
On Temporal-Spatial Realism in the Virtual Reality

Environment

Jiandong Liang, Chris Shaw and Mark Green

Department of Computing Science,

University of Alberta,

Edmonton, Alberta, Canada, T6G 2H1

fleung,cdshaw,markg@cs.ualberta.ca

Abstract

The Polhemus Isotrak is often used as an orientation
and position tracking device in virtual reality environ-
ments. When it is used to dynamically determine the
user's viewpoint and line of sight (e.g. in the case of a
head mounted display) the noise and delay in its mea-
surement data causes temporal-spatial distortion, per-
ceived by the user as jittering of images and lag be-
tween head movement and visual feedback. To tackle
this problem, we �rst examined the major cause of the
distortion, and found that the lag felt by the user is
mainly due to the delay in orientation data, and the
jittering of images is caused mostly by the noise in po-
sition data. Based on these observations, a predictive
Kalman �lter was designed to compensate for the delay
in orientation data, and an anisotropic low pass �lter
was devised to reduce the noise in position data. The
e�ectiveness and limitations of both approaches were
then studied, and the results shown to be satisfactory.

1 Introduction

In recent years, the virtual reality concept has been
explored by many researchers [Krueger83] [Fisher86]
[Brooks86] [Wang90] [Green90]. To provide real-time
visualization of a 3-D space, a Polhemus Isotrak tracker
is often used to determine the user's viewpoint and line
of sight, and based on the measured data, stereoscopic
images are generated and displayed to the user through
the head mounted display. In this paradigm, two fac-
tors adversely a�ect the user's perception of the vir-
tual world, namely, the jittering of images and the lag
between head movement and visual feedback [Rebo89]
[Wang90].

0

The jittering of images is caused by the noise in the
measured data. The lag is due partly to the compu-
tation and rendering time needed to generate the im-
ages, and partly to the delay in the measured data. To
generate new tracking data, the Isotrak generates and
senses electromagnetic �elds, calculates the sensor loca-
tion, and sends the new location data to the host via a
serial communications line. The measurement delay is
the time taken by this three-step process.
Improving the hardware alone cannot solve the prob-

lem. First, the Isotrak is subject to electromagnetic
interference, which is common in computer laborato-
ries. Second, after the viewing position and orienta-
tion is available to the virtual reality software, a certain
amount of computation is needed to manage interaction
and generate images. Third, in an environment with
multiple trackers (e.g. one for a head mounted display
and one for each DataGlove), the devices must be time
sliced to avoid interference amongst themselves, thus re-
ducing the sampling rate for each tracker and increasing
the delay (see Section 2 below).
In the following section, we discuss the measurement

of the noise and delay. Section 3 focuses on the compen-
sation for delays in orientation data by applying predic-
tive Kalman �ltering. Section 4 discusses how we can
apply an anisotropic low pass �lter to position data in
order to reduce the perceived noise. Section 5 concludes
the study and points out directions for future research.

2 Measurement of Noise and Delay

The noise in the Isotrak data can be measured by
plotting deviations about the mean for a large set of
samples. Figure 1 shows the deviations in both position
and orientation for a source and sensor each �xed to the
same stable platform at a relative distance of 20 inches.
The peak-to-peak maximum noise level in the position
data is about one order of magnitude higher than the
noise in orientation data.

1

T

∆ x/x

Figure 1. Noise during a 1−minute period.

orientation (peak−peak ≅ 1.0 e−3)

position (peak−peak ≅ 1.0 e−2)

0

2

4

−2

−4

x 10
−3

2.1 Delay Measurement

Delay can be measured by using a reference tracking
device to measure the lag between the actual sensor po-
sition and the position reported by the Isotrak. The
sensor should be mounted on an object that moves in
a known manner. The motion must be tracked by a
reference tracking device that has the following proper-
ties: (i) the delay of the reference device must be known
exactly, or should be small enough to be ignored com-
pared with the delay of the Isotrak, (ii) the device must
not cause electromagnetic interference with the Isotrak,
and (iii) it must not bring any metallic object into close
proximitywith the Isotrak sensor or source. These three
conditions can be met by using a video camera to track
the periodic motion of a pendulum.
In the pendulum tracking experiment, the Isotrak

