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Abstract. The case when a partial differential equation (PDE) can be
considered as an Euler-Lagrange (E-L) equation of an energy functional,
consisting of a data term and a smoothness term is investigated. We
show the necessary conditions for a PDE to be the E-L equation for a
corresponding functional. This energy functional is applied to a color
image denoising problem and it is shown that the method compares
favorably to current state-of-the-art color image denoising techniques.

1 Introduction

In their seminal work Perona and Malik proposed a non-linear diffusion PDE to
filter an image while retaining lines and structure [1]. This triggered researchers
to investigate well-posedness of the underlying PDE, but also to build on the
drawbacks of the Perona and Malik formulation, namely that noise is preserved
along lines and edges in the image structure. A tensor-based image diffusion
formulation, which gained wide acceptance, was proposed by Weickert [2] where
the outer product of the gradient was used to describe the local orientation of
the image structure. As the main novelty of this work we investigate the case
when a given image diffusion PDE can be considered as a corresponding E-L
equation to a functional of the form

J(u) =
1

p
||u − u0||p + R(u) , (1)

where R(u) is a tensor-based smoothness term, and the Lp-norm, 1 < p < ∞, is
a data term. Furthermore, the derived E-L equation of (1) is applied to a color
image denoising problem.
Related work State-of-the-art gray-value image denoising achieves impressive
results. However, the extention from gray-valued image processing to color im-
ages still pose major problems due to the unknown mechanisms which govern
the process describing color perception. One of the most common color spaces
used to represent images is the RGB color space, despite it being known that
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the colors (red, green and blue) are correlated due to physical properties such
as the design of color sensitive filters in camera equipment. In [3] anisotropic
diffusion in the RGB color space is proposed, where the color components are
used to derive a weighted diffusion tensor. One drawback of this formulation
is that color artifacts can appear on the boundary of regions with sharp color
changes. Some alternative color spaces investigated for image diffusion include
manifolds [4], the CMY, HSV, Lab and Luv color space [6], luminance and chor-
maticity [7], and a maximal decorrelation approach [8]. Due to the simplicity of
its application we follow the color model used in [8] which was developed in [9].

With regards to variational approaches of image diffusion processes, it has
been shown that non-linear diffusion and wavelet shrinkage are both related
to variational approaches [10]. Also, anisotropic diffusion has been described
using robust statistics of natural images [11]. However, in [11] they construct an
update scheme for the iterative anisotropic process which contains the addition
of a an extra convolution of the diffusion tensor. In the paper [12] a tensor-based
functional is given, but the tensor it describes is static, thus the update-scheme
becomes linear. Generalizations of the variational formulation exists, i.e. in [13]
the smoothness term is considered as an Lp-norm where p is an one-dimensional
function.

The main contributions of this paper are: (1) we establish a new tensor-based
variational formulation for image diffusion in Theorem 1; (2) in Theorem 2 we
derive necessary conditions such that it is possible to find an energy functional
given a tensor-based PDE; (3) the derived E-L equation of the established image
diffusion functional is applied to a color image denoising problem. It is shown
that the resulting denoising compares favorably to state-of-the-art techniques
such as anisotropic diffusion [3], tracebased diffusion [14, 8] and BM3D [15].

In section 2 we briefly review both scalar and tensor-based image diffusion
filtering as a motivation for the established functional. Furthermore, we state
the necessary conditions for a PDE to be considered as an E-L equation to the
same functional. The derived functional is applied to a color image denoising
problem in section 3. The paper is concluded with some final remarks.

