (University of Guelph) On

On Technological Change in Crop Yields

XA/I	and and Determined		(C ·	1 1)
			000000000000	000000000000000000000000000000000000000
		Data	Results	

Wheat Hypothesis Rejection Rates (5% Significance Level)


		Null Hypothesis		
	Number	One $\hat{\beta}_P = \hat{\beta}_R$	Two	
	of Counties	$p_P = p_R$	$\delta = 0$	
Ontario	25	80.00%	20.00%	
Kansas	93	79.60%	1.10%	
Nebraska	50	56.00%	8.00%	
Texas	96	53.10%	6.20%	
Sub-total	264	65.53%	6.05%	
Total	854	77.99%	7.49%	

Note: H_o^1 evaluated using a likelihood ratio test. H_o^2 evaluated using a *t*-test with robust standard errors where δ is the estimated slope coefficient of a linear regression $\hat{\gamma}_i = f(t)$.

Tolhurst & Ker (University of Guelph) On Technological Change in Crop Yields

Stable Dre	hability of "Reland	ing to" Il	nnor Stato?	
			0000000000	000000000000000000000000000000000000000
		Data	Results	Conclusion

Stable Probability of "Belonging to" Upper State?

- Possible determinants of δ ? (technology, weather, etc.)
- Might be (a) no effect or (b) no *net* effect

An Application: Crop Insurance Rates

Out-of-Sample Simulated Game

- Common technique in crop insurance literature for comparing two rate-setting techniques (Ker & McGowan 2000; Ker & Coble 2003; Racine & Ker 2006; Harri *et al.* 2011.)
- Out-of-sample: mimics real life
- If new method has no advantage, will not perform better

 $\begin{array}{c} \mbox{Number of "winning" states:} \\ \mbox{Corn Soybean Wheat Total} \\ \mbox{4/6 (1) } \ \mbox{4/6 (0) } \ \ \mbox{5/6 (4) } \ \ \mbox{13/18 (5)} \end{array}$

Statistically significant wins at the 5% level in brackets

			Data 000	Results 00000000	Conclusion
•		 ~			

An Application: Crop Insurance Rates

Some Minor Caveats

- Comparison at lower-end of the density tail only
- Not quite an apples-to-apples comparison
 - Two component trend method does not exhibit heteroscedasticity
- Two trend method seems to performs better
- Rate improvement in 13 of 18 crop-state combinations
- Statistically significant improvement in 5 of 18 states
- No statistically significant wins in opposite direction
- Higher bar to exceed than earlier in-sample likelihood-ratio test power of the test is weaker

la Dating Campa De	aulta Cam		
		000000000000000000000000000000000000000	000000000000000000000000000000000000000
	Data	Results	Conclusion

	Out-of-Sampl	le Rating	Game Resu	ts: Corn
--	--------------	-----------	-----------	----------

	Coverage	Retained	Psued	o Loss Ratio		
Set	Level	by Private	Private	Government	<i>p</i> -value	% Payo
IL	75%	85.9%	0.092	<mark>0.026</mark>	0.787	3.0%
	90%	87.8%	0.287	0.465	0.012	18.6%
IN	75%	81.1%	0.164	0.134	0.604	3.7%
	90%	82.4%	<mark>0.395</mark>	0.434	0.373	19.8%
IA	75%	83.9%	0.357	0.409	0.361	6.6%
	90%	86.8%	0.406	0.444	0.291	12.2%
Note:	Winner and	<i>p</i> < 0.05 or <i>p</i>	< 0.95			

0	Delta Como	Dec lie (°	
			00000000000	00000@@@@000000
		Data	Results	

Out-of-Sample Rating Game Results: Soybean

	Coverage	Retained	Psuedo	o Loss Ratio		
Set	Level	by Private	Private	Government	<i>p</i> -value	% Payo
IL	75%	77.7%	<mark>0.366</mark>	0.374	0.431	3.0%
	90%	67.4%	0.540	0.474	0.695	12.9%
IN	75%	86.9%	0.257	0.258	0.479	3.4%
	90%	78.4%	0.611	0.746	0.201	19.6%
IA	75%	80.6%	0.809	<mark>0.467</mark>	0.757	6.1%
	90%	78.7%	<mark>0.751</mark>	0.911	0.076	16.1%
Note:	Winner and	p < 0.05 or p	< 0.95			

	Data 000	Results Conclusion

Out-of-Sample Rating Game Results: Wheat

	Coverage	Retained	Psuedo	o Loss Ratio		
Set	Level	by Private	Private	Government	<i>p</i> -value	% Payo
KS	75%	52.6%	1.297	1.921	0.023	18.5%
	90%	41.9%	1.268	1.399	0.217	33.0%
NE	75%	40.8%	<mark>0.309</mark>	0.747	0.070	5.3%
	90%	45.3%	0.652	<mark>0.611</mark>	0.587	19.8%
ТΧ	75%	73.5%	0.957	2.096	0.001	19.5%
	90%	69.1%	1.112	1.593	0.001	43.8%
Note:	Winner and	<i>p</i> < 0.05 or <i>p</i>	< 0.95			