sensor was attached to a non-metallic swinging pen-
dulum (see Figure 2). The source was mounted on a
stable reference pendulum, and the video camera was
arranged so that the swinging and reference pendulums
coincided when the swinging pendulum was at its neu-
tral position. The computer displayed a time stamp on
the screen each time a new set of Isotrak data was re-
ceived, and stored the data with the time stamp in a log
�le. The video camera recorded the swing of the pen-
dulum and the time stamp as it was displayed on the
screen. Later, the video tape was played back frame by
frame, and when the pendulum was aligned with the
reference pendulum (i.e., in its neutral position), the
corresponding time stamp was noted. In this way, we
found the displacement of the pendulum as known by
the computer when it was actually at the neutral posi-
tion. This displacement can be easily converted to lag
time, since the amplitude and period of the pendulum
can both be extracted from the log �le.
In order to measure only the lag induced by the Iso-

trak and the driver software, the time logger program
was heavily optimized. No disk I/O was performed by
the logger while the experiment was in progress, and lo-
gins by other users were banned. Most importantly, no
screen clears were done before drawing a new number,

and no frame bu�er swaps were performed. Thus, any
added lag was due solely to collecting the latest time
stamp, blanking out the old time stamp, and drawing
the new one on the screen.

Source

Sensor
Isotrak box

1234

Figure 2. The pendulum experiment.

2.2 System Con�guration

In our hardware con�guration, we had three Polhe-
mus 3Space Isotraks running in the same local space,
synchronized at 20 Hz in a round-robin scheme. Our
usual software con�guration drives each Isotrak with its
own server [Green90], which accepts client connection
requests, and sends the latest Isotrak data in response
to a client request. The client-server connection is across
an Ethernet if the client is on a di�erent machine than
the server. The server keeps up-to-date by continuously
polling the Isotrak for new data. The Isotrak used in
this experiment was driven by an Iris 3130, and two
client machines were used, the 3130, and an Iris 4D/20.
The time-of-day clock on the 3130 runs at 60 Hz, and

the clock on the 4D/20 runs at 100 Hz. In order to �nd
how much time is spent by time stamp collection and
the data logging code of the logger program, the data
collection call in the update loop was removed, and the
loop was timed for 5000 iterations. This resulted in a
time value of approximately 4 ms for both the 3130 and
for the 4D/20. Thus, the \application code" used in this
experiment took almost no time in comparison with the
data collection process.
An alternate means of accessing the Isotrak is for the

client software to bypass the server and do direct I/O
with the appropriate serial port. The disadvantage is
that only one process on the local machine has access
to the Isotrak in this manner.

2.3 Experimental Results

The experiment was conducted for di�erent con�gu-
rations of the software and hardware, in order to deter-
mine the e�ect of each factor.
The hardware settings were: (i) sampling rate of the

Isotrak box (20 Hz, or 60 Hz), and (ii) whether to com-
municate data across the network.
The software options were: (i) communication mode

between the Isotrak and host machine (host machine
polling Isotrak, or Isotrak continuously sending data to
host machine), and (ii) access of data by client program
(direct, or via client-server connection).
For each system con�guration shown in Tables 1 and

2, three experiments were conducted, where each exper-
iment recorded the swinging pendulum for 20 or more
cycles. The delay number reported was the total lag, in-
cluding measurement time, communications time, and
drawing time.
It is obvious that the most important factor is the

sample frequency of the Isotrak. Lag can be reduced
by anywhere between 20 and 55 milliseconds by using
a higher sampling frequency. The largest improvement
was when the test program did direct access polling, and
the smallest is when the server was obtaining continuous
data.

Table 1. Delay in polling mode (ms).
Isotrak direct server
frequency access remote local
60 Hz 85 130 110
20 Hz 140 180 160

Table 2. Delay in continuous mode (ms).
Isotrak server
frequency remote local
60 Hz 105 90
20 Hz 130 110

The second most important factor is the communica-
tions mode between host and Isotrak. Sending contin-
uous data from the Isotrak improved lags by 20 to 50
ms. In fact, the second fastest result is where continu-
ous mode was used to serve a local client, at a lag of 90
ms (Table 2).
The third factor to consider is direct I/O versus client-

server communication. For polling mode, the improve-
ment gained by direct I/O is 20 to 25 ms, but this bene�t
can only be realized on the host machine. Also, the lag
of 85 ms was strictly best-case, since the \application"
was almost nonexistent.
In order to achieve this lag in practical situations, the

poll request must be carefully placed in the application
code to produce the most up-to-date data just before
the program needs it. In the logger program, properly
placing the poll request is easy due to the shortness
(about 4 ms) of the update loop.