2 Image diffusion and variational formulation

Convolving an image with a Gaussian filter reduces the noise variance, but does
not take the underlying image structure such as edges and lines into account.
To avoid blurring of lines and edges Perona and Malik [1] introduced an “edge-
stopping” function in the solution of the heat equation

∂tu = div(g(|∇u|2)∇u) , (2)

with diffusivity function g, and ∇u =
(
ux, uy

)t
where ux and uy denote the

derivative of u with respect to x and y. If g = I the heat equation is obtained.
The Perona-Malik formulation produces visually pleasing denoising results and
preserves the image structure for a large number of iterations. However the
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formulation only depends on the absolute image gradient and hence noise is pre-
served at edges and lines. Weickert [2] replaced the diffusivity function with a
tensor. This allows the filter to reduce noise along edges and lines and simulta-
neously preserve image structure. The tensor-based image diffusion formulation
is

∂tu = div(D∇u) , (3)

where D = D(Ts) is a positive-semidefinite diffusion tensor constructed by scal-
ing the eigenvalues of the structure tensor Ts,

Ts = w ∗ (∇u∇ut) , (4)

where ∗ denotes the convolution operation and w is typically a Gaussian weight
function [16].

2.1 Scalar diffusion

The functional

J(u) =

∫∫

Ω

1

2
(u − u0)

2dxdy + λ

∫∫

Ω

Φ(|∇u|) dxdy , (5)

where Φ is a strict convex function and λ is a scalar, describes a nonlinear
minimization problem for image denoising. By using the Gâteaux derivative and
the divergence theorem, the solution u which minimizes J(u) is the solution to
the E-L equation

∂J(u)

∂u
= 0 in Ω, ∇u · n = 0 on ∂Ω , (6)

where Ω is a grid described by the image size in pixels and n is the normal
vector on the boundary ∂Ω. The functional J(u) satisfies the initial-boundary
value problem for the PDE






∂tu − div

(
Φ′(|∇u|)
|∇u| ∇u

)
= 0 in Ω, t > 0

∂nu = 0 on ∂Ω, t > 0

u(x, y, 0) = u0(x, y) in Ω

(7)

It is commonly accepted that there is no known way of determining a functional
such that Φ is any arbitrary function. However, it is possible to derive a corre-
sponding functional by equating the non-specified diffusivity function g with the
known E-L equation (7)

g(|∇u|) =
Φ′(|∇u|)
|∇u| , (8)

hence, with s = |∇u| one gets Φ(s) =
∫

sg(s) ds = sG(s) − G1(s) + C where
G′

1 = G, G′ = g and the constant C is chosen so that Φ is non-negative. For

example if g(s) = sp−2 then Φ(s) = |∇u|p

p
and similarly if g(s) = e−s then

Φ = −se−s − e−s + C where C ≥ 1. Naturally, these results carry over to other
types of diffusivity functions such as the popular negative exponential diffusivity
function and the Perona-Malik function g(s) = 1

1+s
.
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2.2 Deriving a new tensor-based functional

To achieve better denoising results close to lines and edges than the scalar dif-
fusion formulation enables, it is common to define the tensor T which describes
local orientation of the image structure. Hence the PDE in (7) reads






∂tu − div(T∇u) = 0 in Ω, t > 0

∂nu = 0 on ∂Ω, t > 0

u(x, y, 0) = u0(x, y) in Ω

(9)

where T (∇u) depends on the image gradient. Note that the common formulation
of the tensor T is to let it depend on (x, y) ∈ Ω. The ansatz to derive the new
tensor-based image diffusion functional is based on equating (7) and (9) such
that

div(T∇u) = div

(
Φ′(|∇u|)
|∇u| ∇u

)
. (10)

The equality in (10) holds if

T∇u =
Φ′(|∇u|)
|∇u| ∇u + C , (11)

for some vector-field C where div(C) = 0. In this work we consider C = 0. Here
extending the equation with the scalar product from the left side, and integrating
the result with respect to |∇u| we find Φ as

Φ(|∇u|) =

∫ ∇utT∇u

|∇u| d|∇u| . (12)

Using this result, we motivate the subsequent theorem by performing the
integration with a tensor defined by the outer product of the gradient, then
Φ(|∇u|) =

∫
|∇u|3 d|∇u| = 1

4 |∇u|4+c where c is a constant. Setting the constant
to null we obtain the tensordriven functional

J(u) =

∫∫

Ω

1

2
(u − u0)

2 dxdy + λ

∫∫

Ω

1

4
∇utT∇u dxdy . (13)

Thus, a generalization of this energy functional is now stated in the following
theorem.

