
On Test Scheduling for Core-Based SOCs

Sandeep Koranne∗

ED&T/Test, Philips Research Labs, Eindhoven. The Netherlands.
sandeep.koranne@ieee.org

Abstract

We present a mathematical model for the problem of
scheduling tests for core-based system-on-chip (SOC) VLSI
designs. Given a set of tests for each core in the SOC and
a set of test resources (e.g., test access mechanisms (TAM)),
we determine the test plan for the application of the tests to
the SOC. Test planning in this paper refers to the combined
activities of test access architecture partitioning and test
scheduling. These activities must be performed in conjunc-
tion as the choice of the test access architecture influences
the test schedule. We justify the formulation of test schedul-
ing w.r.t. minimum average completion time criterion as
compared to minimum makespan. We show that then the
problem of scheduling tests on TAMs can be mapped onto a
graph theoretic problem which has a polynomial time opti-
mal solution. We have implemented our algorithm as a test
planner toolTPLAN. We present the theoretical analysis of
our approach in this paper, and compare our results against
those published earlier using integer linear programming
techniques with encouraging results.

1 Introduction

The widening design productivity gap between VLSI
system capabilities and design engineering capability, in a
limited time to market scenario, has prompted many de-
sign groups to adopt a policy of core-based design reuse
at the system level [11]. Typical cores include CPUs like
MIPS and ARM, network controllers, embedded memo-
ries, DSP cores and associated peripherals like the IEEE
1394 Firewire and UARTs. But as has been noted in [18]
reusability of the design alone is not sufficient as the veri-
fication and test generation effort now dominate the design
cycle. Reusability of tests is crucial to reducing total de-
sign time. This raises the problem of test knowledge trans-
fer and test application to embedded cores. The proposed
IEEE P1500 (SECT) [9] standard provides facilities for test

∗An abstract version of this paper appeared in the Conference of the
European Chapter on Combinatorial Optimization, Bonn, May 2001.

knowledge transfer using Core Test Language (CTL) and
has suggested various test wrapper mechanisms for provid-
ing test access to embedded cores. In this paper we focus
on a related problem, i.e., optimization of test access mech-
anism in conjunction with efficient scheduling of tests on
system level.

Physical test application to embedded cores can be
thought of as comprising of two sub-problems, i.e., the
problem of providing test access to the core level test
pins from the IC level pins and the problem of efficiently
scheduling the tests so as to reduce the total test applica-
tion time (which determines the test cost). In this paper
we focus on the latter problem. Previous work on the first
problem, i.e.,test access mechanisms (TAMs), is reported
in [7], [14], [17] and [4]. In [7], Ghoshet al. describe a
method of testing embedded cores by means of transparent
access paths. The paper by Varma and Bhatia [17] describes
a method using a dedicated test bus for the test access to
embedded cores. In [14] a scalable and flexible test access
mechanism (the TESTRAIL) is described by Marinissenet
al. Chakrabarty [4] proposes TAM optimization using the
integer linear programming approach. Bus-based TAM de-
signs are currently popular as they are flexible and can (with
minor modifications) support all the required functionality.
In this paper we have assumed that a test bus similar to the
one proposed in [14] will be used to transport the tests to
embedded cores.

Recent work in the area of test scheduling can be found
in [16], [5], [10] and [12]. In [16], Sugiharaet al. ad-
dress the problem of selecting a test set for each core from a
set of precomputed tests provided by the core provider and
scheduling these tests in order to minimize the test time of
the complete system. The most restrictive assumption in
this paper is that there is only one test access bus at the sys-
tem level. Also the assumption that the core provider can
provide multiple test sets is not realistic in light of the basic
foundation of design reuse, i.e., reducing the design time.

In [5] Chakrabarty has analyzed the test scheduling
problem by reducing it to open-shop scheduling withm-
processors. Thefinish timeof the schedule is the latest
completion time of the individual processor schedule. The

length of the job is taken as the amount of time for the test
to execute. The objective is to minimize the finish time and
solutions using mixed integer linear programming (MILP)
techniques have been proposed. The idea has been further
extended by Iyengar, Chakrabarty and Marinissen in [10]
to include TAM optimization with core-level wrapper op-
timizations. We compare our results to the one published
in [10] in Section 5.1.