In a real application, poll request placement is more
di�cult, since if the poll request occurs too late, then
the data will not arrive in time, forcing the application
to wait, or worse, forcing the use of old data. If the poll
request is too early, then needless extra time is spent,
and the application runs the risk of using data that is
old by one Isotrak sample time. The programmer may
attempt to reduce lag by placing multiple poll requests
throughout the application code, but this means that
the application must be precisely timed to avoid useless
poll requests.
In continuous mode, the problems of using direct ac-

cess are compounded by the real time problems of man-
aging an input queue that is always �lling up. This
queue management contributes directly to the applica-
tion's update latency, and it must be done correctly to
avoid getting old data. The upshot is that direct I/O
has signi�cant costs in terms of software engineering,
and it is not clear that the 20-25 ms improvement can
ever be achieved in practice.
Lastly, the e�ect of the network setting is quite small,

adding between 15 and 20 ms for cross-network commu-
nications. However, these experiments were conducted
when our network was assumed to be lightly loaded.
In situations of higher network load, greater delay may
occur.

3 Orientation Data

The delay in orientation data accounts for most of the
lag felt by the user, primarily because the user changes
viewing direction more frequently than position due to
the limitation on Isotrak source-sensor distance (about
60 inches). Also, the change of viewing direction often
causes more noticeable changes in the scene. In other
words, if the delay in orientation data can be partially
compensated for, then the user will feel less lag, even
though the delay in position data remains the same.
However, compensating for this delay is far from

trivial. Experiments showed the inadequacy of simple
extrapolation schemes. There are two major reasons
for this. First, the user's head movement can not be
predicted, nor can it be depicted by a deterministic
model. Second, the orientation data is noisy (though
it is `cleaner' than the position data).
Fortunately, the Kalman �ltering technique

[Brown83] is quite suitable for this situation, since it
accommodates both the stochastic nature of a process
and the error (noise) in the measured data.
Due to space limitations, the details of Kalman �l-

tering cannot be presented in this paper. For an intro-
duction to the theory and practice behind this �lter-
ing technique, see any of the standard signal processing
texts, such as Brown [Brown83].
To apply this technique, two problems must be solved:

the linearization of representation, and a proper choice
of random process model.

3.1 Linearization

There are many ways to represent orientation in 3-
D space, e.g. Euler angles, rotation matrix, and unit
quaternion. For computer graphics, the unit quaternion
is often the best choice, due to its simplicity, continuity
at all attitudes, and immunity from gimbal lock [Shoe-
make85]. Unfortunately, a unit quaternion resides on
the unit sphere in 4-D space, and does not lend itself to
a linear representation as required by the Kalman �lter.
To linearize the quaternion of the form q =

(cos �
2 ; x sin

�
2 ; y sin

�
2 ; z sin

�
2), the magnitude of rotation

� can be extracted, leaving the unit vector n = (x; y; z)
as the axis of rotation. Then, employing the assump-
tion that the change of orientation in one sampling pe-
riod is small, as used by the tracking mechanism it-
self [Raab79], we temporarily relax the unit length con-
straint, independently �lter x; y, and z, and normalize
the �ltered x; y; z back to a unit vector n0, which is then
coupled with the �ltered � to form the resulting quater-
nion.

3.2 Head Movement Model

User head motion is usually characterized by bursts of
changes in viewing direction followed by relatively long
periods of static viewing direction. Thus, the under-
lying assumptions are as follows: 1) The user's change
of viewing direction is infrequent. 2) The angular speed
and the angular acceleration are nonzero only during the
infrequent changes in orientation. The angular speed
and acceleration correspond to the frequency of the ori-
entation \signal". In this situation, we model the user's
head orientation as a random variable which changes
at random times, and has limited rate of change dur-
ing these times. Based on this analysis, we chose an
integrated Guass-Markov process1 to model the head
movement.
The state equation has the following form:

x00 = ��x0 +
p
2�2�w(t); (1)

where x0; x00 are the �rst and second derivative of the
variable we are �ltering, w(t) is a unit white noise se-
quence, � is a time factor, and �2 is a variance factor.
This model re
ects our underlying assumptions that 1)
x0 tends to be zero (due to the negative coe�cient ��),
i.e. x tends to remain static, 2) x00 is driven by a ran-
dom noise, which accounts for the acceleration during