Theorem 1. Let u0 be an observed image in a domain Ω ⊂ R
2, and let T (ux, uy)

describe the local orientation of the underlying structure of u in Ω. Denote by
J(u) the functional

J(u) =
1

p
||u − u0||p + λ

∫∫

Ω

∇utT (∇u)∇u dxdy (14)

where u ∈ C2 and 1 < p < ∞. Then the E-L equation of J(u) is
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{
(u − u0)

p−1 − λ div (S∇u) = 0 in Ω

∂nu = 0 on ∂Ω
(15)

where

S =

(
∇utTux

∇utTuy

)
+ T + T t , (16)

and Tux
, Tuy

are the derivatives of T (ux, uy) with respect to ux and uy.

Proof. To find the E-L equation of J(u) we define the smoothness term

R(u) =

∫∫

Ω

∇utT (∇u)∇u dxdy . (17)

Let v ∈ C∞(Ω) be an arbitrary function such that ∂nv|∂Ω = 0. By the definition
of the Gâteaux derivative it follows that

R(u + εv) −R(u)

ε
= 〈∇v, T (∇u + ε∇v)∇u〉 + 〈∇u, T (∇u + ε∇v)∇v〉

+
〈∇u, (T (∇u + ε∇v) − T (∇u))∇u〉

ε
+ ε 〈∇v, T (∇u + ε∇v)∇v〉 , (18)

where 〈a, b〉 =
∫∫

Ω
atb dxdy and a, b ∈ R

2 → R
n denote the scalar product on a

function space. Note that, since T (∇u) = T (ux, uy),

lim
ε→0

T (∇u + ε∇v) − T (∇u)

ε
=⇒ Tux

vx + Tuy
vy, as ε → 0 . (19)

Then the variation of the smoothness term with respect to v reads

〈δR, v〉 =
〈
∇u, (Tux

vx + Tuy
vy)∇u

〉
+ 〈∇v, T∇u〉 + 〈∇u, T∇v〉 . (20)

Using the scalar product and the adjoint operator we obtain

〈δR, v〉 =
〈
∇v, (Tux

ux + Tuy
uy)∇u

〉
+ 〈∇v, T∇u〉 + 〈∇v, T t∇u〉 . (21)

By Green’s formula we obtain

〈∇v, T∇u〉 = −
∫∫

Ω

v div(T∇u) dxdy , (22)

〈∇v, T t∇u〉 = −
∫∫

Ω

v div(T t∇u) dxdy , (23)

〈
∇v,

(
∇utTux

∇u
∇utTuy

∇u

)〉
= −

∫∫

Ω

v div

((
∇utTux

∇utTuy

)
∇u

)
dxdy . (24)

Hence, using (22) - (24) now gives

〈δR, v〉 = −
∫∫

Ω

v div(S∇u) dxdy . (25)
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Thus

S =

(
∇utTux

∇utTuy

)
+ T + T t , (26)

in the E-L equation (15). Now by taking the derivative of the data term in J(u)
with respect to u the proof is completed. ⊓⊔

3 Necessary conditions for the existence of a variational

formulation

In this section we formulate necessary conditions for the existence of an energy
functional of the type in (14) given a tensor-based diffusion PDE (15).