Test scheduling with power and test resource constraints
is analyzed by [12], where Larsson presents an integrated
SOC test framework by analyzing the problem of test ac-
cess mechanism design alongwith test scheduling. It is one
of the first papers that considers all the aspects of core-based
SOC testing in an unified manner. The limitation of this ap-
proach is the use of constant test times for tests, which in
practice would depend on the width of the TAM they are
executed on. Also to simplify the problem, the author has
assumed linear dependence between test time, test power
consumption and the degree of parallelism, which is in fact
the number of internal scan chains connected without seri-
alization to the TAM.

In this paper we describe our experiments with an
ILP (integer linear programming) formulation and improve
upon previous results. We show that even using this im-
proved formulation the time taken by the ILP solver to solve
medium-sized is unacceptably large. The theoretical analy-
sis of the reasons for the hardness of this problem are also
discussed. Hence, we motivate the search for alternative
optimality criteria which satisfy both the requirements i.e.,
of near-optimal performance bounds and modest computa-
tional complexity. There are several significant differences
between our approach and previous art. Almost all previ-
ously published approaches on the test scheduling problem
have assumed that the processing power of the test resource
is uniform for all the TAMs. We depart from this assump-
tion and do not apply this restriction; larger and more com-
plex cores will in practice have a wider TAM. Secondly, we
do not separate the test scheduling problem from the TAM
partitioning problem. We argue that if we separate schedul-
ing from TAM partitioning, then the test time calculation
for a particular partition (which is used as a measure of the
fitnessof a partition) can be misleading, and hence consti-
tute a sub-optimal solution. We devise a novel method of
calculating the original partition of the total TAM width us-
ing a projection-based method. Our method subsumes the
problem of constrained scheduling. In constrained schedul-
ing some of the tests can only be executed on a subset of the
test resources. A strong case can be made for constrained
scheduling for mixed-signal test bus like the IEEE 1149.4
mixed-signal test bus. When using an ILP formulation ad-
ditional constraints have to be added to the formulation in-
creasing its complexity. We handle the constrained schedul-
ing problem elegantly.

The rest of the paper is structured as follows. In the next
section we describe our notation. In Section 3 we analyse
the problem of partitioning available TAM bits efficiently
to scan chains of the core. We also describe an efficient
method tometa-partition the top-level TAM to arrive at
good candidate sets for the scheduling step. In Section 4 we
present our test planning algorithm by a reduction to mini-
mum weight perfect bipartite graph matching. Our method
runs in timeO(n3) for a constant number of test access
mechanisms, wheren is the number of tests to be sched-
uled. In Section 5 we discuss our test plan model with the
help of an example. We describe the tool we have developed
for test planning TPLAN and give the results on some syn-
thetic yet realistic SOCs. We compare the performance of
our method with those of ILP based techniques as presented
in [10] in Section 5.1. We conclude in Section 6.

2 Problem Statement and Notation

Problem 1 (Core-Based SOC Test Scheduling
ΣπW): Given NC cores each with a testT , where
test Ti takes timetij on a TAM of widthj bits, and a
constraintW on the width of the top-level TAM; calculate
the partition(πW) ofW intom sub-TAMsw1, w2, . . . , wm
wherem ≤ NC , and a scheduleΣ of theNC tests on
πW , which has minimum completion time. The number of
sub-TAMsm is not an input to the problem, and must be
calculated. By a method ofrestriction it is easy to show
thatΣπW is stronglyNP-hard.