1A random processX(t) is called a Gauss-Markov process if it
has an exponential autocorrelation, and all the density functions
describing the process are normal in form and invariant under a
translation of time. The autocorrelation and spectral functions
are of the form:

RX(�) = �2e��j� j ; and SX(j!) =
2�2�

!2 + �2
:

bursts of rotational movements, and 3) there is a rela-
tively stable time constant �, which re
ects the limit of
speed and acceleration of head movements.
By adjusting the time factor � and variance factor

�2, we can control the smoothness of the prediction and
lessen the overshoot. Greater values of � increase the
rate at which velocity is predicted to return to zero, at
the expense of overshoot.
A second state equation relates the measured data y

with its actual value x:

y = x+
v(t); (2)

where v(t) is the noise in the measured data. Due to
the lack of knowledge about the nature of the noise, we
assume v(t) to be a unit white noise sequence uncorre-
lated with the w(t) sequence.
 is the magnitude of the
noise. In our environment,
 � 0:001, as was shown in
Figure 1.
We attribute the problem of excessive overshoot

[Wang90] and oscillation [Rebo89] encountered by other
researchers to an inappropriate choice of model.
For example, Rebo and Amburn [Rebo89] use a sim-

ple model which assumes that the acceleration is a ran-
dom number between �1:0 and 1:0. This implies that
the velocity is a random walk, and has a variance lin-
early increasing with time, which does not re
ect the
nature of head movement (users do not tend to move
wilder as time progresses).

3.3 Prediction Length

Given the assumption that the noise in the measured
data is both white and at a low amplitude, and that
the Nyquist limit of head motion is about 10 Hz, this
means that a 20 Hz sample rate is an adequate sampling
frequency for prediction. In our system, the Isotraks are
synchronized at a 20 Hz sampling frequency, yielding a
50 ms sampling step size. This step size will be a basis
for the discussion of the following quantitative results.

3.4 Quantitative Results

A Kalman �lter performs best when it predicts one
step ahead of its collected measurement data. From sec-
tion 2 we see that in continuous mode at 20 Hz, we get
a lag of 110 ms, so we would like to predict at least two
steps ahead. However, the reliability of the prediction
decreases as the length of prediction increases. Figure
3 shows the e�ect of a 3-step prediction. The dashed
line shows the measured data, which lags 150 ms be-
hind the actual movement (shown as dotted line). The
solid line shows the output produced by a 3-step pre-
dictive Kalman �lter. In this case, the Kalman �lter
compensates for the lag fairly well, as the solid line al-
most coincides with the dotted line.

actual

measured

T

X

Figure 3. Predicting 3 steps ahead.

sec.1 2 3 4 5

filter output

By contrast, �gure 4 shows the e�ect of a 10-step
prediction. In this case, the measured data is 500 ms
behind the actual data, and the Kalman �lter is set up
to compensate for this 500 ms lag. As can be seen, the
Kalman �lter fails to compensate for all the lag, and
the output exhibits extra zigzags (noise). Overall, the
longer the lag that Kalman �lter tries to compensate
for, the less accurate and more noisy the output is.

Figure 4. Predicting 10 steps ahead.

X

T
sec.1 2 3 4 5

actual

measured

filter output

Figure 5 shows the relationship between the amount
of delay the Kalman �lter compensates for and the
length of prediction. As the length of prediction in-
creases, the absolute amount of compensation �rst in-
creases to a maximum of about 185 ms, then slowly
decreases. That is, lag compensation cannot exceed
185 ms, no matter how many steps of Kalman predic-
tion performed. In fact, predicting more than 10 steps
worsens the lag compensation performance.

step
0

T (ms)

100

ideal compensation

Kalman prediction

0

Figure 5. Lag compensation vs. length of prediction .

10 20

185

However, this �gure only re
ects the temporal aspect
of the output. It does not re
ect the spatial �delity (ac-
curacy) of the output. Although we do not have a good
yardstick for measuring the overall \�delity" or \accu-
racy" of prediction, we think the spectrum of the output
signal partially captures this idea. Figure 6 shows the
spectra of the orientation data for di�erent prediction
lengths. It demonstrates the fact that extra noise is
added into the data for increased prediction lengths.

20 log (h/H)

ω

0

−40

π/2 π

original
1−step
3−step
10−step
20−step

0

Figure 6. Spectra of orientation data.