Theorem 2. For a given tensor S = S(ux, uy) with entities s(i) satisfying the
necessary condition (NC)

s(3) + uxs(3)
ux

− uxs(1)
uy

= s(2) + uys(2)
uy

− uys(4)
ux

, (27)

there exists a symmetric tensor T (ux, uy) such that the tensor-based diffusion
PDE

{
(u − u0)

p−1 − div (S∇u) = 0 in Ω

∂nu = 0 on ∂Ω
(28)

where 1 < p < ∞ is the E-L equation to the functional J(u) in (14). Moreover,
the entities in

T (ux, uy) =

(
f(ux, uy) g(ux, uy)
g(ux, uy) h(ux, uy)

)
, (29)

are given below. First we consider g(ux, uy) = g̃(α, β), where

g̃(α, β) =
1

α2

∫
αR̃(α, β) dα +

1

α2
θ̃(β) , (30)

and α = ux, β = ux/uy and R̃(α, β) = R(ux, uy) is the right-hand side of NC
(27). Second, f and h are obtained from

f(ux, uy) =
1

u2
x

∫ ux

0

(ξs(1)(ξ, uy) − ξuygξ(ξ, uy)) dξ +
1

u2
x

ρ(uy) , (31)

h(ux, uy) =
1

u2
y

∫ uy

0

(ηs(4)(ux, η) − uxηgη(ux, η)) dη +
1

u2
y

ζ(ux) , (32)

where ρ, ζ and θ̃ are arbitrary functions.

Proof. Let the system of equations,





uxfux
+ uygux

+ 2f = s(1)

uxgux
+ uyhux

+ 2g = s(2)

uxfuy
+ uyguy

+ 2g = s(3)

uxguy
+ uyhuy

+ 2h = s(4)

(33)

(34)

(35)

(36)
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represent the expansion of (26) with given notation. The function f in (31) is
obtained from (33) by solving

∂

∂ux

(u2
xf) = uxs(1) − uxuygux

. (37)

To construct g, differentiate f in (31) with respect to uy. This give that

fuy
(ux, uy) =

1

u2
x

∫ ux

0

(ξs(1)
y (ξ, uy)− ξgξ(ξ, uy)− ξuygξuy

(ξ, uy)) dξ +
1

u2
x

ρ′(uy) .

(38)
Insert now fuy

into (35) and differentiate with respect to ux to obtain

uxgux
+ uyguy

+ 2g = s(3) + uxs(3)
ux

− uxs(1)
uy

. (39)

In the same way, solve for h in (34) to obtain (32). Using now (34) in (36) yield

uxgux
+ uyguy

+ 2g = s(2) + uys(2)
uy

− uys(4)
ux

. (40)

Comparing (39) and (40), we deduce the necessary condition (NC) to establish
the existence of g, f and h. From NC we are now able to compute g satisfying

uxgux
+ uyguy

+ 2g = R(ux, uy) , (41)

where R is the right-hand side (or the left-hand side) in NC. Changing variables
α = ux and β = ux/uy, in (41) we get

g̃α(uxαux
+ uyαuy

) + g̃β(uxβux
+ uyβuy

) + 2g̃ = R̃(α, β) , (42)

where R̃(α, β) = R(ux, uy) and g̃(α, β) = g(ux, uy). Since αux
= 1, αuy

= 0 and

βux
= 1/uy βuy

= −ux/u2
y, equation (42) can then be writen as αg̃α + 2g̃ = R̃.

We solve for g in the following way

∂

∂α
(α2g̃) = αR̃(α, β) ⇔ g̃ =

1

α2

∫
αR̃(α, β) dα +

1

α2
θ̃(β) , (43)

where θ̃ is an arbitrary function. Put θ̃(α, β) = θ(ux, uy) to obtain g in (30).
Now f and h can be obtained from (31) and (32). ⊓⊔

Corollary 1. For the tensor S = ∇u∇ut there exists a tensor

T =
1

4

(
u2

x uxuy

uxuy u2
y

)
, (44)

such that the following PDE
{

(u − u0)
p−1 − div (S∇u) = 0 in Ω

∂nu = 0 on ∂Ω
(45)

is the E-L equation of the functional J(u) in (14).
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Proof. It is straighforward to verify that the entities of the tensor S satisfies the
NC condition where the right-hand side (27)