In the test application model the processing requirement for
a test can be thought of as the demand of api number bits
at the test pin. We associate withTi a bitwidth denoted
φi, which is the number of core test ports involved inTi.
Formally, the width of a TAM over which there is no fur-
ther decrease in the length of the longest scan chain of a
core is called thebitwidth of a core. An example for a core
s38584 is shown in Fig. 1. Also associated withTi is a set
of TAMs µi. In our modelµi is the set of TAMs responsible
for transporting the test bits for the testTi. We consider all
µi as singleton sets or dedicated machines. We usemi to
refer to thewidth of the TAM µi. We associate each TAM
with a job-dependentspeeddenotedsij . The processing
time for the testTi on machinej is denoted bytij and can
be calculated aspisij . Although tij is monotonically non-
increasing w.r.t. tomj , the relationship is not a linear one
as assumed in [12]. In Section 3 we investigate the relation-
ship between the width of the TAMµi (mj) and its speed
(sij). Along the lines of [2] we denote the test planning
problem asΣ = α|β|γ, whereΣ denotes the schedule,α
refers to the machine environment,β to the test characteris-
tic andγ denotes the optimality criterion. We discuss these
below:

1. Machine environment: We do not consider the ma-
chines to be identical to each other in terms of process-
ing power. The width of the TAMµ can be thought of
asprocessing powerof machineµ. The machine envi-
ronment is thusα = R (unrelated parallel machines).

2. Test (job) characteristics (β): Since for some tests
(e.g., BIST) a preemptive test schedule would make
the test control logic hardware expensive in terms of
area we do not consider test preemption. In this pa-
per we also do not consider precedence constraints, or
power constraints. Hence,β = { }.

3. Optimality criterion (γ): Traditionally the optimal-
ity criterion for embedded core-based testing has been
minimizing the finish time of the last test. This is
referred to as themakespanof the schedule. The
makespan is also the maximum time any TAM is ac-
tive executing a test. Hence, the problem becomes
a min-maxtype problem with integrality constraints.
The problem of minimizing the makespan for parallel
unrelated machines is denotedR||Cmax, and has been
investigated in detail in the context of multiprocessor
scheduling. In this paper we have used the average
completion time optimality criterion. We justify the
choice below.

In 1976, Horowitz and Sahni [8] gave algorithms for
optimal solutions toR||Cmax using dynamic program-
ming, but the run time of their algorithm was exponen-
tial. For the case of fixedm they have shown that
there exists a fully polynomial-time approximation scheme
to solve mR||Cmax. They proved that for anyε >
0, an ε-approximation algorithm can be computed in
O(nm(nmε)m−1) time, which is polynomial in bothn and
1/ε if m is a constant. But the algorithm is still expensive in
term of runtime for practical cases. In another fundamen-
tal paper Lenstra, Shmoys and Tardos [13] proved that no
(3

2 − ε) approximation algorithm can exist for anyε > 0,
forR||Cmax unlessP = NP. Previous approaches to solv-
ing this problem in the context of test scheduling have not
had much success. In [10] the ILP solver is not able to solve
for values ofn = 10,m > 2. In Section 5 we improve upon
these results, but only marginally as the maximum problem
instance that is solvable using our formulation, in a reason-
able time is,n = 10,m = 6. State-of-art SOCs contain
upto 40 cores and 64 bit wide test bus at IC level. Each of
these 40 cores may have sub-cores which can constitute an
schedulable entity in itself. Hence, an alternative optimality
criterion, which is polynomial in the number of schedula-
ble entities and the number of test resource is needed. We
present such an optimality criterion in the form of minimum
average completion time schedules, denotedR||ΣCj . In
addition to being an useful heuristic for the makespan prob-
lem, the minimum average completion time criterion can

also be justified by noting that the makespan criterion opti-
mizes the schedule assuming all tests will pass. For sequen-
tial testing of devices with an abort-on-fail strategy,R||ΣCj
schedules will take less amortized time for a large number
of devices.

3 Test Access Mechanism Partitioning
Test access mechanism planning is also referred to as

TAM partitioning as mostly the top level TAM width of the
system is constrained due to pin count limitations. In or-
der to achieve good schedules the TAM partition must be
chosen well. The test access mechanism partitioning prob-
lem can be divided into two sub-problems. The first one is
the local scan chain partitioning problem per core, and the
other is the global TAM meta-partitioning problem. We do
not consider modification to the core to reduce the test time
as this would imply regeneration of test vectors. Hence, in
our model the length of the scan chains are fixeda-priori.
We discuss the core level scan chain partitioning problem
first.