From our experience, the maximum tolerable level
of the high frequency component of orientation data is
about �40 dB. This limits the length of prediction to
be within 3 steps, which is nominally 150 ms for a sam-
pling rate of 20 Hz. In other words, the requirement
for spatial �delity puts this constraint on the amount of
temporal compensation that can be made. A trade-o�
must be made between noise level and prediction length,
and 3 step prediction seems to be the optimal choice.

3.5 Algorithm and Parameters

From equations 1 and 2, the �lter algorithm for a sin-
gle component is:
Kalman(�, �2,
, �, �)
f

x =

�
z0
0

�
;

H =

�
1 0
0 1

�

�
;

P = I;
R =
2HTH;

q11 =
2�2

�
[� � 2

�
(1� e���) + 1

2� (1� e�2��)];

q12 = 2�2[1
�
(1� e���) � 1

2� (1� e�2��)];
q21 = q12;
q22 = �2(1 � e�2��);

Q =

�
q11 q12
q21 q22

�
;

� =

�
1 1

�
(1� e���)

0 e���

�
;

	 =

�
1 1

�
(1� e���);

0 e���

�
;

for i = 1 to n f
K = PHT (HPHT +R)�1;

z =

�
zi � zi�1

zi

�
;

x = x+K(z �Hx);
P = �(I �KH)P�T + Q;�

yi
y0i

�
= 	x;

output(yi);
x = �x;

g
g
where z0; z1; : : : ; zn are the measured data, � is the
length of a step, � is the length of prediction, and yi
gives the prediction based on z0; : : : ; zi. In practice, the
variables H, R, Q, �, and 	 are constant, since the
Kalman parameters �, �2,
, �, and � are each �xed at
some optimal value. The variables P and x maintain
the state of the component being �ltered. There are
four components in our application, so four sets of state
variables are used. At each new sample, the body of the
for loop is executed once for each component, using the
state variable built up by �ltering the previous samples.
To �nd the optimal Kalman parameters, suppose

qi = (q
(0)
i ; q

(1)
i ; q

(2)
i ; q

(3)
i), i = 0; : : : ; n is the sequence

of measured quaternions, and pi = (p
(0)
i ; p

(1)
i ; p

(2)
i ; p

(3)
i),

i = 1; : : : ; n is the sequence we obtain by predictive
Kalman �lter of k steps, i.e. � = k�. We de�ne the
di�erence between the predictions and actual values to
be

Dk(�; �
2) =

n�kX
j=1

3X
l=0

jp
(l)
j � q

(l)
j+kj: (3)

Using a hill climbing algorithm, we found a set of pa-
rameters �; �2 which minimized Dk for k = 1; 2; : : ::
After the hill climbing algorithm was applied a poste-

riori to a large set of test runs, the results were av-
eraged to yield the best values for a priori (practi-
cal) use. For example, the best values for � = 50 ms,
and � = 150 ms are � � 8:7 and �2 � 0:2. To complete
the parameterization, the measured noise magnitude

 � 0:001 was used, as shown in Figure 1.

4 Position Data

The jittering of images perceived by the user is pri-
marily due to the noise in position data. This is because
the noise level in position data is signi�cantly higher
than that in the orientation data, as was shown in Fig-
ure 1.
Experiments showed that a low pass �lter of order 8

or higher is needed for reducing the noise to a tolera-
ble level, which is about �60 dB from our experience.
Figure 7 shows the noise reduction produced by moving
k-average low pass �lters (k = 1; 4; 8; 12).

ω

−40

π/2 π0

−60

Noise (dB)
original

k = 12
k = 8
k = 4

Figure 7. Noise reduction rate for
low pass filters of various orders.

−80

The additional lag produced by this type of low-pass
�lter is too large for our application. For example, when
the sampling rate is 20 Hz and the �lter order is 8, the
additional delay is 400 ms.

4.1 Observations

Again, we can make use of the characteristics of user
movement and human perception under this speci�c sit-
uation.
First, we observed that the eye's sensitivity to the

jittering of the scene is not uniform along all direc-
tions. Instead, the jittering perpendicular to the line
of sight is much more noticeable than that along the
line of sight, since for equal amounts of displacement,
the former causes a more signi�cant change of the per-
spective scene. This fact leads to a di�erent tolerance
of jittering along di�erent directions.

Second, we noticed that most of the lateral (transla-
tional) part of the user's head movements are along the
line of sight. This can be partially attributed to the evo-
lution of the human body, since we usually move along
the direction we are looking. Thus, the translational
lag along the line of sight is of more signi�cance to the
user's perception. In other words, lag along the line of
sight and noise perpendicular to the line of sight must
be minimized.