R(ux, uy) = 2uxuy . (46)

For simplicity we choose θ, ρ, and ζ to be zero in (30) - (32). With change of
variables α = ux and β = ux/uy, (46) become R̃(α, β) = 2α2/β so that (30) is

g̃(α, β) = α2

2β
, then

g(ux, uy) =
1

2
uxuy . (47)

Using (31) and (32), f and h are

f(ux, uy) =
1

u2
x

∫ ux

0

(ξ3 − ξu2
y) dξ =

u2
x

4
−

u2
y

4
, (48)

h(ux, uy) =
1

u2
y

∫ uy

0

(η3 − ηu2
x) dη =

u2
y

4
− u2

x

4
. (49)

Let T̂ be the tensor defined by (47) - (49), then put this tensor in (14) and
obtain

∇utT̂∇u = ∇ut

(
u2

x − u2
y 2uxuy

2uxuy u2
y − u2

x

)
∇u = ∇ut

(
u2

x uxuy

uxuy u2
y

)
∇u = ∇utT∇u ,

(50)
neglecting the factor 1/4. This concludes the proof and (44) follow from (50).

3.1 Weighted tensor-based variational formulation

In this section we want to find a weighted tensor

T =

(
w ∗

(
f(ux, uy) g(ux, uy)
g(ux, uy) h(ux, uy)

))
(x, y) , (51)

where ∗ is the convolution operator and w is a smooth kernel, such that the
functional

J(u) =
1

p
||u − u0||p + λ

∫∫

Ω

∇utT (∇u)∇u dxdy , (52)

has
{

(u − u0)
p−1 − λ div (S∇u) = 0 in Ω

∂nu = 0 on ∂Ω
(53)

as the corresponding E-L equation where S = w ∗ (∇u∇ut).

Proposition 1. For the tensor S = w ∗ (∇u∇ut), the PDE (53) is the E-L
equation of the functional (52) with T as in (51) if the necessary condition

ux(x, y)(w ∗ gux
)(x, y) = uy(x, y)(w ∗ guy

)(x, y) , (54)
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is satisfied. Moreover, the entities of T can be obtained by solving the following
system of differential equations






ux(w ∗ fux
) + uy(w ∗ gux

) + 2(w ∗ f) = w ∗ u2
x

ux(w ∗ gux
) + 2(w ∗ g) = w ∗ (uxuy)

uy(w ∗ guy
) + 2(w ∗ g) = w ∗ (uxuy)

ux(w ∗ guy
) + uy(w ∗ huy

) + 2(w ∗ h) = w ∗ u2
y

(55)

(56)

(57)

(58)

Remark 1 : We have chosen to include w in the formulation of the tensor (51).
This will allow us to include ux and uy inside the convolution operation in (54)
assuming that ux and uy are sampled at different positions on the grid.

Remark 2 : Theorem 1, describe the case when rank(S) = 1, i.e. the signal has
an intrinsically one-dimensional structure (such as lines), Proposition 1 describe
in general the case when rank(S) = 2.

To conclude, we have derived a framework which states under what conditions
a given PDE is the corresponding E-L equation to a tensor-based image diffusion
energy functional. In the next section the derived E-L equation (15) is used on
a color image denoising problem.

4 Application to color image denoising

It is known that the components of the RGB color space are correlated, therefore
decorrelation methods using PCA, HSV, Lab etc. have been investigated by the
image processing community. In this work we utilize the decorrelation transform
by Lenz and Carmona [9] which has shown to perform well for color image
denoising problems [8]. The transform is described by the matrix




I
C1

C2



 =
1√
6





√
2
√

2
√

2
2 −1 −1

0
√

3 −
√

3








R
G
B



 (59)

and when applied to the RGB color space a primary component describing the
average gray-value I and two color-opponent components C =

(
C1, C2

)
are

obtained.