3.1 Partitioning of Scan Chains at Core Level
In many cases the test bitwidth requirement of the core

test is much larger than the available width of the TAM.
In such cases some of the core test ports must be accessed
in serial fashion. This problem of assigning the available
TAM width to the core test ports has been referred to as the
scan chain partition problem (PSC)in [15] and shown to
beNP-hard and several heuristic solutions for the problem
have been described e.g., Best Fit Decreasing and MultiFit.

3.2 Top Level TAM Partitioning
Problem 2 (Top-level TAM Partitioning πW): Given a
SOC withNC cores and totalM TAM pins; divideM into
NC bits m1,m2, . . . ,mNC , such that a schedule on the
tests using these sets of TAM bits is close to optimal.

The idea is not to assign corei a TAM of width mi (static
assignment), but to create a sufficientlyvariedTAM parti-
tion, such that a test scheduler can choose a good solution.
As an example considerM = 4 andNC = 3, then there
can exist only 1 partition, i.e.,{1,1,2}. Clearly, the number
of such potential partitions is exponential (even consider-
ing only unique partition sets removing cyclicly isomorphic
partitions).The problem is hard as thefitnessof a particu-
lar partition depends on the schedule which in turn depends
on the partition. Estimating the fitness of a particular parti-
tion without taking into account scheduling can lead to sub-
optimal solutions. But this approach is popular as it is sim-
ple to implement both in software and in hardware. We need
a method to arrive at a good partition looking at static infor-
mation. This partition will then be used by the scheduling
algorithm to assign a TAM of certain width to a core for

a test. We present an algorithm for calculating the initial
partition based on the total number of test bits that need to
be transported for each core. This initial partition will be
used by the scheduler to arrive at an optimal schedule for
the complete test application.
Proposed Method for non-Bitwidth Limited Tests:

Let the expected bitwidth for each core be
o1, o2, . . . , oNC , where

oi = ∀ tests i : max ∀ operations j ∈ i φij (1)

The partition ofM is given by:

mi = 1 +
oi∑NC
j=1 oj

· (M −NC) (2)

In effect we areprojectingthe ratio of the bitwidth require-
ment for corei to the total bitwidth of the SOC, ontoM . In
Eqn. 2 we have assigned each core at least 1 bit. This works
well in principal for non-bitwidth limited tests (e.g, BIST).

200

400

600

800

1000

1200

1400

1600

1800

0
0

5

l_max(r,j)

10 15 20 25 30 35 40

L
en

gt
h

of
 lo

ng
es

t s
ca

n
ch

ai
n

TAM width in bits

Reduction of length of longest scan chain as a function of TAM width

Figure 1. Plot of lmax(j, r) for j=s58384

4 An Optimal Test Scheduling Formulation

In the previous sections we have seen how to partition
the available TAM width optimally at core level and how to
arrive at a partition set for the top level TAM bits. In this
section we describe an algorithm for deriving the optimal
test plan for all the tests on the available set of TAMs. We
denote bypij the number of bits flowing for thejth opera-
tion of testi (we uniquely rename all tests so that tests per
core are combined into a larger test set). We do not derive
the starting time for each test, but rather derive the order
in which each TAM executes the tests (this is useful in our
discussion and no information is lost as the starting time for
each test can be calculated from this ordering).

Let Jki be thek-th from last test to run on TAMi. Let
there be a total ofli tests on TAMi. LetCj denote the com-
pletion time for testj. The total test time for the complete
system is given by:

∑
j

Cj =
NC∑
i=1

li∑
k=1

CJik (3)

Since the completion time for a test is the sum of the pro-
cessing time of all tests that are executed before it, and since
Jki denotes thek-th from last test to run, we get:

∑
j

Cj =
NC∑
i=1

li∑
k=1

li∑
x=k

ti,Jxi

=
NC∑
i=1

li∑
k=1

kti,Jik (4)

where tm,Jijk denotes the completion time for operation
Oij with bits pij if scheduled on thek-th from last posi-
tion on TAMm (of widthm). As can be seen from Eqn. 4,
the k-th from the last test contributes exactlyk times its
processing time to the total cost. Using the result obtained
above we can formulate the planning problem as a graph
theoretic one. To solve the problem we reduce it to an as-
signment problem. We assign operationOij (operationj
of test i) to positionk on TAM m. The cost of assigning
testOij to (k,m) is kpijm wherepijm = pij/sm, pij is
the number of bits to be transported for operationOij and
sm is the effective speed (taking into account the slowdown
because of serialization) of TAMm. A polynomial time so-
lution for this problem was presented in [3] with time com-
plexityO(mn3), wherem is the number of machines andn
is the number of jobs; we present the idea of the algorithm
below.

4.1 Reduction to Minimum Weight Perfect Bipar-
tite Graph Matching

LetG = (V,E) be a bipartite graph in whichV = n ×
nm, wheren = set of tests andm = set of TAMs.
There is an edgeeijk between each element of setA = n
and each element of setB = nm of weightkpij , which can
be read as the cost of scheduling testi on thej-th TAM at
thek-th position from end. See Fig. 2 for an example (not
all edges are drawn for clarity). For brevity we omit the
division of tests into operations.

Slot 1

1 x t(J1,TAM 1)
J1

J2

J3

J4

Slot 2

Slot 3

Slot 4

Slot 2

Slot 3

Slot 4

TAM1

TAM 2

Slot 1

Figure 2. Reduction to Bipartite Matching
A feasible schedule is one that assigns each test to some

position of a TAM. This corresponds to theperfect matching
problem. An optimal schedule corresponds to a matching
with minimum weight. Hence, the minimum weight perfect

matching corresponds to the optimal test plan for the test
application problem.

The input to the algorithm are the number of tests, the
number of TAMs, the tables containing the number of pat-
terns per test, and the length of the longest scan chain per
test per TAM width. We first create two partitionsA and
B, which can witness the bipartite property of the graphG.
The calculation of the weight of each edge between a vertex
pair (u, v) : u ∈ A, v ∈ B is done as explained above. For
a constant number of test access mechanisms (most com-
mon in practice) the time complexity isO(n3). The bipar-
tite graph matching formulation has several advantages over
conventional integer programming approaches besides the
computational tractability. The bipartite formulation sub-
sumes the resource conflict for TAMs (for any test resource
considered for scheduling). As an example consider a con-
straint graphG′. A resource conflict graphG′′ can be con-
structed asG′′ = G∗ −G′, whereG∗ denotes the complete
graph. Given the bipartite graphG = (V,E), we modify
the weight as follows:

∀e ∈ E : w(e) =∞| if e ∈ G′′ (5)

No other change is required to the formulation. If there ex-
ists a feasible assignment then a perfect matching of weight
less than∞ will be found by the algorithm.

5 Proposed SOC Test Planning Flow

We now present out test planning flow with an exam-
ple. To present our approach in a simplified manner we
present a didactic example. Given a system withNC cores
andT tests we have to devise a schedule for each of the
tests on the TAMs, and at the same time come up with an
optimal partition of the TAMs. We assume that the maxi-
mum width of the TAM at IC level is fixed atW . We then
have :∀i

∑
µijm

m ≤ W . Note: this is an inequality as
compared to the strict equality that has been used in some
of the previous papers. When solving the mathematical pro-
gram with integrality constraints, this inequality can speed
the computation substantially. Each core gets asliceof the
total available TAM width (W). The speed of the TAM slice
µj (read as speed of the TAMj responsible for transporting
the test bits of testi) can be calculated from [1] as :

sij =
pi

lmax(j,mj)(pi + 1) + pi
(6)

wheremx denotes the width of TAMµx, px denotes the
number of patterns for operationx. In the sequel of this pa-
per we assume that a table containing information about all
cores in the SOC is given. This table contains information
regarding the number of patterns per core, the number of
functional ports of a core, the number of scan chains, flip-
flops etc.