	Data 000	Conclusion
Summary		

- Crop yields are important measuring stick of agricultural productivity
- Crop science literature suggests yields have distinct subsets of the yield distribution—are the rates of technological change equal across these subsets?
- We propose an empirical model that explicitly allows for unique trends in two states

Conclusio		
		00000@0@0000000
	Data	Conclusion

- Conclusions
 - Trajectory of technological change
 - different trajectories in different states
 - $\bullet\,$ statistically significant difference in 78% of cases
 - $\bullet~>85\%$ slower rate of technological change in *lower state*
 - **2** Inconclusive results w.r.t. stable probability of the *upper state*
 - Mixture model opens the door for a lot of interesting questions...
 - Results consistent with plant science research expenditures (corn versus beans, racehorse versus suboptimal)
 - Results consistent with stylized facts regarding heteroscedasticity
 - O Results suggest little effect of climate change.
 - Results inconsistent with what you would find looking at moments from single technology estimation
 - Results are fairly robust within a crop

- Can we isolate the underlying cause(s) of different trends in the two states?
- How different are the results at the farm-level?
 - Trial farm project in initial stages

- What are the determinants of yields "belonging to" the *upper state*?
 - What climatic/weather conditions can we isolate as important?

	Data 000	Conclusion
Thank You		

Questions?

Funding for this research was generously provided by the Ontario Ministry of Food and Agriculture (OMAF) and the Institute for the Advanced Study of Food and Agricultural Policy

Maximum likelihood approach to incomplete data (Dempster, Laird & Rubin, 1977)

- We want to know the parameters of each state
- \bullet Assume there exists an identity variable vector $\ensuremath{\mathbb{Z}}$ that identifies the states

Maximum likelihood approach to incomplete data (Dempster, Laird & Rubin, 1977)

- We want to know the parameters of each state
- \bullet Assume there exists an identity variable vector $\ensuremath{\mathbb{Z}}$ that identifies the states
- If we knew \mathbb{Z} it would be easy to estimate θ_i
- However $\mathbb Z$ is latent and we only observe yields y_t

Maximum likelihood approach to incomplete data (Dempster, Laird & Rubin, 1977)

- We want to know the parameters of each state
- \bullet Assume there exists an identity variable vector $\ensuremath{\mathbb{Z}}$ that identifies the states
- If we knew \mathbb{Z} it would be easy to estimate θ_i
- However $\mathbb Z$ is latent and we only observe yields y_t
- Let $\gamma \in [0,1]$ be a weakly-assigned estimate of $\mathbb Z$ called the "expectations vector"
- We can use y_t to estimate γ and the respective parameters of each state in an iterative algorithm (the EM algorithm)

Some examples:

- Simple linear trend
- Piecewise linear splines (Skees & Reed 1986)
- Stochastic Kalman filter (Kaylen & Koroma 1991)
- ARIMA (Goodwin & Ker 1998)
- Polynomial trend (Just & Weninger 1999)
- Spatio-temporal approach (Ozaki & Silva 2009)

(But all these approaches estimate the trend at the mean)

Some examples:

- Normal (Botts & Boles 1958; Just & Weninger 1999)
- Lognormal (Day 1965)
- Gamma (Gallagher 1987)
- Beta (Nelson & Preckel 1989)
- Mixture of two normals (Ker 1996)
- Nonparametric kernel densities (Goodwin & Ker 1998)
- Semiparametric (Ker and Coble 2003)
- Logistic (Atwood, Shaik & Watts 2003)
- Weibull (Sherrick et al 2004)

(But all these approaches assume distribution constant over time)

Null	Hypothe	sis
------	---------	-----

Number of Counties		One $\hat{\beta}_P = \hat{\beta}_R$	Two $\delta = 0$
Corn	307	84.36%	10.77%
Soybean	283	82.70%	5.28%
Wheat	264	65.53%	6.05%
Total	854	77.99%	7.49%

Note: H_o^1 evaluated using a likelihood ratio test. H_o^2 evaluated using a *t*-test with robust standard errors where δ is the estimated slope coefficient of a linear regression $\hat{\gamma}_i = f(t)$.

Corn Hypothesis Rejection Rates (5% Significance Level)

		Null Hyp	othesis
	Number	One	Two
	of Counties	$\hat{\beta}_P = \hat{\beta}_R$	$\delta = 0$
Ontario	32	87.50%	0.00%
Illinois	97	81.40%	16.50%
Indiana	79	84.80%	15.20%
lowa	99	85.90%	5.10%
Sub-total	307	84.36%	10.77%
Total	854	77.99%	7.49%

Note: H_o^1 evaluated using a likelihood ratio test. H_o^2 evaluated using a *t*-test with robust standard errors where δ is the estimated slope coefficient of a linear regression $\hat{\gamma}_i = f(t)$.