4.1 From structure tensor to diffusion tensor

Let T be defined as the outer product of the image gradient weighted by a
smooth kernel, see (4). Since T is symmetric it is also positive-semidefinite. To
favor smoothing along edges the tensor is scaled using a diffusivity function g.
The scaling affects the eigenvalues of the tensor, but preserves the eigenvectors
since they describe the orientation of the image structure. In this study we use
the negative exponential function exp(−ks) as the scaling function where k is a
positive scalar, i.e.

D(T ) = g(T ) = V g(Λ)V −1 , (60)
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where V are the eigenvectors and Λ the eigenvalues of T [14]. Then Λ has the
eigenvalues λ1 and λ2 on its main diagonal such that g(Λ) = diag(g(λ1), g(λ2)).
Then we denote D = D(T ) the diffusion tensor defined by (60). With the same

notation define E = E(N), where N =

(
∇utTux

∇utTuy

)
in (26). Since N is a non-

symmetric tensor, E may be a complex valued function, however in practice
Im(E) ≈ 0 hence this factor is neglected.

4.2 Discretization

To find the solution u of (15) with tensors E(N) and D(T ) we define the
parabolic equation

∂tu − div(E(N)∇u) − 2 div(D(T )∇u) = 0 . (61)

The term containing D(T ) is implemented by using the non-negativity scheme
described in [2] resulting in a term A(u) whereas the other divergence term is
implemented using the approach in [17] described by B(u). In an explicit discrete
setting the iterative update equation become

ui+1 = ui + τ(A(ui) + B(ui)) , (62)

where τ is the steplength for each iteration i.

4.3 Experiments

The image noise variance, σ2
est, is estimated by using the technique in [18] which

is the foundation for the estimate of the diffusion parameter in [14] (cf. (47) p.
6), the resulting diffusion parameter for the diffusion filters is

k =
e − 1

e − 2
σ2

est , (63)

where e is the Euler number. A naive approach is taken to approximate the noise
of the color image, the noise estimate will be the average sum of the estimated
noise of each RGB color component. In most cases this approach works reason-
ably well for noise levels σ < 70 when compared to the true underlying noise
distribution, but note that the image itself contains noise, hence the estimate
will be biased. We use color images from the Berkeley segmentation dataset
[19], more specifically images {87065, 175043, 208001, 8143}.jpg, being labeled
as lizard, snake, mushroom and owl (see figure 1). All images predominately
contain scenes from nature and hence large number of branches, leafs, grass and
other commonly occurring structures. The estimated noise levels for the different
images can be seen in table 1.

In this work we found that modifying the estimate of the diffusion parameter
to scale with the color transform kI = 10−1k and kc = 10k, yields an improved
result compared to using k without any scaling. The motivation for using differ-
ent diffusion parameters in the different channels is that filtering in the average
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gray-value channel I primarily affects the image noise and hence it is preferable
to reduce the k-parameter in this channel. However, one must be careful since
noise may be considered as structure and may be preserved throughout the filter-
ing process. Filtering in the color opponent components will provide intra-region
smoothing in the color space and hence color artifacts will be reduced with a
less structural preserving diffusion parameter.

To illustrate the capabilities of the proposed technique it is compared to
three state-of-the-art denoising techniques, namely tracebased diffusion (TR)
[8], diffusion in the RGB color space [3] and the color version of BM3D [15].
Code was obtained from the authors of TR-diffusion and BM3D, whereas the
RGB-color space diffusion was reimplemented based on [3] and [2] (cf. p. 95),
the k-parameter in this case is set to the value obtained from (63) since it uses
the RGB color space. To promote research on diffusion techniques we intend to
release the code for the proposed technique.

For a quantitative evaluation we use the SSIM [20] and the peak-signal-to-
noise (PSNR) error measurements. To the best of our knowledge there is no
widely accepted method to evaluate color image perception, hence the error
measurements are computed for each component of the RGB color space and
averaged. Gaussian white noise with {5, 10, 20, 50, 70} standard deviations (std)
is added to the images. Before filtering is commenced the noise is clipped to
fit the 8bit image value range. The steplength for the diffusion techniques was
set to 0.2 and manually scaled so that the images in figure 1 are obtained after
approximately 1/2 of the maximum number iterations (100).