We have implemented our method in the form of a Test
Planner Tool TPLAN with the C++ language. The run-times
correspond to the execution of TPLAN on a Pentium III ma-
chine running Linux with 512 MB of RAM. The software
was compiled using GNUg++ with the -O2 option.

5.1 Comparison to ILP Based Approaches
We formulated the makespan minimization problem

as an ILP and solved it using CPLEX (available from
www.ilog.com). Our results are better than those pub-
lished earlier in [10]. The design considered is mentioned
as SOCS2 in [6]. We formulated the problem using binary
decision variables and a lookup table for implementing the
functionlmax(j,m). The input to CPLEX wasW the num-
ber of top level test pins, andB, the number of TAMs. The
ILP formulation computed the optimal partition ofW into
B partitions and calculated the optimal schedule. In [10]
the solver (lpsolve) was halted after 180 minutes of runtime
for m = 3,W ≥ 48.We improve upon the schedules in
all cases and as can be seen from Table 1 the runtime of
our ILP formulation is significantly less than the one given
in [10]. In most cases the runtime was few seconds. But in
subsequent experiments even CPLEX was not able to solve
instances forW = 64, n = 32,m = 7 in 15 hours of run-
time. This justifies our use of minimum average comple-
tion time optimality criterion as a heuristic. We compared
the makespan length for these two methods; the results are
given in Table 1. The columnε denotes the approximation
factor of the average completion time schedule over the op-
timum makespan schedule found using ILP.

Table 1. Comparison of schedules for S2

Results of [10] Our Experimental Results
lpsolve CPLEX TPLAN

W R||Cmax Time R||Cmax Time R||ΣCj ε
Sch. (min) Sch. (min) Sch. ratio

16 42476 16.7 42293 0.1 43447 1.21
20 34493 26.0 33917 0.1 35760 1.23
24 28862 45.8 28305 0.5 30521 1.30
28 26964 57.6 24021 0.4 25583 1.33
32 22945 78.6 21474 0.6 22955 1.33
36 19858 118.0 19034 0.2 20646 1.27
40 19573 163.6 17612 0.1 18679 1.11
44 − − 15811 1.2 17280 1.19
48 18999 180† 14317 0.6 15982 1.25
52 16928 180† 13482 1.0 15230 1.29
56 15694 180† 12466 0.8 13444 1.14
60 15694 180† 11432 5.0† 12902 1.23
64 15694 180† 10877 5.0† 11520 1.28

5.2 Analysis of results
From the results given in Table 1 we can see that the

makespan obtained from solving the minimum average

completion time schedule is close to the ones obtained from
the ILP formulation. In many cases the results are even bet-
ter (e.g., the best previously published schedule for SOCS2
obtained using non-enumerative methods was 15694 [10],
which was obtained by usinglpsolvewhich had to be halted
after 180 minutes, we obtain a schedule of 13444 using our
meta-partition algorithm and bipartite matching in less than
a second). Although we have obtained better schedules us-
ing CPLEX, even that method is not scalable and does not
work for instance size as seen in state-of-art SOCs. It must
be remembered that even though the values ofε for someW
may seem high (e.g, 1.33), these values were calculated for
instances where the ILP solver was able to produce a sched-
ule. For larger instances likeW = 64, n = 32,m = 10, the
ILP solver is not able to compute the schedule (except for
trivial feasible solutions) in a reasonable time. This is due
to the fact that an ILP solver cannot continue to optimality
because of the hardness of the problem.

6 Conclusion
We have presented a polynomial time method to solve

the test planning problem for core-based SOCs by reducing
it to the minimum weight perfect bipartite graph matching
problem. We justify the use of minimum average comple-
tion time method as an optimality criterion as it is efficiently
computable, its use can be justified at scheduling wafer
level tests with an abort-on-fail strategy, and as we shown
with experimental data, the approximate makespan sched-
ule found using minimum average completion time methods
can be better than the schedule obtained the computation-
ally intractable min-max ILP for large SOCs. Theoretical
analysis for the reduction as well as an efficient algorithm to
compute such optimal test plans based only on information
from the core test sheets is presented. Our method provides
a global model by including the TAM partitioning problem
within the search space. The top level meta-partition prob-
lem for creating candidate TAM sets for scheduling is also
discussed and we present an efficient method of arriving at
such sets. We have implemented our method as a test plan-
ner tool TPLAN. Comparison of our method (TPLAN) with
integer linear programming techniques show that for large
SOCs TPLAN can come up with good approximate sched-
ules. In this paper we have considered the basic problem
of test scheduling with no conflicts, precedence and power
constraints. These are future research directions.