4.2 Anisotropic Low Pass Filter

Based on these two observations, we devised an
anisotropic �ltering scheme. The idea is to use �lters
of di�erent order along di�erent directions, i.e.

� use a high order (about 8 { 10) �lter for transla-
tional change perpendicular to the line of sight, in
order to achieve a high rate of noise reduction, and

� use a low order (about 2 { 3) �lter along the line
of sight to keep a low overall additional delay.

To implement the anisotropic �lter, suppose M is the
rotation matrix from world coordinates to viewing coor-
dinates. We �rst rotate the sequence of eye positions by
M so they are in viewing coordinates2, and then �lter
each direction by their corresponding low pass �lters.
The result is then rotated back to world coordinates by
M�1.
Overall, the additional delay is about 50 to 75 ms,

and the noise is reduced to below �60 dB. The user
experiences longer delay when he moves sideways, and
shorter delay when he moves along the line of sight.
While it is unusual, the visual e�ect is satisfactory.

5 Conclusions

The problem of improving the temporal-spatial real-
ism in virtual reality environments was studied. We
�rst measured the noise and delay in the Isotrak data,
and identi�ed the major causes of the user's percep-
tion of jittering and lag in the images. While the lag
sources can be identi�ed, they cannot be eliminated,
so a predictive Kalman �lter was designed to compen-
sate for the lag in the orientation data. An anisotropic
�ltering scheme was devised to reduce the noise in po-
sition data while maintaining a low additional delay.
Although the discussion is based on the Polhemus Iso-
trak as the tracking device, it is also valid for other head
position/orientation tracking device in general.
However, many problems remain.
First, we need a yardstick for measuring the overall

\�delity" or \quality" of prediction.
Second, the �ltering methods used here are not suit-

able for hand motion, since it does not possess many

2More accurately, it's the viewing coordinates without the
translation component.

of the characteristics we observed for head movement.
There are fewer restrictions on hand movement, and the
speed/acceleration of the motions is larger. We have
observed that hand-eye coordination becomes very dif-
�cult when the display is slower than 4 updates per
second. Even for a medium update rate of 10 updates
per second, the lag between hand movement and vi-
sual feedback still makes certain tasks di�cult, such as
catching a moving object in the environment.
Third, it is not clear how to �lter in a nonlinear do-

main such as 3-D orientation. Our linearization step is
intended to sidestep this problem, but it would proba-
bly be better to use a �lter scheme that works in the
4-D spherical domain.

References

[Brooks86] F. P. Brooks, Jr., \Walkthrough | A
dynamic graphics system for simulating virtual build-
ings," Proc. 1986 Workshop on Interactive 3D Graph-

ics, Chapel Hill, NC, October 1986, pp. 9{21.
[Brown83] R. G. Brown, Introduction to Random Sig-

nal Analysis and Kalman Filtering, John Wiley & Sons,
Inc. New York, 1983.
[Fisher86] S. S. Fisher, M. McGreevy, J. Humphries,

and W. Robinett, \Virtual environment display sys-
tem,"Proc. 1986Workshop on Interactive 3D Graphics,

Chapel Hill, NC, October 1986, pp. 77{87.
[Green90] M. Green and C. Shaw \ The DataPaper:

Living in the Virtual World," Graphics Interface 1990,
Halifax, Nova Scotia, May 1990, pp. 123{130.
[Krueger83] M. W. Krueger, Arti�cial Reality, Addi-

son Wesley, Reading, MA, 1983.
[Raab79] F. H. Raab, E. B. Blood, T. O. Steiner, and

H. R. Jones, \Magnetic position and orientation track-
ing system," IEEE Trans. on Aerospace and Electronic

Systems, Vol. AES-15, No. 5 (Sept. 1979), pp. 709{
718.
[Rebo89] R. K. Rebo and P. Amburn, \A helmet-

mounted virtual environment display system," Proc.

SPIE, Vol. 1116, pp. 80{84, 1989.
[Shoemake85] K. Shoemake, \Animating rotation

with quaternion curves," ACM Computer Graphics,

Vol. 19 (1985), pp. 245{254.
[Wang90] C. P. Wang, L. Koved, and S. Dukach, \De-

sign for interactive performance in a virtual laboratory,"
Proc. 1990 Symp. on Interactive 3D Graphics, Utah,
March 1990, pp. 39{40.