Tolhurst & Ker (University of Guelph) On Technological C

On Technological Change in Crop Yields

Soybean Hypothesis Rejection Rates (5% Sign. Level)

		Null Hypothesis		
	Number	One	Two	
	of Counties	$\hat{\beta}_{P} = \hat{\beta}_{R}$	$\delta = 0$	
Ontario	6	100.00%	0.00%	
Illinois	97	83.50%	4.10%	
Indiana	82	80.50%	4.90%	
lowa	98	82.70%	7.10%	
Sub-total	283	82.70%	5.28%	
Total	854	77.99%	7.49%	

Note: H_o^1 evaluated using a likelihood ratio test. H_o^2 evaluated using a *t*-test with robust standard errors where δ is the estimated slope coefficient of a linear regression $\hat{\gamma}_i = f(t)$.

Tolhurst & Ker (University of Guelph) O

On Technological Change in Crop Yields

		Null Hyp	othesis
	Number	One	Two
	of Counties	$\hat{\beta}_P = \hat{\beta}_R$	$\delta = 0$
Ontario	25	80.00%	20.00%
Kansas	93	79.60%	1.10%
Nebraska	50	56.00%	8.00%
Texas	96	53.10%	6.20%
Sub-total	264	65.53%	6.05%
Total	854	77.99%	7.49%

Note: H_o^1 evaluated using a likelihood ratio test. H_o^2 evaluated using a *t*-test with robust standard errors where δ is the estimated slope coefficient of a linear regression $\hat{\gamma}_i = f(t)$.

Tolhurst & Ker (University of Guelph) On Technological Change in Crop Yields

Out-of-Sample Simulated Game

- Common technique in crop insurance literature for comparing two rate-setting techniques (Ker & McGowan 2000; Ker & Coble 2003; Racine & Ker 2006; Harri *et al.* 2011.)
- Out-of-sample: mimics real life
- If new method has no advantage, will not perform better

Number of "winning" states: Corn Soybean Wheat Total 4/6(1) 4/6(0) 5/6(4) 13/18(5)

Statistically significant wins at the 5% level in brackets

An Application: Crop Insurance Rates

Some Minor Caveats

- Comparison at lower-end of the density tail
- Does not reflect ability of the model to fit all the data
- And not quite an apples-to-apples comparison
 - Two component trend method more constrained in its heteroscedasticity treatment (minor disadvantage)

An Application: Crop Insurance Rates

Some Minor Caveats

- Comparison at lower-end of the density tail
- Does not reflect ability of the model to fit all the data
- And not quite an apples-to-apples comparison
 - Two component trend method more constrained in its heteroscedasticity treatment (minor disadvantage)
- Two trend method performs better (despite minor disadvantage)
- Rate improvement in 13 of 18 crop-state combinations
- Statistically significant improvement in 5 of 18 states
- No statistically significant wins in opposite direction
- Higher bar to exceed than earlier in-sample likelihood-ratio test

	Coverage	Retained	Psuedo	o Loss Ratio		
Set	Level	by Private	Private	Government	<i>p</i> -value	% Payo
IL	75% 90%	85.9% 87.8%	0.092 0.287	<mark>0.026</mark> 0.465	0.787 0.012	3.0% 18.6%
IN	75% 90%	81.1% 82.4%	0.164 <mark>0.395</mark>	<mark>0.134</mark> 0.434	0.604 0.373	3.7% 19.8%
IA	75% 90%	83.9% 86.8%	0.357 0.406	0.409 0.444	0.361 0.291	6.6% 12.2%
Note:	Winner and	p < 0.05 or p	< 0.95			

65 / 55

Note: Winner and p < 0.03 or p < 0.95

	Coverage	Retained	Psuedo	o Loss Ratio		
Set	Level	by Private	Private	Government	<i>p</i> -value	% Payo
IL	75%	77.7%	<mark>0.366</mark>	0.374	0.431	3.0%
	90%	67.4%	0.540	0.474	0.695	12.9%
IN	75%	86.9%	0.257	0.258	0.479	3.4%
	90%	78.4%	0.611	0.746	0.201	19.6%
IA	75%	80.6%	0.809	<mark>0.467</mark>	0.757	6.1%
	90%	78.7%	<mark>0.751</mark>	0.911	0.076	16.1%
Note:	Winner and	p < 0.05 or p	< 0.95			

	Coverage	Retained	Psuedo	o Loss Ratio		
Set	Level	by Private	Private	Government	<i>p</i> -value	% Payo
KS	75%	52.6%	1.297	1.921	0.023	18.5%
	90%	41.9%	1.268	1.399	0.217	33.0%
NE	75%	40.8%	<mark>0.309</mark>	0.747	0.070	5.3%
	90%	45.3%	0.652	<mark>0.611</mark>	0.587	19.8%
ТΧ	75%	73.5%	0.957	2.096	0.001	19.5%
	90%	69.1%	1.112	1.593	0.001	43.8%
Note [.]	Winner and	p < 0.05 or p	< 0.95			

67 / 55

Note: Winner and p < 0.03 or p < 0.90