The purpose here is not to claim the superiority of any technique, rather it is
to illustrate the advantages and disadvantages of the different filter methodolo-
gies in various situations. The error measurements SSIM and PSNR values are
given to illustrate the strengths of the compared denoising techniques, results
are shown in table 1.

It is clear from table 1 that the established E-L equation performs well in
terms of SSIM and PSNR values compared to other state-of-the-art denoising
techniques used for color images. However, for images (such as the mushroom
image) with large approximately homogeneous surfaces, BM3D is the favored
denoising technique. This is due to many similar patches which the algorithm
averages over to reduce the noise variance. On the other hand, diffusion tech-
niques perform better in high-frequency regions due to the local description of
the tensor. This is also depicted in figure 1 where the diffusion techniques pre-
serve the image structure in the lizard, snake and the owl image, whereas BM3D
achieves perceptually good results for the mushroom image.

5 Conclusion

In this work we have given necessary conditions for a tensor-based image diffusion
PDE to be the E-L equation for an energy functional. Furthermore, we apply the
derived E-L equation in Theorem 1 to a color image denoising application with
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Table 1. SSIM and PSNR values

SSIM PSNR
Noise Est TR Proposed RGB BM3D TR Proposed RGB BM3D

Lizard

5 17.0 0.99 0.99 0.98 0.97 38.0 38.0 35.2 34.1
10 19.2 0.96 0.96 0.94 0.95 32.7 32.8 30.6 32.3
20 24.2 0.90 0.91 0.87 0.92 27.3 27.8 26.7 29.3

50 57.1 0.75 0.77 0.68 0.73 22.6 23.5 22.0 23.2
70 67.1 0.65 0.70 0.59 0.66 20.8 21.8 20.5 21.7

Snake

5 15.5 0.98 0.98 0.97 0.96 38.3 38.3 35.3 34.6
10 18.1 0.95 0.95 0.92 0.94 33.0 33.1 30.9 32.6
20 23.5 0.87 0.88 0.83 0.90 27.7 28.4 27.3 29.7

50 53.9 0.69 0.73 0.63 0.69 23.2 24.3 23.0 24.4

70 65.4 0.59 0.64 0.54 0.61 21.5 22.7 21.6 22.9

Mushroom

5 9.9 0.97 0.97 0.95 0.96 38.7 38.9 36.9 38.2
10 13.9 0.92 0.93 0.89 0.93 33.8 34.3 32.8 35.1

20 21.1 0.83 0.86 0.79 0.88 29.3 30.4 29.2 31.8

50 49.0 0.66 0.70 0.58 0.70 25.1 26.0 24.7 26.4

70 60.4 0.57 0.62 0.52 0.63 23.0 23.8 22.8 24.1

Owl

5 61.4 0.99 0.99 0.98 0.78 36.9 37.0 34.6 23.2
10 19.8 0.97 0.97 0.95 0.96 33.0 33.0 30.1 32.0
20 25.7 0.93 0.93 0.88 0.93 27.8 28.0 25.8 28.7

50 65.1 0.80 0.81 0.68 0.72 22.6 23.0 20.5 21.8
70 71.2 0.71 0.73 0.59 0.66 20.4 21.0 18.8 20.5

results comparable to state-of-the-art techniques. Generalization of Proposition
1 and its complete proof will be subject to further study.
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Noisy TR [8] Proposed RGB [3] BM3D [15]

Fig. 1. Results. Even rows display some subregions of the image from the respectively
previous row. The first four rows are illustrations using additive Gaussian noise of 50
std, the next two rows of 20 std, and the last two rows of 70 std noise. Best viewed in

color.
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