References

[1] J. Aerts and E. J. Marinissen. “Scan Chain Design for Test
Time Reduction in Core-Based ICs”. InProc. IEEE Intl. Test
Conf. (ITC), pages 448–457, October 1998.

[2] P. Brucker. Scheduling Algorithms. Springer-Verlag, 2nd
edition, 1997.

[3] J. L. Bruno, E. G. Coffman, and R. Sethi. “Scheduling inde-
pendent tasks to reduce mean finishing time”.Comm. of the
ACM, 1974.

[4] K. Chakrabarty. “Design of System-on-a-Chip Test Access
Architectures Using Integer Linear Programming”. InProc.
IEEE VLSI Test Symposium (VTS), pages 127–134, April
2000.

[5] K. Chakrabarty. “Test Scheduling for Core-Based Systems
Using Mixed-Integer Linear Programming”.IEEE Trans. on
CAD, 19(10):1163–1174, October 2000.

[6] K. Chakrabarty. “Optimal Test Access Architectures for
System-on-a-Chip”.ACM Tran. Design Automation of Elec-
tronic Systems, January 2001.

[7] I. Ghosh, N. K. Jha, and S. Dey. “Low Overhead Design for
Testability and Test Generation Technique for Core-Based
Systems-on-a-Chip”. IEEE Trans. on CAD, 18(11):1661,
November 1999.

[8] E. Horowitz and S. Sahni. “Exact and Approximate Algo-
rithms for Scheduling Nonidentical Procesors”.Journal of
the ACM, 23:317–327, 1976.

[9] IEEE P1500 Web Site. http://grouper.ieee.org/groups/1500/.

[10] V. Iyengar, K. Chakrabarty, and E. J. Marinissen. “Test
Wrapper and Test Access Mechanism Co-Optimization for
System-on-a-Chip”. InProc. IEEE Intl. Test Conf. (ITC),
pages –, October 2001.

[11] M. Keating and P. Bricaud.Reuse Methodology Manual
For System-on-Chip Designs. Kluwer Academic Publishers,
1998.

[12] E. Larsson and Z. Peng. “An Integrated System-on-Chip Test
Framework”. InProc. Design, Automation, and Test in Eu-
rope (DATE), pages 138–144, March 2001.

[13] J. K. Lenstra, D. B. Shmoys, and E. Tardos. “Approxima-
tion algorithms for scheduling unrelated parallel machines”.
In Proc. 28th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 217–224, 1987.

[14] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse,
M. Lousberg, and C. Wouters. “A Structured And Scalable
Mechanism for Test Access to Embedded Reusable Cores”.
In Proc. IEEE Intl. Test Conf. (ITC), pages 284–293, October
1998.

[15] E. J. Marinissen, S. K. Goel, and M. Lousberg. “Wrapper
Design for Embedded Core Test”. InProc. IEEE Intl. Test
Conf. (ITC), pages 911–920, October 2000.

[16] M. Sugihara, H. Date, and H. Yasuura. “A Novel Test
Methodology for Core-Based System LSIs and a Testing
Time Minimization Problem”. InProc. IEEE Intl. Test Conf.
(ITC), pages 465–472, October 1998.

[17] P. Varma and S. Bhatia. “A Structured Test Re-Use Method-
ology for Systems on Silicon”. InDigest of Papers of IEEE
Intl. Workshop on Testing Embedded Core-Based Systems
(TECS), pages 3.1–1–8, November 1997.

[18] Y. Zorian, E. J. Marinissen, and S. Dey. “Testing Embedded-
Core Based System Chips”. InProc. IEEE Intl. Test Conf.
(ITC), pages 130–143, October 1998.

